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the high-rate shear response of the material has an instantaneous rate dependence that
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large strains instead of fading. The usefulness of the technique and the significance of the
findings are discussed in comparison with a modified rubberlike liquid theory and high-
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1 Introduction field may be achieved in the specimen by using a concentric Cou-
Sette cell or a cone-and-plate rheometric configurati&j, The
L ; ; . ) . . osynamic viscosity and storage modulus of the sample material can
In Injection moldlng, wire extrusmn,_and f"“? blowing of plas_tlcs,be determined for these conditions. The frequency dependence of
the polymer_melt is subjected to high strain-rate deformation e dynamic viscosity is often related to the rate dependence of
well r?s \éla[yllng temp;]erature (;:md t?resTure.fLocal sgseaglrate MRY apparent shear viscosity of the material in steady flow,
reac 1 S ~ near the extruder barrel surface an & or  16,9,10, though the two may bear entirely different origins as
higher in the die lips[1]. The cumulative strain in the materlalgimed out by Khannél1]. The polymer melt elasticity may be

During a rapid extrusion of molten polymer, a common proce

may be far beyond 100%. How to characterize accurately tigerreqd from the storage modulus measurements. However, sig-
response of viscoelastic polymer melts under these dynamic logghcant discrepancy between the two has been observed for some
ing conditions remains a scientific challenge even though the r%lymer melts[12]. Transient measurements are possible with an
ology of polymer melts has been studied extensividly,4]. oscillatory rheometer but only for shear rates and strains signifi-
The capillary and oscillatory rheometri¢§], are the two most cantly smaller than those typical in a rapid extrusion process.
commonly used methods for measuring the rheological resporjsgge-amplitude oscillatory rheometer has been reported by Gia-
of polymer melts under high shear-rate loadif@-9]. A capillary - comin et al[13]. However, the long rise time of the devite 200
rheometer is essentially a small-size plunge extruder. The overally makes it only suitable for steady-state measurement. An ex-
response of ateadybut generallynonuniformmelt flow through herimental technique capable of measuring the transient large-

the entire“ extruder is measured. V\fith an a priori assumed flaain response of polymer melts under high strain-rate loading is
field, an “apparent shear viscosity,” the ratio of shear stress Ifbrrently lacking.

shear rate is determined from the measureniitSuch aresult — 1hq fimitation of the available rheological data on polymer
is meaningful if the material behaves as a viscous fluate- o5 ais0 affects the theoretical modeling of these materials. The
dependent onlyunder given temperature and pressure. If the Maneo|ogical descriptions used in polymer melt extrusion analysis
terial response is of a viscoelastic flu[@], however, the steady- gng simulations are mostly empirical viscous modeise, e.g.,
state apparent shear viscosity determined by the capillgi/y)) This is, to a large extent, because the capillary measure-
rheometry is, in general, an ambiguous measurement since it ma¥nts of the apparent viscosity have been the only experimental
be significantly affected by the cumulative strain, which is agata available for the high strain rates of interest. Unfortunately,
unknown in the experiment. Though useful as a reference fgg giscussed earlier, such measurements are ambiguous and insuf-
regulating the processing conditions in manufacturii@, such ficient for modeling viscoelastic polymer melts. The more rigor-
data are not sufficient for developing an accurate material mogg|g polymer melt models based on continuum mechanics prin-
for a viscoelastic polymer melt. _ ciple (e.g., models based on the rubberlike liquid theory and its

The oscillatory rheometrics typically involves the use of aodification,[2,3,9)), or macromolecule theorfe.g., various rep-
oscillatory mechanical spectrometer to subject a molten polym@fion models of entangled polymefd,15,16), or a combination
specimen to sinusoidal loadings of small strains. A uniform flowt the two, [17], on the other hand, have been developed and

calibrated mainly for low-rate loadind9,16]. Transient large-
*To whom correspondence should be addressed. strain measurements at high strain rates are necessary to verify the
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a sufficiently long time to render a homogeneous large-strain ¢
formation, and that tracks accurately the time histories of the loa (2) Pulley Clamp  Input Bar Thermal Chamber Output Bar

ing and the sample response to enable a time-resolved meas EA \
e~ f-——
[ I

ment. In principle, the Kolsky torsion bar technique can be a goc
solution for these issues. The technique is based on an experinm
tal configuration introduced by Kolsky.8] in 1949, i.e., to sand-
wich a specimen between two long cylindrical bars functioning ¢
two elastic waveguides. With the bars, dynamic loading can |
applied to the specimen as an incident stress wave and the sp
men response, which governs the stress waves leaving the sp
men, can be detected far away from the specimen. The method
also been referred to as the split-Hopkinson bar technique. T
method of generating dynamiorsionalloading in the Kolsky bar
system by rapid release of a pre-stored torque was introduced
Baker and Yew{19] and further developed by a number of re- A — A View:
searcherd,20,21]. An overview of the state of the art of the Kol-

sky torsion bar technique can be found[21].

However, the Kolsky torsion baiKTB) technique has mostly Clamping Force
been used to study the dynamic plasticity of metgl8—25. In
extending the technique for polymer melt rheometrics, there &
three technical issueét) integrating a proper rheometric cell with
the system,(2) maintaining the specimen temperature, &8y
measuring very low stress sustained in a polymer melt. The fii
KTB rheometer was developed by Clyens et[ab] for studying
super-cooled lubricants. The bar ends sandwiching the specin
were machined to form a parallel-annular-plates rheometer as w
as a cone-and-plate rheometer. No stress signal enhancement
used since the stress levels in their super-cooled lubricants w :
sufficiently high. To investigate the low-stress response of lubi Clamp x
cants near the room temperature, Feng and Raf2¥3hlesigned
a KTB rheometer with a tubular input bar and a thinner soliflig 1 schematic of KTB rheometric experiment. (&) Experi-
output bar. The rheometric cell was a concentric Couette cell wighental setup based on a Kolsky torsion bar system. (b) Tor-

a cone-and-plate cup end so that the area of specimen-bar ingnal wave propagation during the experiment.
face was significantly greater than that of the cross section of the

output bar, resulting in a signal enhancement that was sufficient

for measuring a sample stress as low as 0.015 MPa accurately.

In this paper, we report a KTB rheometer developed specificalpartial release wave of the same magnitude that travels towards
for polymer melts. This new rheometer provides a novel technigtfee pulley and then reflects from @hich is nearly rigid in tor-
for measuring the transient response of polymer melts under shei@n as a full unloading wave as shown in Figb}, which is a
rate rates of 10~10*s ! and initial temperatures up to 300°C,distance-time X—t) diagram illustrating the torsional wave
and for shear strains up to 1000%. To demonstrate the usefulne&gpagation during the experiment. The loading and unloading
of the technique, the results of a series of KTB rheometric expetaves form a torsional incidefibading pulseT; . By design, the
ments on a molten low-density polyethylefidPE) are also pre- torsional impedances of the bars and the shear stress associated
sented. These transient high-rate large-strain measurements ar/iffy the incident pulse are significantly greater than the imped-
our knowledge, the first of this kind and reveal important ne@nce and the material strength of the specimen, respectively. In
information on the rheological response of branched LDPE melgPnsequence, most of the mechanical energy associatedTwith
The significance of our new findings will be discussed in comparieflects from the specimen as a reflected pdisevhile a small
son with a low-rate constitutive theory as well as high-rate capiitaction of the energygoverned by the material strength of the
lary measurements reported in the literature for LDPE melts. Specimeh transmits through the specimen as a transmitted pulse

In what follows, the experimental technique is described first: Propagating into the output bar. The primary mode of a linear
The experimental results on the molten LDPE are presentedél@stic torsional wave in a circular waveguide is non-dispersive.
Section 3. The results are further discussed in Section 4. Finalijence, the relative rotation between the two bars and the torque

c=

Locking Bolt

Input Bar

(®) +1 Gauge Specimen Gauge
|

the main conclusions are summarized in Section 5. transmitted through the specimen can be determined straightfor-
wardly from the shear strain gauge measurements of the three
2 Experimental Technique pulses away from the speciméRig. 1(b)). The related experi-

mental analysis will be described later.

2.1 Kolsky Torsion Bar Rheometer. The new KTB rheom-  Several special designs and techniques have been employed to
eter for polymer melts has three components: a KTB system satisfy the particular needs arising from the rheometric application
thermal chamber, and a sealed cone-and-plate rheometric cell. Bhénterest. First, an asymmetric bar pairing is used. The input bar
experimental setup is shown schematically in Fig)1The KTB is a 7075-T6 aluminum alloy ro®5.4 mm diametgnwhereas the
system consists essentially of two long aluminum-alloy circulautput bar is a thin-walled 6061-T6 aluminum alloy tut#s.4
bars—the input and output bars, respectively, a friction clamp afm outer diameter and 0.89 mm wall thickneas shown in Fig.
Duffy’s design,[21], (detailed in A—A view, and a torsion driver 2(a). This new design retains a very large impedance difference
(pulley). The thermal chamber has a through hole to allow theetween the input bar and specimen as necessary for steady high-
bars to sandwich the test specimen inside the chamber. In opesie loading while minimizing the torsional rigidity of the output
tion, the friction clamp is activated and the segment of the inpbar to improve the accuracy of the measurements at low stresses.
bar from the pulley to the clamp is twisted to store a desirebhe smaller the output bar rigidity, the larger the shear strain for a
torque. Forcing the pre-notched bolt that locks the clamp to ragiven transmitted pulse, and thus the larger the signal-to-noise
ture releases the stored torque very rapidly, giving rise to a tagatio.
sional loading wave that propagates towards the specimen and &econd, controlled convection heating is used to heat the speci-
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specimen sticks to the inner surface of the collar so that the melt
(a) Thermal Chamber flow field near the surface is significantly different from that away

Temberature from it. This problem is resolvec_i by_inserting a thin Teflon film
<] Congol Unit between the collar and the speciméiig. 2(b)). For the tempera-
tures of interestbelow 300°Q, the Teflon film remains an excel-
Rapid Rotation Rheometer lent solid lubricant. The torque transmitted by the soft Teflon film
N is negligibly small compared to that transmitted by the specimen.
Ml b An experimental verification will be given later.
Input Bar Output Bar Foil resistance shear strain gauges forming a full Wheatstone
s P bridge circuitry are installed on each bar for measuring the tor-

sional pulses. The gauges used for the output bar have a nominal
resistance of 300@) to allow a high excitation voltage of 62
volts. The combination of high gauge excitation and low-
impedance output bar provides a sufficient signal-to-noise ratio
for determining shear stresses as low as 0.01 MPa. During the
experiment, the strain gauge signals are fed to a NICOLET mul-
tichannel digitizer operated in common mode rejection and re-

(b) 7’ corded at a 10-MHz sample rate and a 12-bit resolution. The data
Collar—| |_Teflon film acquisition process is synchronized to obtain time-resolved mea-

Specimen

/ surements of the relevant torsional pulses. The analysis to deter-
Il ,/ - ![ﬂml mine the specimen shear rate and stress from the measurements is
I i

i Press fit

i presented below.
Il 1] 2.2 Analysis of Experiment. Hartley et al.[21] described
i i in detail the analysis of the conventional KTB experiment, in
it i which the symmetric bar pairing allows the determination of the
“ ” specimen shear ratg, solely based on the reflected pulse mea-
I . I surement. The asymmetric bar pairing used in this work requires,
—i : e however, the use of all three pulses to determyge An analysis
Cone specialized for this experimental configuration is therefore in or-
der. In the derivation follows, subscripts 1 and 2 denote the quan-
“]* Sample material tities of the input and output bars, respectively, and andt the
quantities associated with the incident, reflected and transmitted
Cone-and-Plate Rheometric Cell pulses, respectively. ) .
Assume that the velocity field in the specimen is linear after the
spin-up process. Thep, can be related to the angular velocities
Fig. 2 Schematic of the rheometer assembly. (a) Thermal  of the two bar-specimen interfaceg (k=1,2) as
chamber and asymmetrically paired bars. (b) Cone-and-plate
rheometric cell. . @R @R Sir? a

Y= h sina

: @

men and to maintain its initial temperature at a designed valjéhereRs, h, and« are the radius, vertex height and half vertex
The heating is provided by resistance rope heaters and a forcec®&igle of the cone, respectively. In the equation, the denominator is
circulation system inside the thermal chambiéig. 2a)). A ther- the distance from the edge of the flat gnd to the cone su(f—"qge
mocouple sensor and an OMEGA thermal control module forg{P)) and the numerator the velocity difference over the distance.
the temperature control unit that can regulate the temperature flj&i€ characteristic equations governing the propagation of elastic
tuation to within=+1°C. torsional waves in the bars give

Finally, a sealed cone-and-plate rheometric cell is integrated
into the system. As shown in Fig(l®, the cone-and-plate con-
figuration is formed directly by a cone press-fitted into the tubular
output bar and the flat end of the input bar. The motivation for this ) )
arrangement is that the dimension of a separately machined cé#fe Kk=piCsd« (k=1,2) are the torsional impedances of the
can be determined accurately with an optical profilometer. ARars withp, , csi, andl, being the material densities, shear wave
though using the flat side to drive specimen shear flow caus¥eeds and polar moments of inertia of the bars, respectively. The
small flow field nonuniformity in the vicinity of the outer edge,torque pulse3 (q=i,r,t) can be related, through the elementary
the effect is negligibly small compared to the other sources #rsion formula, to the corresponding shear strain pulgefo
experimental error. A thick-walled aluminum alloy collar that carri.r.t) as
slide smoothly on the bars is used for two purposes. One is to
prevent the specimen from any large outward radial motion . _CsiK1 T _CsiKy and T _Cs2K @)
(driven by the centrifugal forgeat high-speed rotations. The other TR, 0 TR, TRy
is to improve the temperature uniformity across the specimen. The ) ) ) ) ]
solid input bar conducts heat much quicker than the tubular outppereR; is the radius of the input bar arith, is the outer radius
bar and a polymer melt is typically a poor conductor. Therefore,af the output bar. The relatior@, = p,c3, (k= 1,2) with G, being
significant temperature gradient may develop across the specintée. shear moduli of the bars have been used. Combining Egs.
The collar provides a heat conduction bypass between the tw9—(3) and using the relation sm:RS/~/R§+ h? lead to the fol-
bars and increases the thermal inertia of the rheometric cell. |bwing expression:
addition, an experimental study was done to optimize the position

and w,=-— —. )

of the rheometric cell inside the thermal chamber. As the result, . JRE+h?[cg h2ce,
the temperature variation in the specimen is within 1°C. YsS T R—(yr— i)+ — M| (4)
The use of the collar, however, gives rise to an edge effect. The 1 Rao(Rs+h%)
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Note that the occurrence of and the recordings of the three T LA T T
shear strain pulses are four events usually at different times. T [ e
determination of the shear rate-time profijg(t) requires time L 1 I 1L v
shifts for the measured shear strain pulses. For an unknown spe 4 -
men, a rigorous determination of all the time differences is diffi_ - Vs @ 4 0.4
cult. In practice, a subjective “best match” of the three pulses ii @ [
time is used as an approximation. The error is withi2 us.
Consequently, the slope of a rapid variatiominis less accurate.

The shear stress in the specimgncan be related straightfor- T (t)
wardly to T, by applying the stress continuity across the s
specimen-output bar interface and making use of the assumpti & | 4 0.2
of uniform shear stress in the specimen, i.e., [

,10% s
w

Shear Rate
N
>
Shear Stress, MPa

-
L

0.1

2w
Ti= TREVREHI2. 5) J

The right-hand side of Eq(5) is the result of integrating the of 4 e — e —— — —3 0.0
torque produced by over the cone surfad&ig. 2(b)). Using Eq. 0 200 400 600 800 1000
(3) andK,=p,csl, in Eq. (5) gives

Time, pus

3p2C%(R3o— R3) ' ' )
TS "t (6) Fig.3 S_hear rate and shear stress profiles from a typical K'I;B
4R,,RsVRs+h rheometric experiment on the DuPont-20 LDPE melt at 190°C.
The thicker line with respect to the left axis is the rate profile.
whereR,; is the inner radius of the output bar, and the relatiomhe thinner line with respect to the right axis is the stress pro-
I,=m(R3,— R%)/2 has been used. Note that the time correlatioffe.
of the shear stress-time profitg(t) with y4(t) is as good as the
time-shifting approximation used to determimg(t).

The maximum torque that can be stored in the KTB apparat@é)). Excessive materialif any) was removed, a layer of thin
used is 560 N-m. On the other hand, a minimum torque of 40 N-freflon film was applied, and the collar was slid into the place to
is required for producing a loading pulse of good quality. Ror complete the assembly. Finally, the assembled specimen was
=2 mm(which is used in this work the possible range of plateauheated up again slowly to a designed initial temperature. For the
shear rate is from 70078 to 10* s™1. For shear rates beyond thistemperatures covered in this wofk50°C~210°0, the material,
range,h needs to be modified accordingly. referred to hereafter as the DuPont-20 LDPE, is colorless. The

The deviation of the specimen velocity from the assumed linearolecular structure of the material is known to contain irregularly
field may be estimated with the analysis by Walters and Watespaced long-chain branches.

[28]. For =81 deg used in this work, the maximum deviation is

about 0.4%, an insignificant value. The primary sources of expeg- Experimental Results

mental error are(1) the deviation of theeffectivegauge output-
bar shear strain relation, which is not exactly known, from th
idealized gauge calibration(assuming a perfect Wheatston
bridge, which is actually used, an(?) the uncertainties associ-

The experiments presented below were designed to examine
irst the shear rate and shear strain dependences of the transient
response of the DuPont-20 LDPE heated to 190°C and then the
ated with our measurements of the geometric and material par -te”alf temperatu(rje depe?den%eog;aggggsg? shealr ;ﬁte‘ The
eters used in Eqg4) and (6). The error bars estimated with our>"€ar ratles examineéd range from 2U0 S (nearly the
error analysis and elastic tests are 4% farand 5% for 7. full span of the designed caeaouy'he material meltsompletely
Although the temperature of the heated end of eactiibaide the for temperatures above 130°C and color change was observed for

thermal chambgrmay approach 50% of the melting temperaturd'€, Material heated in air to 230°C and beyond. Therefore, the
of aluminum alloy during the experiment, the temperature rise rl?tlon of initial temperature was chosen to be from 150°C to
each gauge location is small because the gauge resides far a b 'd f ical . din Ei .

from the thermal chamber and most of the heat is conducted away "¢ data from a typical experiment are presented in Fig. 3 in

through the bearing blocks between the gauge and chatRlzer efms of the t_im(er]-resolvgd profiles of ?\?;;S ('th_e_ slhear rate and
: ear stress in the specimen, respect e initial temperature
L(@). As long as a temperature correction for the gauge factorgf this experiment was 190°C. Under the applied rapid rotation,

not necessary and the bars remain elastic during the experim ! ; ; r
even if a torsional impedance change does occur in the head the thicker line with respect to the left axigmcreases to 3900

portions of the bars, it may only affect the measurements for tfﬁe inf? riie tirr;e ofdatbout 6?‘5' Tlhizf;apidt spin;up process vlviII
initial slopesof sudden changes ipg(t) and 7¢(t), for which the erealter be referred 1o as stage 1. Alter Slagg temains nearly

KTB hni is not ver p n " However. for thgonstant as designed un_til the arriva_l of unloading_ approximat_ely
technique Is not very accurate anyway. However, for t E us later. The unloading is as rapid as the loading. The period

temperatures covered in this work, there has been no sign t .
may indicate a significant torsional impedance change in the b&) 9 he shear rate plateau and the subsequent rate releasing process
due to the heating of the specimen. wi I_ be referred to as stages Il and Ill, respectively. lefer_ent from
typical KTB experiments on metals, the present experiment did
2.3 Description of Sample Material. The new KTB rhe- not end at the completion of the rate releasing that bripgsack
ometer for polymer melts has been evaluated in a series of expéoizero. Insteady, runs across the baseline and evolves at small
ments on a molten low-density polyethyleeDPE). The raw but measurable negative values. This period of negatiweill be
material was DuPont 20 Series LDPE resin, which had a materiaferred to as stage IV. In response to the loadindthe thinner
density of 920 kg/mat 23°C, a melt index of 1.9 g/10 min and aline with respect to the right axislisplays interesting behavior. It
melting point of 109°C(manufacturer’s daja The resin pallets increases withy in stage | as expected. However, in stagerll,
were melted in a vacuum oven and resolidified into a brick. Spedircreases continuously with time whilgs remains nearly con-
mens of 2.5 mm thick and 25 mm in diameter were then machinsthnt. In other wordss, increases with the cumulative shear strain
from the brick. Each specimen was reheated sandwiched betwéethe specimeny, at a constani . Clearly, the material response
the two bars and shaped to fill the gap of the rheometric(E&l.  is other than purely viscougate-dependent only It appears to
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have a significanshear strain hardeninga phenomenon that may 0.4 [r———T— e s
occur in a viscoelastic fluid. For this experiment, the increasg in 1
during stage Il is actually greater than that in stage I. Although th
rising of 75 in stage | also involves the contribution of strain
hardening, it is due primarily to the increasejigsince the rising 03
slope in stage | is much steeper than that in stage II. [

The material response in stages Il and 1V is particularly inter
esting. In stage lll,r, decreases withy, (Fig. 3). However, 7,
retains a large residual value whegreaches zero. The evolution
of 74 thereafter(in stage IV} corresponds to a time-dependent®
elastic recovery of the specimen. Because the solid input bar § [
significantly more rigid than the thin-walled tubular output bar ing I ——  With Teflon film, 3900 1/s
torsion, this elastic recovery causes the output bar to rotate furth® o1 .
in the same direction as in the previous stages but at a very sm : —— Without Teflon film, 3870 1/s
and time-dependent decaying angular velocity while the input ba [
specimen interface remains essentially motionless. The result |
the small-amplitude reverse shear rate profile seen in stage 0.0 L L 1 1 L
(Fig. 3). This elastic release appears to require much longer tinr 0 200 400 600 800 1000 1200
to complete than the permissible time window of the experimen Time, ps
Point A in Fig. 3 indicates the time when the reflection of the
leading transmitted wave from the free end of output BAE ( Fig. 4 Comparison of shear stress measurements with and
Fig. (b)) arrives at the output bar gauge and the gauge signal aaithout thin Teflon film. The initial temperatures for both ex-
no longer be unambiguously related t9. There seems a shearperiments were 190°C. The solid line is the measurement with
stress oscillation at the beginning of stage IV. It is not yet cleaFeflon fim and under a plateau shear rate of 3900 s ~*. The
however, whether this is real material response or a manifestatRgken line is the measurement without Teflon film and under a
of the dynamic interactions between the specimen and the coRifeau shear rate of 3970 s .
tube assemblyFig. 2(b)) as vy, changes direction. A definite an-
swer requires further study.

It should be pointed out that whereag appears to decreasenantly rate-dependent response and the increase afterwards
instantaneouslyvith vy in stage I, the decrease of in stage IV as strain-dependent response, the former is more pronounced at
is entirely time-dependentThe data in this period reflect the re-higher shear rates while the latter is more pronounced at lower
laxation behavior of the rapidly sheared material. In a sense, thieear rates. In other words, the material response at higher shear
KTB rheometric experiment is a high-rate transient test in loadinates is more viscous than viscoelastic and vice versa at lower
and a step shear-relaxation test in unloading, considering the sigitear rates.
larity between stage 1V and the step shear-relaxation experimentThe shear strain-timeyy(t) profile for each experiment was
[3,5,9. determined by integrating theg(t) profile over the time so that

To verify that the use of a thin Teflon film as lubricant betweethe 7,— v, relation is obtained. The results for the six experiments
the specimen and collar does not affect adversely the accuracydekcribed in the previous paragraph are summarized in Fig. 6.
shear stress measurement, an experiment without Teflon film wéste that the initial rise is due primarily to the increaseyin The
carried out. The collar used in the experiment had a recessslope should not be viewed as a measure of elastic modulus. The
avoid direct contact with the specimen. A moderate input angulstrain hardening after the initial rise is apparently nonlinear. How-
velocity was employed so that the centrifugal force during thever, the hardening trends of all the experiments are surprisingly
experiment was insignificant. The initial temperature was alsimilar considering that the variation of the plateau shear rate
190°C and the plateau shear rate was 397018 Fig. 4, the shear
stress profile obtained from this experimédtite broken ling is
compared with that from the previously described experiniitet — T rr——————— Y -
solid line), which used a thin Teflon film and had a very close 05F .
plateau shear rate of 3900’ The two profiles are seen to be [ 9900 1/s
nearly identical, indicating that the effect of thin Teflon film on the 7850 1/s
shear stress measurement is negligible compared to the expec 04 [
experimental error. 1 5510 1/s

Figure 5 presents the shear stress-tirg) profiles obtained s i
from six experiments with an initial temperature of 190°C ancs [
shear rates ranging from 8007sto 9900 s*. The plateau shear & 0.3} 3900 1/s
rate reached in each of the experiments is specified in the figui§
For clarity, the data are shown for the rate loading and releasirg
cycle only without the time-dependent elastic release. The corr .
sponding shear rate profiles are similar in pattern to that shown g o2f 2420 1/s
Fig. 3 and will not be presented for the lack of space. The stregj ‘
profiles for plateau shear rates up to 5516 bear the character-
istic features similar to those described earlier. However, the ra 0.1
of 75 increase in stage Il decreases with increasing plateau she
rate. The data from 7850 $ experiment seem to indicate the f 800 1/s
development of a shear stress plateau right before the arrival 1
rate releasing. Note that the loading pulse duration is the same1 0.0 et
all the experiments shown. The higher the plateau shear rate, 1 0 100 200 300 400 500 600
larger the value ofys before the rate releasing. Hence, the late Time, ps
response in 7850 experiment may be a sign of the saturation
of shear strain hardening. This becomes apparent in the data frgi) 5 Shear stress profiles for various shear rates and 190°C
9900 s* experiment. If the initial rise irr is viewed as predomi- initial temperature

tress, MPa
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Fig. 7 Variation of transient response with initial temperature.
The mean plateau shear rate is 3990 s ~! and the deviation is
+90 s7%.

Fig. 6 Shear stress-shear strain relations for various shear
rates and 190°C initial temperature. The circles indicate the
maximum shear strains reached in the experiments.

4 Discussion

from one experiment to another spans more than one order oft has been shown that the low-rate large-shear response of
magnitude. This indicates that the observed shear strain hardertingnched LDPE melts can be modeled quite well by incorporating
is, by and large, independent 9f. A further implication is that a a memory function into the rubberlike liquid theof®9]. In par-
master curve of shear strain hardening can be extracted from tloellar, Laun[9] demonstrated that both the transient shear mea-
Ts— ys cUrves. The maximum shear strain reached in 9900 ssurementsfor y, up to 10 s1) and the steady-state apparent shear
experiment is approximately 580%. The data from the thragscosity datafor y5 up to 1¢s 1) for a molten branched LDPE
highest-rate experiments together seem to indicate that the shesar be well represented by an integral constitutive equation based
strain hardening saturatésr remains at a steady vajughenys on such a modified rubberlike liquid theory. For a step shear rate
reaches 300% and beyond. loading of intensityy, and starting at=0, the analytical result of

If the 7s— y5 curve for a complete loading-unloading cycle ishe integral equation is
measured, the density of energy dissipation during the experiment

can be determined by calculating the area enclosed byrthe =yt S Nys7igi ex;{ _ 1+n757it

— vy, curve. Although each— y, curve in Fig. 6 has a significant S S 4 14Ny, 7

portion of the unloading data, it does not contain the later part of )

release including the further elastic stress relaxation beyond the : 7i0; 1+nygT

time window of experiment and the elastic recoil process under + VsEi m 1—exp< - Tt . (D
st

macroscopically “zero-stress” conditiofi9]. In other words, the
energy density calculated using the area underneath gacl, wheren, 7,, andg; are material parameters. Although appears
curve in Fig. 6 is somewhat greater than the true density of energythe both terms on the right-hand side of E@), the first one
dissipation during the experiment. However, for an upper bourtéscribes the effect of the shear strajt] and the second one
estimate of the temperature rise during the experiment, such arcounts for the explicit response 49. Comparing Eq(7) with
approximation is conservative and sufficiently accurate. The naur high-rate data on the molten DuPont-20 LDPE helps to iden-
merical result of such an estimate will be presented later. tify the key difference between the response of a viscoelastic
The experiments to study the dependence of the transient largetymer melt under low shear-rate loading and that under high
strain response of the material on the initial temperatiyrevere  shear-rate loading. For short-time responsegiven by Eq.(7)
designed for a plateau shear rate of 4006, $our experiments does not jump withy since for a very smaltiboth the shear strain
were carried out fody=150~210°C at a 20°C increment. Theand shear rate terms are nearly zero. In contrasthown in Fig.
results are presented in Fig. 7 in terms of a comparison@) 3 changesnstantaneouslyith a change inys. To some extent,
profiles. The plateau shear rates of the four experimerttse high-rate response is more of Kelvin-\oigite., 7,=Gy,
(3900~4090 s1) are very close to the targeted value so that the 75, whereG and # denote shear modulus and viscosity, re-
comparison is not biased by the shear rate. Qualitatively, tlpectively than rubberlike liquidEqg. (7)). The fact that the rate-
trends of the stress profiles are similar. Quantitatively, howevelpminant initial rise in7g decreases with the plateau shear rate
both the initial rise ofrg (responding to the rapid increaseaf)  (Fig. 5 suggests that the instantaneous viscous response of a vis-
and the shear strain hardening after the initial rise increase withelastic fluid may not be discernible in low-rate rheometric ex-
decreasing,. Since, by design, the value of right before the periments. The type of high-rate transient measurements presented
unloading varies very slightly for these experiments, the signifitere is important in developing better material models for vis-
cant variation in the strain hardening is due entirely to the changeelastic polymer melts.
in 6. In comparison, the variation of the initial rise is less sig- For long-time(large-strain response, the exponential terms in
nificant. In other words, the strain-dependent part of the materiat). (7) vanish giving rise to “viscous like” shear response, which
response is more sensitive fig than the rate-dependefviscous  depends only on the steady-state apparent shear viscosity, the first
part of the material response. If the strain hardening continuestésm in the second summation. The high-rate- vy, data shown
decrease with increasirtly, the material response may eventuallyn Fig. 6, on the other hand, indicate that whereas the shear strain
become predominantly viscous rather than viscoelastic. hardening saturates for,>300%, the effect ofys does not fade
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in such a steady state. Therefore, although a relationship betwe: [T T T T
the steady-state,/y, ratio andy, may also be determined for 025 |

high shear-rate loading, it is fundamentally different from the B
steady-state apparent shear viscosity as in(Bg.Another evi- [
dence to support this conclusion is the fact that the full rate re 0.20 F
leasing only releases a fraction of the shear stress sustained in t

steady statéthe three higher-rate experiments, Figs. 5 apd 6 o [ W 5510 1/s

The observed viscoelastic flow behavior may be explained e ¢ 15

9900 1/s

7850 1/s

the molecular level as the following. Driven by active thermal 3900 1/s

motions in the molten polymer, vastly many molecular segment&2 A4

may be disentangled from surrounding molecules at any give 0.10 | .
instance so that they are momentarily “free” to move. Under a "W, 2420 1/s

biased mechanical field, these disentangled molecular segmer
may either move in the direction dictated by the applied field to  0.05 | s

new locations thus forming a flow at the macroscopic level or

- . . . . Y\ 800 1/s
swing to align with the flow direction. In each case, such a mo-
lecular segment needs to pass through the network of surroundir ~ 0.00 : E—— !
molecules. The viscous drag of the molecular network against thi 0 1 2 8 4 5
passing-through motion gives rise not only to viscous stress the.. Shear Strain

depends on the velocity of relative motion but also to elastic ) ) . .
stretching of the molecular segment as well as the molecular chatfl: ? Viscous stress jumps for various shear rates and 190°C
it associates with. At the same time, the moving and stretchg(']Ila temperature
molecular segment may be part of molecular network for other
moving segments to pass through. Hence, as the flow evolves, the
molecular chains are quickly stretched and consequently stiffened. . .
The molecular network becomes more viscously resistive agaifgeasing trend of the steady-statg/ ys ratio with increasingys
the passing-through molecular segments, resulting in a higher vigt the shear shinnings close to those of the steady-state appar-
cous stress for the same app||ed strain rate. However, once (311 shear ViSCOSity results. It should be pOintEd out that derived
molecular chains are stretched to such an extent that the elafi@m the capillary data the latter rely on an a priori assumed flow
stress increment due to further stretching will exceed the corféeld in the extruder[5]. Therefore, the steady-state/ys— s
sponding viscous stress increment, the hardening will stop as felation determined directly by the KTB rheometric experiment
quired by the equilibrium condition. From this perspective, thean be used to verify the high-rate capillary results, the traditional
observed shear strain hardening can be viewed as the result §laiabase for polymer processing design and control. Also shown
material state variation from an undeformed, less viscous moledd-Fig. 9 are the ratios oA 7¢(ys) to the plateau shear raféhe
lar network to a highly stretched, more viscous one. As such, tHédngles. The shear thinning in this set of data is seen to be much
material response during loading may be described with a viscolig§aker than that of the steady-statg y; ratios. In fact, there is
model having a strain-dependent apparent viscosity. Howevafnost no thinning for shear rates up to about 5500, This
such a model will be invalid under rapid unloading or oscillatory
loading. This is because the reverse transition through relaxation
to a more compliant molecular networktime-dependerdnd can
be significantly slower than the applied load variation. For &
strained viscoelastic polymer melt, the effect of elastic deforma 10¢
tion of molecular network will not fade quickly. A useful model
for this type of material behavior needs to keep track of the con
tribution of elastic strain. 4
As an attempt to separate empirically the contributions of she®-
rate and shear strain to the viscoelastic flow response of the mc2
ten DuPont-20 LDPE at high shear rates, tbading portion of i
the data obtained for 190°C initial temperature is treated as trg
sum of a rate-dependent viscous jundprs(ys) and a rate- 2

10°

independent master curve of shear strain hardening, for which t. 102 — .
function 0.2592 tanh(0.%2) MPa was found to fit the data well & v v -

with deviations being within 4%. Figure 8 shows the results ol& M v o~
subtracting the master curve from the loading portion of the o ®  Measured steady-state stress/rate ratio

— s curves shown in Fig. 6. Step jump appears to be a good 10F g Estimated steady-state stress/rate ratio
approximation to all the curves, demonstrating that the proposeﬁ v Viscous stress/rate ratio without strain hardening
separation is a reasonable treatment. According to the mast —e— Apparent shear viscosity (PEMEX LDPE, [6])

curve, 75 reached a steady stafthe saturation of shear strain — — Apparent shear viscosity (Union Carbide LDPE, [14]) ]
hardening in the experiments with a plateau shear rate of 551( 10"102 163 ' E— “164

s~ L or higher(Fig. 5. For the three experiments at lower rates, the
steady-states can be estimated using the master curve. In Fig. 9 Shear Rate, s

both the steady-state,/y, ratios measuredthe filled squares

and estimate¢the open squargare presented and compared witHfig- © Comparison of the ratios of shear stress to shear rate
the steady-state apparent shear viscosity results on a PEM%e tsthfheaﬁgﬁgzts ::‘:‘;"r:e"s'fggjgyst;?:”d't:tao;‘n ds'gt'i"’r‘; alt_eDsF:‘Er
LDPE melt(the circles on.the solid line[6], and a Umc.m Carbide the DuPont-20 LDPE melt at 190°C. The triangles are the results
LDPE melt(the dashed ling [14], both from the capillary mea- corrected for the shear strain hardening. The circles and the
surements at 190°C. In terms of absolute value, the three sets,@jken line are respectively the capillary results of the appar-
results clearly disagree one with another, indicating significasht shear viscosity of a PEMEX LDPE melt, [6], and that of a
material differencelikely in molecular weight However, the de- Union Carbide LEDP melt, [14], both at 190°C.
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demonstrates, from a different perspective, the ambiguity of usingThe dependence of the material response on the initial tempera-
the steady-state apparent shear viscosity in describing the higlve has been studied at a plateau shear rate of about 3990 s
rate response of a viscoelastic fluid. There is no qualitative difference in the material response for the
Finally, it should be pointed out that the effects of temperaturange of initial temperatures examingdom 150°C to 210°C
increase during the KTB rheometric experiment have not be&uantitatively, however, the strain-dependent part of the response
included in the above analysis and discussion. The experimensaftens more rapidly with increasing temperature than the instan-
nearly adiabatic because the time scale is much shorter than tlasteous rate-dependent part of the response. Predominantly vis-
for significant heat conduction. Hence, the specimen temperata@is response can be expected for the material at significantly
is expected to increase somewhat with the energy dissipation doigher temperatures. At lower temperatures, the shear strain hard-
ing the experiment. Although it is difficult to measure the temening of the material will stiffen. However, the material response
perature change during the experiment, its upper bond can detemperatures above the melting point is still expected to be
estimated as discussed in the previous section. For the expédifferent from that of a rubberlike liquid by a noticeable instanta-
ments with 190°C initial temperature, the upper bond of temperaeous dependence on the shear rate.
ture rise is less than 1.35°C, an insignificant value on the order of
the temperature measurement uncertainty. However, for larger
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ruvang | SUDjected to Stationary In-Plane
= 1 Edge Loads
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Craduate Student This paper presents an analysis of dynamic stability of an annular plate with a periodi-

cally varying spin rate subjected to a stationary in-plane edge load. The spin rate of the
plate is characterized as the sum of a constant speed and a small, periodic perturbation.
Due to this periodically varying spin rate, the plate may bring about parametric instabil-
ity. In this work, the initial stress distributions caused by the periodically varying spin
rate and the in-plane edge load are analyzed first. The finite element method is applied
then to yield the discretized equations of motion. Finally, the method of multiple scales is
adopted to determine the stability boundaries of the system. Numerical results show that
combination resonances take place only between modes of the same nodal diameter if the
stationary in-plane edge load is absent. However, there are additional combination reso-
nances between modes of different nodal diameters if the stationary in-plane edge load is
present.[DOI: 10.1115/1.1753267

Department of Mechanical Engineering,
National Taiwan University of Science and
Technology,

Taipei, Taiwan

Introduction tionary load system. A further study of effects of load parameters,
Spinning disks find wide applications in mechanical en inees_uch as friction force, transverse mass, damping and stiffness, and
n 9 pp 9ineeine analogous pitching parameters, of a stationary load system on

ing, from early circular saw blades, turbine rotors to recent flop ; . o .
and compact disks, etc.. With the progress of industrial techn%e free vibration of a spinning disk was conducted by Chen and

- . . . ogy [9].
ogy, the speeds of spinning disks have been increasing, and%h f)t/e[rv]vard Cher[10] continued his research efforts to study the
ensuing vibration problem has been exacerbated. Thus, the to%i{;szi

L L b o : lity of a spinning disk under a stationary concentrated edge
pertaining to the V'br?“f’" and stability of spinning disks hav ad in the radial direction. The edge load may be a conservative
attracted much attention to researchers since the early 19

; S . . - o Prollower force, and the analysis is based on the inertial coordi-
Early investigations dealt primarily with the determination o tes. Numerical results show that a stationary, conservative, and
natural frequencies and critical speeds of spinning disks. La mpressive edge load decreases the natural’ frequencies 6f the
and Southwel[1] first deriv_ed_the f_requency equation and plotte orward and backward traveling waves but increases the natural
t_he mode shapes of a spinning c_|rcular platg. South[@lbon- frequencies of the so-called reflected waves. The compressive
tlr_lued to anal_yze the free vibration of a spinning annular pla@dge load induces a divergence-type instability before the critical
with (_:Iar_nped_ inner edge and fre? outer ed_ge. .. speed and a flutter-type instability beyond the critical speed when

Spinning disks are usually subjected to in-plane loading in ag-efiected wave meets a forward or backward wave. In addition,
plication. Mote[3,4] studied the free vibration of circular diskSy,a effect of the conservative edge load on the natural frequencies
subjected to initial in-plane stresses introduced purposely by rolif ihe spinning disk is mostly through the transverse component
ing or to thermal membrane stresses resulting from the cuttipge edge load and is much more important than the effect of the
process. The free vibration of a spinning disk under a concentraigflower edge load. The parametric instability of a spinning disk
radial edge load was first investigated by Carlin and his cQpger the action of space-fixed pulsating edge loads was further
workers,[5]. R.edclllffe and Motd6] extended the work of Cgrlln investigated by Chefll]. He found that sum-type resonances
et al. by considering a general concentrated edge load with beffcur petween both reflected modes or both nonreflected modes,
normal and tangential components. In these two papers, the cgpj; difference-type resonances take place when one mode is re-
centrated edge load is spinning along with the spinning disk, th@dcted and the other is nonreflected.
is, there is no relative motion between the disk and the edge load, the mean time, Shen and Sofitp] also studied indepen-

In most real situations, the loads of spinning disks are flxeq Hently the stability of a spinning disk under a stationary concen-
space. lwan and Moeller's woilk’] appears to be the first publi- yrated in-plane edge load. The edge load is more general, having
cation on this subject. They investigated the free vibration of g only the normal component but also the tangential component.
spinning disk transversely in contact with a stationary load systefe analysis is based on the rotating coordinates attached to the
consisting of a mass, spring, and dashpot. Ono dBakxtended  gpinning disk, and parametric instability is shown to exist. The
Iwan and Moeller's work to include the pitching parameters agsults reveal that the radial component of the in-plane edge load
well as the friction force between the spinning disk and the stgominates the rotational speed at which parametric instability oc-
- curs, and the tangential component of the in-plane edge load

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  dominates the width of instability zones.
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CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septem- The spin rates of the disks considered in all abovementioned

ber 19, 2001; final revision, June 6, 2002. Associate Editor: N. C. Perkins. Discussk&ferences are constant. However, in the real world, the spin rates

on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Jourpfithe disks usually fluctuate within a small interval. The work by

of Applied Mechanics, Department of Mechanical and Environmental Engineering, ; B
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will gflmmel’ and SchlacKL3] appears to be the first one concerning

e. . . .
accepted until four months after final publication of the paper itself in the ASM is topic. In this paper, the an99|af speed is expressed as the sum
JOURNAL OF APPLIED MECHANICS. of a constant and a small periodic perturbation, and the KBM
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Q
a()
a\! b /6 71n=0
1 f and the latter is found to be
b
011 2= 0992=0 @)
. .[b 2+ 1,00
Tr2=Co| ] TP
I wherec} , ¢}, andc3 are undetermined coefficients, amdis
(a) Poisson’s ratio of the plate. By using the boundary conditions
| ~ u*(a)= o} (b)=o7,(b)=0, whereu* is the radial displacement
of the plate, these undetermined coefficients can be solved as
£:(® L Ltv(1-wat+B+yb*
— Co= 8 2 o P

! T~ (1-v)a2+(1+v)b
| J4(0)

o 1—v (3+v)b?>—(1+v)a? 20)2 @
= r
(®) 178 (1-wadr (14 b2’

Fig. 1 Configuration of a spinning disk subjected to a station-

in- 1 Q)
ary in-plane edge load ci=— 2 psz'

The radial edge traction is assumed to be symmetrically distrib-
method is used to derive approximate solutions. Later Young anted with respect t@, hence, it can be expended into a Fourier
Liou [14,15 applied the method of multiple scales to investigateosine series,
the parametric instability of a rotating cantilever plate and a rotor-
bearing system with nonconstant rotating speeds. The nonlinear
response of spinning disks with nonconstant spin rates was also
studied by Yound 16]. Sum-type resonances are shown to exist
between modes of the same nodal diameter. This work extends the ] o
past research efforts of the authors to analyze the dynamic stadifiere fx are Fourier coefficients. By the symmetry class of the

ity of annular plates with periodically varying spin rates subjectegfresses, the in-plane stressgs, 7,,, ando,, of the plate due
to stationary in-plane edge loads. to the radial edge traction may be assumed of the form

f(0)=, ficosk (5)
k=0

©

. ) Er,(r,a):E ok(r)coské

Equation of Motion k=0

Figure 1 shows an annular plate which is clamped at the inner
radiusr=a and subjected to a radial tractidifd) at the outer
radiusr =b, where ¢, 6) is an inertial coordinate system fixed in
space. The disk is spinning with an angular sp€edwhile the
radial edge traction is fixed in space. The radial edge traction may "
be a conservative forck, or a follower onef 4 and is assumed to ~ _ ~ .
be symmetrically distributed. The equations governing the in- o,,,(r,@)—kgo radr)sinko
plane stresses?, , o},, anday, of the plate due to rotation are

([17)

0

Tool(r,0)= >, Tom(r)coske 6)

whereo,,y , o0, ando, » are Fourier coefficients af,, , o4y,
and o,4, respectively. Using the generalized two-dimensional

* * *
doy, O~ 0y
ar r r a0

@)

1 0"0’59

* *
doyy 207,

+ +—=pr —
o r a6 1 Pl

wherep is the mass density of the plate. Equatidn is linear;

elasticity solution in polar coordinates and imposing the periodic-
ity conditions of the radial and circumferential displaceménnts
andv, and the disk boundary conditions(a) =v(a) =0, 4 (b)
=0, o,k (b)=—1,/h, whereh is the thickness of the plate, the
in-plane stress componenis,, , oy, anda, 4 can be solved.
The solutions are given in Carlin et §b].

With respect to the inertial polar coordinates, the transverse

consequently, the resulting stress field will be the sum of twdisplacement of the plate can be expressedavasw(r,6(t),t).
parts: one due to the centripetal acceleration and the other duéTterefore, the equation of motion of a spinning disk with viscous
the angular acceleration. The former is axisymmetric and can Bamping subjected to stationary conservative edge loads can be

obtained as

Journal of Applied Mechanics

written as
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— 20—+ 0

D c(ow oW 9w 9w Jw
90" P o2 Jtol 962

. C . . D
[Mo]v+ p—h[Cz]V+29[G2]U+ W[KQHQZ[KFZ] v

14 ow\ ok, Pw a1 ow : cQ
= —|otr— 0877 0;*9_(__ + Q[H2]+—h[Gz] u=0

roor ar 2 592 ar\r a6 p
1149 g g P g 5 4 where[M] and[K,] are the mass and elastic stiffness matrices,
_{_(5 r_W+(~, H_W +—|3 0_W+ oo _W” respectively] C] and[G] are the damping and gyroscopic matri-
rior\"" or  "90) 96\ "ar r 960 ces, respectivelyfK,] and[H] are geometric stiffness matrices
t(0) P due to the centripetal acceleration and the angular acceleration,

+ (_ S(r—b) w @ respectively;u andv are vectors formed by all nodal parameter

h

ar vectorsu; andv{, respectively, and a overdot denotes a differen-
. ) ) o ) tiation with respect to timeé. Note that all the matrices except
wherec is the viscous damping coefficient of the plai®js the [K,] are of block-diagonal forms.

flexural rigidity of the plateD=Eh%*12(1-1?), in which E is ~ Equation(11) is a set of coupled ordinary differential equations
Young's modulus of the platef-) is the Dirac delta function; and with variable coefficients. If the spin rate of the disk can be ex-
V*# is the biharmonic operator in the polar coordinates. If theressed as the sum of a constant sp@gdand a small periodic
stationary edge load is of follower type, the last term in &jis  perturbation(),(t), i.e., Q=0Q,+Q4(t), Eq. (11) can be com-
dropped. Note that when the spin rate is not constant as the chifed together and rewritten in the nondimensional form as
studied in this work, there exists a terp{dQ/at) (ow/38) on , . o2

both sides of the above equation and is canceled out each oth&]p"+2uQe(alCl+[G]P" +{[Ke]+ n Q5([K]

gi@%lgggrgii% ;:roend|t|ons of the disk in terms of the transverse +2a[GIp=—2uQ,[GIp’ — [ u2(2Q,01+ QD)[K, ]

. +uQi[H]+2ap*Q Q[ G]}p 12)
W:EZO’ atr=a wherea=c/2phQ,, u=+phb*/D, p=[;],
. . . . [M]z'[l\/ll] (0] } c =[[C1] [O]}
12 0_W+13_W+19_W) 1”( 7w Eﬁ_W) L [0] [M] [0] [Cyl
ar\ grz 1 dar 2 52 r2 \oroe? T 96? 0] [Gy]
=0, atr=b (8) [G]:_[Gz] (0] }
e iy L0 [Kel] 7L 101 (K]
[ [0] [H4]
Solution Methods [H]:_[Hz] [oj |’

Equation(7) is a fourth-order partial differential equation with
variable coefficients and is unable to be solved directly. A soluti
of this equation is assumed to be in the form of a Fourier seri

and a prime denotes a differentiation with respect to the dimen-
Wonless temporal variable=t\/D/phb®. Note that the matrices
e[i?l], [C], and[K,] are symmetric, whildG], [H], and[K,] are
3 asymmetric. To improve the solvability of Eq12), a modal
. . analysis is then applied to uncouple the undamped, autonomous
W(r,e,t)zjzo [P;(r,t)cosj o+ Q;(r,t)sinj f]. () terms in the system equation. Since the mditix] is asymmetric
in this case, rewrite Eq12) into the following set of the first-

Substituting Eq(9) into Eq. (7) and equating the coefficients of °rder differential equations,

each cogo a_nd sinj 6 yields a set of partial differenti_al equations [M] [O] 2u0,[G] [K]

for the functionsP;(r,t) andQ;(r,t). This set of partial differen- q q

tial equations is still too complicated to have exact solutions[0] [I] —[1] (0]

Thus, the finite element method is adopted to eliminate the depen- wQ[C] [0]

dence upon the spatial coordinateBy using the two-noded beam —— ° q-2a
(0]  [0]

X[[O] pﬁﬂﬁ[e]}

!

1+ —
element, the functionB;(r,t) andQ;(r,t) within an element can Q,

be assumed a$18))

— T — 1T,
PP=yu®, Q°=y'v} (10) (0] [0]
where ¢ is the shape function vector, aru? and vf are nodal _ & #Q[G] 0] q- &[[O] MQO[H]}q
ithi i ini QO 0 0 Q,[[0 0
parameter vectors within an element. Going through the finite ol [0O] [0] ol [0] (0]
element formulation yields the following two sets of discretized ) 22
equations Q, Q7||[0] w°QfK,]
’ -25+= (13)
Qo 02/|[0] (0]
c ) . D . . . .
[M]u+ p—h[Cl]u+ZQ[Gl]v+ W[KﬂhQZ[Kﬂ] u where [K]=[K]+ #2QK,]; [I] is an identity matrix, and
p —rp
q_[p ]
cQ The eigenvalues of the corresponding undamped, autonomous
: el _ system in Eq.(13) appear in complex conjugate pairs, i.&,,
| QLH. ]+ ph [Ga]|v=0 (11) =y, *iw,, n=1,2,...N, where N is the total degrees-of-
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freedom of the discretized system defined by @¢), andw,, are

the nondimensional natural frequencies of the disk with a constant ~ [K*]=[d;,—e;, ... ,dy,— T[
spin rateQ), . When the natural mode is stable, the real part of the

corresponding eigenvalug, is zero. If y,, becomes positive, the x[a;,b ay by ]
natural mode corresponding to this eigenvalue is unstable. If, in LoFL e ON RN

addition, the imaginary part of this eigenvalug is equal to 0, The terms on the left-hand side of E(@5 are uncoupled in a
the mode experiences the so-called divergence-type instabilityblpckwise sense; however, those on the right-hand side of the
the imaginary parts of two eigenvaluag, and \,, which have equation are still coupled together. To match the form of the ma-
positive real parts are equal, i.@,,=w,, these two modes ex- trix [A], the matrices on the right-hand side are partitioned N#to
perience the so-called flutter-type instability. The normalized righlocks of 2<2 matrices. Consequently, E(L5) can be rewritten
and left eigenvectors of the corresponding undamped, autonoma@us the following form:

system in Eq(13) also appear in complex conjugate pairs, i.e.,

[0] uzﬂi[Kr]}
[0] [0]

: . Q,
Xon-1= 8, Fiby,  Xpp=a,—ib, &n _wnﬂn__‘]’az nr r+cnr77r) 4a 1+Q_
[0}
Yon-1=0Onti€, Yan=0dy—ie,, n=12,...N
wherex; andy; are normalized right and left eigenvectors, respec- XE (stié +s2p)— 4—2 (9e, +g¥27,)

tively; a, andd, are real parts ok,,_, andy,,_,, respectively;
b, and e, are imaginary parts of,,_; andy,,_;, respectively.

Due to the biorthogonality of the right and left eigenvectas, _2_ hilg +pi2
b,, d, ande, have the following propertie§19]), Q, 2 (e M)
[(M] [0O] [(M] [O] 1 Q, 03\
T _ —__ s 1
rop > [[01 [l]}bk‘za'k -2 2Q—+Q— 2, (kiétkarn,)
eT[[M] [0]} —dT[[M] [01} N N a,
o] )% o] [ a TtenE=o E chrée i) 4a(1+ Q_o)
1 28QG]  [K¢] 1 28Q[G] [K{] 1
j &="§ bx=—7 7%k @ 22
-[11 [0] -1 o2 xE (Shrér+Shim) —4 o~ Z (Oar&+gmem)
[28Q[G]  [Ki] 11 2uQdG]  [K{] 1 N
J a=—d b=~ 5 0 ik 0
-t 1ol - 1ol 2 Z (h3t +hirm,)
where & is the Kronecker delta function. -
Consider the case that the disk is stable when the spin rate is Q, 2
constant, i.e., all the real parts of the eigenvalygsare zero. -2 20— 2 (K2, +K2p,) (16)
Introduce now a linear transformatian=[a,,b,, ... ay,bn]E. 0
Substituting this transformation into E¢L3), premultiplying the n=12 N
matrix [dy,—e;, ... ,dy,—ey]" and using the orthogonality in D '
Eq. (14) yields the following partially uncoupled equation: where &, and 7, are the (21— 1)th and ath entries of¢; ¢,

s, g, hil., andk!l are thei —jth entries of then—rth blocks

§’+[A]§=—2[2a[c*]+2a 1+%)[S*]+2?T1[G*] of [C*], [S*], [G*], [H*], and[K*], respectively.

Q! 02 Perturbation Analysis
1 1 1
to R 2+ [K*]] 4 (15) Equation(16) represents a set of simultaneous ordinary differ-
° o g ential equations and has no exact solutions. However, if the right-
_ 0- wn hand side of the equation is small in some senses, perturbation
where[ A ]=block dlag[ ] methods can be utilized to obtain analytical solutions. In this
Q.[c] [0] work, the angular speed perturbatiéh is assumed to be peri-
[C*]=[dy,—€y, ... dy,—e]" #35o odic. Hence, it can be expanded into a Fourier series of the form
Lo [0] [0] M
*[ay,by, ... ay.by] Qu(n)= X ke (17)
m=
202
[S*]=[d;,—e dv —e1T (0] w2 C] whereg is called the perturbation frequency. Since the speed per-
b He e [0] [0] turbation(), is small as compared with the steady spéed the
magnitude of each Fourier coefficiert, is also small as com-
X[ag,by, ... ay,by] pared with (), . Therefore, the small parameteappearing in the
[uO[G] [0] perturbation technique is defined as |« |/Q, here.
[G*]=[d;,—e, ... dy,—e] 220 In this work, the method of multiple scales is used to find an
| [0] [0] analytical solution of Eq(16). By introducing new independent
X[ay,b by] variablesTj=el 7, j=0,1,2 ..., it follows that the derivatives
1,01, ..., 8N,0n with respect tor become expansions in terms of the partial de-
[[0] Qo [H] rivatives with respect td;, [20], i.e.,d/dr=Dg+ €D+ .... It
[H*]=[d;,—e, ... dy,—ey]" is assumed that the solution of Ed.6) can be represented by a
L10] (0] uniformly valid expansion having the form
X[ay,by, ... &y, byl (T O=En(To Ty, .o )+ €€m(To, Ty, .. )+ ... (18)
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(7€) =0T T1s .. )+ €mna(To, Tas - .. divergence—or flutter-type instability zones, whefes negative.
. L ) Therefore, unless the system is experiencing divergence—or
Due to the complexity of the problem, the expansion is carried Offf,ier-type instability, the system is stable when the excitation

to the order ofe. Substituting Eq(18) into Eq.(16) and equating fequency is away from the sum or difference of any two natural
the coefficients of like powers afyields the following equations: frequencies.

)+ ...

Order 1 Il The Case ofg, Near w,+w; When the frequency of the
Doéno— @n7no=0 excitation B, is nearw,+ wq, a combination resonance of the
(19) summed-type exists between tpth andgth modes. By eliminat-
Domnot @néno=0 ing the secular terms from E¢R0) yields the expressions for the
Order e transition curves which separate the stable regions from the un-
stable regions,
Doén1— @nmn1 A /T 1/2
_ pa‘tap_ ~o 2 2
N Bm=wptwgte a“|(cytcy) +0(€%)
I YN 11 12 Cqu
Diéno—4a (cnréctcarmr) 22
r=1 ( )
N where
~ _ A11 22 11 22 _ A11 22 11 22
—402 (Skré +stemy) Co=Cppt CopT SppTSpp:  Cq=Caqq™ Cag™ Sy Saq:
r=1 o2l 522 o 21 5 22 21 22
" N Apq=[(=2ikpg— 2Ky = 2i9pq = 205q+ Bmhpg— 1 Bmhpg)
4 ket (91, +gl2p,) — (= 2Kpg+ 2ik 2= 2050+ 2ig 57— 1 Buhpy— Bmhpa) 1km
m=1 r=1 N (o2l _oL22 52l 5 22 21 22
" " qu—[(2|kqp 2kqp+2|gqp 29qp+ﬁmhqp+|,8mhqp)
—2 iBukne 7 2, (hiE+hi2y) (= 2kgp= 2ikgp—29gp— 2i0gp +i Bmhp— Bmhap) 1m -
m=1 r=1 If there is no damping in the system, the transition curves become
M N 2
742 ~ eiBmT.E (KM, + K2 ) 4 c.c Bm=wpt g+ 2e VA gAgp+ O(€). (23)
= =y e i e 20) In the course of numerical computation, one finds that, and

where k= km/|ky|, Bm=mpB, and c.c. denotes the complex

Do7n1t wnéna
N

~ 21 22
== D177n074"12:L (Chrér+chrmr)
=

N
~ 21 22
_4(121 (Snrér+snrmr)
=

Agp are either real or pure imaginary simultaneously. Therefore,

transition curves exist if\,, and A4, have the same sign when
they are real, and have opposite signs when they are pure imagi-
nary.

[l The Case of8,, Nearw,—w,. When the frequency of the
excitationg, is close tow,— wy, @ combination resonance of the
difference-type exists between tpth andgth modes. Similarly,
by eliminating the secular terms from E@O0) yields the expres-

M _ N sions for the transition curves
—42 k€T X (GhrE R T) Apehap - 12
= =1 Bn=wp—wgt e |~ @’ |(cp+cg)®| +O(e?)
M N p™q
. (24)
— i B r.eBm. 21 22 ' . .
ZmE:l | Bmicme " zl (har&+hoer) wherec,, andc, are defined in the same way as the previous case,
while
M N
— i 21 22 in21 22 21 22
4> kn€Pm D (K¢, +k22p,) +c.C Apq=[(=2ikpg+ 2Ky = 2i9pq T 2050+ Bmhpg 1 Bmhyg)
m=1 r=1

conjugate of the preceding terms. In the above equakg®,0 is

assumed without loss of generality, afeF ea is assumed to have
the damping term appearing in the same order as the first exc
tion term. To this order of approximation, four cases of resona

combinations of frequencies have to be considered.

— (= 2kpg+2ikpa— 2050+ 2ig 58— i Bmhpe+ Bmhsa) 1km

Nqp=[(~20E5+ 2252125+ 2022~ BohZh—i Bh22)
. (—2kgp— 2ikga— 2050 2ig5+ i Buhap— Bmga) 1K -
égain thatA 4 and A4, are either real or pure imaginary simul-

aneously is observed during the course of numerical computation.
Therefore, transition curves exist A, and A4, have the same

| The Case of3,, Away Fromw,*w, When the requency of sign \_Nhen_ they are real, and have opposite signs when they are
the excitation3, is away fromw,* o, one speaks of a nonreso-puré Imaginary.

nant case. In this case, the secular terms are eliminated from EqV  The Case of3,, Near w, +wq and wg+o;.

(20) if the amplitude of¢,y has the form,

A(Ty)=a,e 2N (21)

wherea, is an arbitrary function ofl,, andc,=ci +c22+ sk

+s%2. Note that the above equation is obtained as a result of

12 _
Chn™
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In this case,
Bm is simultaneously neav,+ wq andwy+ o, , and there are no
other resonances to this order. To express the nearne8g ti
wpt 0g andwy+ o, , one introduces two detuning parametess
and o, defined by

Bm=wptwgteoy, Bp=wqtoteo,. (25)

21 12_ 21 H . . .
Chn andsy,=Sq,. The former is due to the symmetry of theyt follows that the secular terms in ER0) are eliminated if
matrix [C*], and the latter is observed during the course of nu-

merical computation. The amplitude, will decay with time, and
hence the system is always stablecjf>0. In the course of nu-
merical computation, it is interesting to find that is always
equal to 0.5 unless the system configuration falls within

D1A,+ aCpAp+ A pgAge' 1 T1=0
D 1A+ aCqAq+ AgpAne 1T+ Ay Ae72T1=0

DA +aCA, + A A 2T1=0

(26)
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Fig. 3 The width parameters of unstable regions of a freely
Fig. 2 The natural frequencies of the zero-nodal-circle modes spinning disk with a harmonically varying spin rate. alb=0.5,
of a spinning disk with a constant spin rate subjected to a con- v=0.27, a=0, F,b%/ D=0.
servative, concentrated and compressive edge load. alb=0.5,

v=0.27. Heavy line: F.b% D=3.5, light line: F.b% D=0.

results for the disk subjected to an edge I6at?/D =3.5. In this
figure,nf, nb, andnr denote the forward, backward and reflected
whereA,, Aq, andA, are the amplitudes of o, £q0, and&o, modes with n nodal diameters, respectively. It is observed from
respectively.Ayq and A4, are the same as those defined in Eghe figure that the compressive edge load tends to decrease the
(22), and Ay, and A4 are defined in a similar way. The abovenatural frequencies of the forward and backward modes but to
equation admits solutions having the form increase the natural frequencies of the reflected modes. Further-
i renT L —iIrT L iNtooT more, the conservative, compressive edge load induces a
Ap=ae MV, Ag=ae T, A =aetrh (27) divergence-type instabilityan unstable mode with a zero natural
frequency before the critical speed, the speed at which a natural
wherea,, aq, anda, are complex functions of ,, and\ is a frequency of a freely spinning disk becomes zero, and a flutter-
complex number. Substituting EQ7) into Eq.(26) yields a set of type instability(two unstable modes having the same natural fre-
algebraic equations in,, a4, anda, . To have nontrivial solu- quency beyond the critical speed when the Beflected mode
tions ofa,, a4, anda,, the determinant of the coefficient matrixmeets the B backward mode. At the intersection point between
must vanish, and must be real also to have stable response of th&o light curves, i.e., the degenerate modes of a freely spinning
system. This results in a cubic equationhn disk, the natural frequencies will be separated upon the applica-
3, 2, A - _ tion of the edge load. One of the natural frequencies remains
NHploy,02, N+ 0(0y,02, N FT(01,02,€)=0, (28) unchanged, while the other lowers. Note that the results in Fig. 2
where the coefficientp, 4, andf are functions ofry, o,, ande. are identical to those obtained previously by CH&f], which
To guarantee all three roots being real, the coefficients of tipeoves that the finite element formulation in this work is correct.
cubic equation, so are,, o,, ande, must satisfy the following The natural frequencies of the one-nodal-circle modes are several
relationship: times higher than those of the zero-nodal-circle modes. Since the
1 lowest few modes are relatively important in vibration, we will
= (2p3—9pg -+ 27F)2+ (34— p?)3=<0. (29) focus on the zero-nodal-circle modes hereafter. _
4 As an example of application of the general solutions obtained
Iy this work, the speed perturbatidi,(7) is taken as();(7)
= k cosBr, wherex is assumed to be small as compared with the
average spin rat,, and B is the nondimensionalized perturba-
tion frequency. Hence, the small parameteappearing in the
) ) . perturbation technique is defined as «/Q),. Figure 3 presents
Numerical Results and Discussions the width parameters W of unstable regions of an undamped,

Before presenting the numerical results for the stability analj€ely spinning disk with a harmonically varying spin rate. The
sis, verification of the finite element formulation is taken by conwidth parameterW is defined asyA qAq, for sum-type reso-
sidering the free vibration problem of a spinning disk with a comances ok/A,4A o, for difference-type resonances. In this figure,
stant spin rate subjected to a stationary concentrated edge loaddhd curves represent sum-type resonances, while a dash curve
the radial direction. According to Chen’s study0], the maximum represents a difference-type resonance. It is found that combina-
number of nodal diameter¥in Eq. (9) and the number of ele- tion resonances will not take place between modes having differ-
ments in the radial direction are chosen to be 3 and 6, respectivedgt nodal diameters. This can be explained as follows: Recall that
Figure 2 shows the natural frequencies of the zero-nodal-cir@d# the matrices excepfK.] in Eq. (11) have block-diagonal
modes of a spinning disk with a constant spin rate subjected tdaams, and coupling is caused by the initial stresses induced by the
conservative, concentrated and compressive edgeHpad here stationary edge load. For a freely spinning disk, the equations for
are two sets of curves in this figure. The light curves are thmodes having different nodal diameters are mutually independent.
results for the freely spinning disk, while the heavy curves are ti@onsequently, combination resonances will not occur between

From the above relationship, the transition curves can be obtain
The transition curves correspond to the value@gffor which A
has at least two real, equal roots.
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Fig. 5 The central frequencies of unstable regions of a spin-
ning disk with a harmonically varying spin rate subjected to a
conservative, concentrated and compressive edge load. alb
=0.5, »=0.27, a=0, F .b* D=3.5.

Fig. 4 The width parameters of specific unstable regions of a
spinning disk with a harmonically varying spin rate subjected
to a conservative, concentrated and compressive edge load.
a/lb=0.5, v=0.27, a=0, F,b%/D=1.0.

ifference-type resonances will come about is decided by the

modes with different nodal diameters in the absence of the sfghy 5 eristics of each mode of the disk but not by the character-
tionary edge load. In addition, sum-type resonances occur t?g-

tween forward and backward modes, while difference-type reso-ic.S of the excitation. : _——
nances occur between forward and ’reflected modes. The wi Figure 6 presents the lowest few unstable regions of a spinning

arameters of sum-type and difference-type resonanées rise v(gi%k with a harmonically varying spin rate subjected to a conser-
p 8 ; yp . yp . V) ive, uniformly distributed and compressive edge load of inten-
increasing spin rates, but the width parameters of main resonangﬁ'ﬁf b3D=3.5. In this figure, the average spin r&dg is equal

= c o g
(BFigZJ;g)4aijeegilggytigwidth parametatsof some specific un- to half of the lowest natural frequency of the corresponding free,
stable regions of an undamped, spinning disk with a harmonicall nrote}tinhg disk. Aglcording to Fiﬁ' 4, the rEaxifmum width plarami
- : : ' : rs of the unstable regions shown in this figure are relative

varying spin rate subjected to a conservative, concentrated 8aII as compared with t%lose of the sum-type rgesonances betwe%an
compressive edge load. Again six solid curves represent the suﬁﬂé 3 mode %nd the B. 2b. 1b modes et{:p Fortunately, those
type resonances between therBode and the £ 1f, 0, 1b, 2b, . Lo e . e !
and B modes, respectively, while the dash curve represents t gstable regions with larger maximum width parameters belong to

difference-type resonance between ttfen3ode and 8 mode. In .he higher frequency domgin. Loo'king. in(g) t'hrough(c), one
this figure, there are two protrusions, where the width parame g}ds that the unstable regions, which lie within a pair of stability
: ' gundaries, enlarge initially as the load distribution angle in-

tends to infinity. The left one corresponds to a divergence-ty 4 h . the edae load distributed half
instability, and the right one corresponds to a flutter-type instabff! c25€S and reach maximum as the ecge load distributed over ha
&cwcle. A further increase in the load distribution angle will gen-

ity. Compared with Fig. 3, one discovers that the envelope I d their si H th tabl ;
these seven curves is closely related to but somewhat higher tT5R yd.re Ltjceth elr S'tze' OWEver, eb utns a e;hreg:jons cdorre-
the (3f+3b) and (3f—3r) curve in Fig. 3. This is attributed to sponding to the sum-type resonances between thenade an

the fact that the B mode of the freely spinning disk resolves intczthe 3, 2b, 1b modes, etc., will still enlarge for a further increase

parts of the 2, 1f, 0, 1b, 2b, and  modes of the disk sub- in the_ load distribution angle. The reason is that th_e anelope of
jected to the edge load, as shown in Fig. 2, and the disk is deattt?ﬁ W'qth parameter curves of these resonances will rise once _the
8§1d distribution widens because the total edge load applied in-

Eglrzr:ggawchaer? ;ggjigzdb;grizrg%rgﬁgg igg?al(?: daidstm";r P creases also. As the edge load distributed over the whole circle,

2b. and B modes, the 1 mode and the 0, 4. and % modes the natural frequency'cu.rves .Iook like the light curves shown in

ana the 0 mode a’nd the Opland D moaes. The maximurln .F'g‘ 2 fc_)r the fr_eely Spinning d'SI.(' and the unstable regions shown

width parameters of all other resonances are relatively small. in th'.s figure will disappear, leaving only “!‘S‘ab'e regions of com-
The central frequencies of unstable regions of a spinning digi}ation resonances between modes having the same nodal diam-

with a harmonically varying spin rate subjected to a conservativ%ter’ like the_ case .Of the freely spinning disk. In addlt_lon, all

concentrated and compressive edge load are illustrated in Fig U§Stable regions shift toward the lower frequency domain as the

In this figure, heavy solid curves, light solid curves and daéﬂad distribution widens.

curves denote main resonances, sum-type resonances and

difference-type resonances, respectively. The figure shows tI&t .

sum-type resonances occur between two modes being both @_nclusth

flected or both nonreflected modes, while difference-type reso-Dynamic stability of a disk with a periodically varying spin rate

nances take place between one reflected and one nonreflectajected to a stationary in-plane edge load has been studied both

modes. This phenomenon was also observed previously by Claralytically and numerically. Due to the complexity of the prob-

[11] when he studied the problem of a spinning disk under spadem, only the first order approximation was presented, and a

fixed pulsating edge loads. It is evident that whether sum-type simple perturbation function was considered to provide numerical

456 / Vol. 71, JULY 2004 Transactions of the ASME



3b+3b  2b+3b  2b+2b 1b+3b 1b+2b 0+3b 0+2b
0.30 — 1bt1lb

0.20 ==

0.10 =

4.00 8.00 12.00 16.00 20.00 24.00

p
(ay @, = 45°

3b+3b 2b+3b 2b+2b  1b+3b 1b+2b 0+3b 0+2b
1b+1b

0.30 T

0.20 —

0.10 ~

4.00 8.00 12.00 16.00 20.00 24.00

B

(b) 8, = 90°

3b+3b  2b+3b  2b+2b 1b+3b  1b+2b 0+3b 0+2b

+
0.30 == 1b+1b

0.20 —

0.10 —

4.00 8.00 12.00 16.00 20.00 24.00

(c) 8 =135°
Fig. 6 Effects of the distribution angle of a conservative, uniformly distributed and compressive

edge load on the stability boundaries of a spinning disk with a harmonically varying spin rate.
alb=0.5, f,b3% D=3.5, Q,\phb?/ D=5.6372.

Journal of Applied Mechanics JULY 2004, Vol. 71 | 457



illustrations of the general solutions. However, solutions for morel2] Southwell, R. V., 1922, “On the Free Transverse Vibrations of a Uniform
general periodic functions can be easily generated for the first few Circular Disk Clamped at Its Center and on the Effects of Rotation,” Proc.
approximations. Phys. Soc. Londonl 01, pp. 133—153. 3 . )

. . . [3] Mote, Jr., C. D., 1965, “Free Vibrations of Initially Stressed Circular Disks,”

From the above numerical results, the following conclusions™ ™ ;. Eng. Ind.87, pp. 258264

can be drawn: [4] Mote, Jr., C. D., 1967, “Natural Frequencies in Annuli With Induced Thermal
L . . . . . Membrane Stress,” J. Eng. IndB9, pp. 611-618.

1. For a freely spinning disk with a harmonically varying spin (s cariin, 3. F., Appl, F. C., Bridwell, H. C., and Dubois, R. P., 1975, “Effects of
rate, combination resonances will not take place between ' Tensioning on Buckling and Vibration of Circular Saw Blades,” J. Eng. Ind.,
modes having different nodal diameters; moreover, sum-type 99, pp. 37-49.
resonances occur between forward and backward modeé@] Redcliffe, C. J., and Mote, Jr., C. D., 1977, “Stability of Stationary and Ro-

while difference-type resonances occur between forward ancﬂ tating Discs Under Edge Load,” Int. J. Mech. Sd9, pp. 567-574. _
reflected modes 7] lwan, W. D., and Moeller, T. L., 1976, “The Stability of a Spinning Elastic

- . . . . Disk With a Transverse Load System,” ASME J. Appl. Mech3, pp. 485—
2. When the stationary in-plane edge load is applied, combina- 49q. Y PP PP

tion resonances may occur between modes having differentg) ono, K., Chen, J.-S., and Bogy, D. B., 1991, “Stability Analysis for the Head-
nodal diameters; sum-type resonances come about between Disk Interface in a Flexible Disk Drive,” ASME J. Appl. Mecl58, pp. 1005—
two modes being both reflected or both nonreflected, while  1014.

difference-type resonances come about between one rd®l Chen, J-S., and Bogy, D. B., 1992, "Effects of Load Parameters on the Natu-
flected and one nonreflected modes. ral Frequencies and Stability of a Flexible Spinning Disk With a Stationary

. . . Load System,” ASME J. Appl. Mech59, pp. 230—-235.
3. The envelope of the width parameter curves of Combmanoﬁo] Chen, J.-S., 1994, “Stability Analysis of a Spinning Elastic Disk Under a
resonances between the forward mode and the modes whose stationary Concentrated Edge Load,” ASME J. Appl. Me@i1,,pp. 788—792.
portions constitute the corresponding backward mode of thgl1] Chen, J.-S., 1997, “Parametric Resonance of a Spinning Disk Under Space
freely spinning disk is closely related to the width parameter  Fixed Pulsating Edge Loads,” ASME J. Appl. Mecb4, pp. 139-143.
curve of the combination resonance between the modes Blfz] Shen, I. Y., and Song, Y., 1996, “Stability and Vibration of a Rotating Circular
the freely Spinning disk having the same nodal diameter. The Plate Subjected to Stationary In-Plane Edge Loads,” ASME J. Appl. Mech.,

i idth f all oth . 63 pp. 121-127.
maximum width parameters of all other resonances are re #3] Kammer, D. C., and Schlack, Jr., A. L., 1987, “Effects of Nonconstant Spin

tively small. ) ) ) Rate on the Vibration of a Rotating Beam,” ASME J. Appl. Mecb4, pp.
4. Generally speaking, when the stationary in-plane edge load 305-310.
is uniformly distributed, the lowest few unstable regions,[14] Young, T. H., and Liou, G. T., 1992, “Coriolis Effect on the Vibration of a
whose maximum width parameters are relatively small. tend Cantilever Plate With Time-Varying Rotating Speed,” ASME J. Vibr. Acoust.,
) S . ’ 114, pp. 232-241.
to er.llarge atfirstas the.'o"’.‘d distribution Wldens and to reacrhs] Young, T. H., and Liou, G. T., 1993, “Dynamic Response of Rotor-Bearing
maximum as the load q'StUbUt.ed over half a circle. A furthe Systems With Time-Dependent Spin Rate,” ASME J. Eng. Gas Turbines
increase in the load distribution angle tends to reduce the power,115 pp. 239-245.
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Introduction distribution, e.g., Durst and Loy3], Williams and Baker{4],
A distribution of roughness elements along an otherwis hang and She[b], and Giguerd6] has shown through experi-

smooth wall boundary surface can significantly alter the dynam'cent that, by placing a tiny normal fla so-called Gurney fiap

' - ar the trailing edge of an airfoil or blade, an increase in lift and
process of the flow. It is also connected with turbulence promote garthe tr
féduction in drag could be produced. Recently Srfitthand oth-
located on a surface for the sake of mass transfer enhancemggg.have studied the advantages of a flap being buried within the

The fluid flow past a roughness or roughnesses on an Otherwgglling-edge boundary layer.

:310?10?5 Sa?::? oigﬁg?f t;f)u(?]fdg?;](fs;grlgvse?vrﬁlrg l \?vkilz;l%i\a/le??/g: r Martinuzzi and Tropeg8] studied experimentally the flow field
uneven terrain and buildings in the atmospheric boundary Iayer('%l"tounoI surface-mounted prismatic obstacle. There they observed

that the flow in the recirculation region upstream of the obstacle

:nz(ajlsohofsﬁ)cl)gcig} }TomeIr:r;g\llvaeg:tjgnZm'f;i’et%%%rgg%hggégiﬁéveIops a cellular structure and passes over the obstacle along
phy 9 ; P eferred paths. The turbulent flow structure and distribution of

further relevant to a variety of engineering problems such as flcf e heat transfer coefficient of a wall-mounted cube in a spatially

past excrescences in pipes, the Gurney-flap device placed on Rodic matrix flow were studied experimentally by Meinders

airfoil or blade, chips mounted on a PC-board in electronic equi§-nGI Hanjalic[9]

ment and so on. . .
The surface mounted blunt obstacle provokes both a separatj rl1n this study, we consider the steady planar flow past an ob-

upstream and a large eddy downstream of the obstacle. Flow s s?gcle so small and close to the flat surface that the surrounding

ration has a considerable impact on the flow structure and h %Ir?c é?r?ggr:ﬁ ;hegelf/igxegagsﬁﬁlr(]jif(g?r\r/]v s?wsé ;?;I :\2 ?ﬁegasgaglgf ';,’1 e
been the subject of intensive study for many years. A number y : P

experimental and computational studies on flow past Iarge—scérl is)t(aeglesgggggi 2;?; slfjr?;gl_gr%l;:i{{e?;/h?or?gs?ﬁéefllji(gln gggﬁ%?egn
Zﬁ;t%crl]i Z?r\illzn%egﬂerrr:gg]ir?gﬁ?gminbagls{rz‘z%vg;)S:acrgrqqc%ug?tls n@- semi-infinite region above the surface. A prime reason for
nificant three-dimensional separation, due to inviscid feedbacké%dress'ng this problem is that, although Bhattacharyya ¢2hl.

pressure, along with so-called necklace vortices which then sklrtowed good agreement with theory in the case of particular

. L raight-sided obstacles in the shape of a normal flap or rectangu-
around the extreme spanwise edges or wing-tips of the ObSt?ijlock, the theory is supposedly valid for any shape; hence the

before trailing downstream; near the outer boundary of the up- g
rr sent focus on a fundamental curved shape, the semi-circle. A
iréct numerical simulation of the Navier-Stokes equations is un-

drtaken below to compute the flow fields at various Reynolds
mbers, following which comparisons are made with the theo-
[gtical analysis.

stream separation bubble in two dimension, an adverse pres
gradient exists in the flow in the sense that there is increasi
pressure in the direction of the main flow. The form of the up-
stream recirculating eddy and the parameters which influence
upstream separation were studied extensively by Smith and
ton[1] and later by Bhattacharyya et &2]. There it was shown
through theoretical analysis using nonlinear reasoning and direct
computation on the Navier-Stokes equations that the upstre@®rmulation and Mathematical Equations
separation distance elongates with increasing Reynolds number. . . . .

A number of experimental and computational studies of bound: Ve COUS'der a surface Iylng e_tlong thax[s ar_ld supporting an
ary layer flows(either external or internabver surface-mounted 2PStacle in the form of a semi-circle of radiswith center at the
obstacles have focused on the overall features of the flow, suchPAgn (Fig. 1. The viscous incompressible fluid occupies the

velocity, downstream reattachment length and surface pressgfani-infinite regiory>0. A polar coordinate system is used such
y g P at (x,y)=(r cosé,r sin ) with y=0 as the initial line. Introduc-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF Ing the stream function” such that
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Mechanics, Department of Mechanical and Environmental Engineering, University
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Ircident profile

3 u~y

Blunt obstacle

Fi

g. 1 Sketch of the flow configuration in nondimensional terms

Jdw N 10V dw IV dw V2 @ u=v=0 até=0, O=sy=1,
- T T T =V w
dr 1| g Jr or 90 on the obstacle
where the vorticityw is given by u=v=0 at»=0 and 5=1, 0<i<o
=—_V2y 3
g @ ®) u~expag)sinan), v=0 asé—c.
an
We define the surface pressure coefficient @g=(p
, # 19 1 & —p..)/pU?, wherep.. is the pressure at the far-field apds the
e (4)  density of the fluid.

These are subject to the boundary conditions

u=v=0
Computational Method

The vorticity transport Eq(5) and the Poisson equation for the
stream functior(6) are solved using an upwind spatial difference

The form of the obstacle is taken to beixy?=R?. In order to scheme and the ADI scheme for the time derivative discretization.
achieve a more accurate numerical solution, it is essential to havd-lows that are dominated by convection as here suffer form
a finer grid near the obstacle. This can be accomplished by usengfmerical instability at high values of the Reynolds number. To
the log-polar coordinate transformation given by suppress such instability upwind differencing in the convective
terms can be employed. The artificial dissipation introduced by
the upwind difference scheme stabilizes the numerical solution at
high values of the Reynolds numbers. The following quasilinear-
ization is used for the convective terms:

on the obstacle and flat plate,

u~y, v=0 as x2+y’-wx,

r

wherea is the transformation parameter which is equadrtim this
study. This log-polar coordinate transformation allows us to have [ug, " t=u"¢, "t @)
A . . . X X 1

a uniform grid in a transformed rectangular domain. ) ) ] ) )

Using the shear to define the Reynolds number as hereW§h the superscriph represents the time step. The spatial deriva-
equivalent to defining the Reynolds number based on a heidives in (7) are approximated as
typical of the roughness element height, and the shear-layer ve- n NEl_ N pontl _ opntl Nl apentl
locity at the former height, as the normalizing length and velocity, U L™ = UG = 240 H 94— 100y

respectively. The nondimensional variables are defined as +2€i"_+21,,-}/(603<) for uf; positive, (8)
4 wR U RU
mrur U TR R e
. o up{ = 2405+ 100 1 = 947 T+ 247
The vorticity transport equation in its dimensionless form then
reads —{szfj}/(eﬁx) for u{fi negative. 9)
A Pl oy ar 1[Il 9% The truncation error of this scheme is given by
WO Gy at o Relog o)  © T
z n_ >
Py Py 4(&) i Xa ]’
9(&)¢= _<(9_§z + ﬁ) (6) The diffusion termssecond-order derivativesre discretized
K through the central difference scheme. At every fractional time
whereg(¢) =aZ exp(2aé). step the Poisson Ed6) for the stream function is solved itera-
The boundary conditions are given by tively using SOR technique.
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Fig. 2 Influences of the grid sizes on the wall shear ¢, along the flat surface for
Re=50

To check the grid dependency of the numerical solutions, numalues. This boundary layer separates at an upstream position and
ber of grids were made_to range betweerx50 and 90<f30 at joins to the thinner boundary layer on the obstacle itself. This thin
Reynolds number 50. Figure 2 shows the effects of grid size @oundary layer proceeds downstream through a second separation
the wall vorticity £, . The effects of gird size on the solution arefrom the obstacle to form a thin free-shear layer. The free-shear
found to be minimal. We found that a nonuniform grid size .015@yer then emerges almost horizontally atop the long eddy far
x.0167 near the obstacle produces the optimal solution a3Re jownstream. Closure of that downstream eddy and a flow-
For higher Re we chose a much finer grid so as to reduce the grid achment process to the surface then take place on a much
size near the far-field in the physical domain. The time step w; ger length scale
tf"‘ke” as 0.001 originally but was increased in subsequen igure 3 shows the streamlines for Reynolds number 400. We
time t.

found the presence of a downstream eddy even at smaller Rey-
nolds numbers of 5 and less. According to Dean-Moffatt local
_ ) analysis both downstream and upstream eddy exist in the Stokes
Results and Discussions limit of zero Re for a blunt two-dimensional roughness element in

Solutions were obtained for various values of Reynolds numb@rshear flow. The length of the downstream large-scale separation
(Re<400) withs the obstacle taken as a semi-circle mounted onedldy increases in size with an increase of Reynolds number. An
flat surface. In the upstream part of the flow a viscous wall layéncrease in Re means thdor example the velocity increases and
close to the flat surface must be produced, for increased Renakes the separated flow regions expand and the separated flow
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Fig. 3 Streamlines at Re =400
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Fig. 4 Vorticity contours at Re =300

strength increased. It is clear from the figures that the center of twéh that in the stream wise direction. Within the recirculation
eddy shifts away from the obstacle as Re increases. The largegions the value of the vorticity changes sign when one follows a
scale separation itself is a sudden localized process involvingclased streamline. Other numerical results not presented here
relatively abrupt adverse pressure gradient. show that an increase in Reynolds number leads to an increase in
The streamline patterns show the appearance of an upstreaorex strength. This is basically because an increase in Reynolds
recirculation region very close to the obstacle. The upstream sepamber reduces the boundary layer thickness on the obstacle
ration point x; lies between—1.17<x;<—1.13 at Re=100 which results in a higher vorticity distribution in the separated
which shifts towards upstream te1.28<x; < —1.25 at Re=400. region.
Part of the high-inertia fluid flow is deflected on the front face of The surface vorticity distributions are presented in Fig. 5 for Re
the obstacle back upstream in a jet adjacent to the wall. This fluadl 100, 200, 300, 400. The wall vorticity on the upstream flat
moves with the pressure gradient. As the flow there loses energyrface near the obstacle rapidly passes through zero and changes
it rolls up to from recirculating zones. We found that the upstreasign, compared with the more gradual development over the rest
separation length is small and remains almost invariant undgfrthe surface.
variations in the Reynolds number. The effect on the downstream separation length) (due to
Figure 4 gives the vorticity contours for R&00. In the above variations of Reynolds number is presented in Fig. 6. The down-
figure we have presented the equi-vorticity lines. The decay of tekeam separation length increases as the Reynolds number in-
vortex strength in the transverse direction is rather fast compare@ases. A near-linear variation of the downstream separation

08 -
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Fig. 5 Effects of Reynolds number on surface vorticity ¢, along the flat surface
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Fig. 6 Effects of Reynolds number on downstream reattachment point X, ;—theoretically
predicted results

length with Reynolds number is evident from the figure, oveassociated with the variation of the distance required for vortex
almost all Reynolds numbers. This observation is in agreemdotmation behind the obstacle and the strength of the formed vor-
with the theoretical prediction of Smith and Danigl®)|. Further, tices, as described earlier in this section.
the eddy length tends to a finite nonzero value as Re tends to zerdrinally, it is worth pointing out that the theory above also pre-
as in the flow studied by Dennis and Smitti]. dicts a gradual increase of upstream eddy length with Re. Indeed,
The distribution of surface pressure along the obstacle is pra-all Reynolds numbers there must be eddies, if only very small
sented in Fig. 7. The maximum pressure occurs at or near thees, sufficiently close to the geometrical corners, according to
point where the flow separates from the obstacle. the Dean-Moffatt local analysis. It appears that significant growth
The pressure distribution on the flat surface both upstream amidthe upstream eddy with Re is delayed for the present semi-
downstream is presented on Fig. 8 at Re of 100, 200, 300, 4@cular obstacle, which makes physical sense when compared
There is not much change in pressure in the upstream portionvath the blunt noncurved cases studied previously. The close
the flow. In the downstream position the surface pressure is quitgreement, however, on downstream eddy length for Reynolds
high. The downstream surface pressure alters with a variationrafmbers above approximately 50 and on the position of maximum
Reynolds number. This difference in pressure distribution [@essure gradient is an encouraging feature in the current setting.

Cp

0 20 40 60 80 100 120 140 160 180

Fig. 7 Surface pressure distribution  C, along the semi-circular obstacle at different Re
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The Near-Tip Stress Intensity
Factor for a Crack Partially

Zhonghua Li . .
wamwes - Penetrating an Inclusion
Lihong Yang
S . When a crack is lodged in an inclusion, the difference between the elastic modulus of the

School of Civil Enginegring and Mechanics, inclusion and matrix material will cause the near-tip stress intensity factor to be greater
Shanghai Jiaotong University, or less than that prevailing in a homogeneous material. A method is derived for calcula-
200240 Shanghai Minhang, tion of the near-tip stress intensity factor for the inclusion with arbitrary shape. The
PR. China derivation of the fundamental formula is based on the transformation toughening theory.

The equivalent transformation strain contributed from modulus difference between inclu-
sion and matrix is calculated from Eshelby equivalent inclusion approach. As validated by
numerical examples, the developed formula has excellent accuracy.
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1 Introduction K

In two-phase materials, the crack-tip may be lodged within a Uijzﬂgii(e) r—e 2.1)
second-phase particle. Depending on the geometry and modulus
difference between the inclusion and matrix material, the crack-tip K
stress intensity factofSIF) may be increasedstress amplifica- o= = aij(6) r—0. (2.2)
tion) or decreasedstress shielding or tougheningHence, the V2

analysis of stress state for the crack-tip within an inclusion is of Now. we consider a differential elemedis within the inclu-
importance in understanding the fracture behavior of compositg) | v(/hich sustains an applied strain fie, exerted by the

matgria]s and has rgceivgd considergble.attenttbnz,l]. Anothgr .remote stress intensitg. The equivalent transformation strain in
motivation for studying this problem is microcrack toughening A o is given by

brittle materials,[1,5,6], where the microcracking process zone
was treated as a particle with reduction in moduli resulting from e'=[(C,—Cy)S+Cy] (Cy—C)e (2.3)
the microcracking.

By using the techniques from complex variable elasticity toa_lccording to Eshelby equivalent inclusion approd@tg], where

gether with numerical computation, the near-tip SIF for a circulat 'S the Eshelby tensor, dependent solely upon the inclusion shape
inclusion centered at the tip of a semi-infinite crack can be calc nd the Poisson's ratio of the mat_rl& and C'V! are the elastic .
lated for arbitrary differences in the sets of modi{il]. For an tensors of th‘e inclusion and matrlx, rg;pectlvely. As .shown in
inclusion with arbitrary shape, a closed-form solution to the low2-3, the equivalent transformation Stra_*ﬁ'” dA varies with the

est order effect of the modulus difference is given by HutchinsdiPplied straire®, and is not zero for an inhomogeneous inclusion
[1]. In this study, we will formulate a method for calculation of(Ci# Cw)- . _ . o
the SIF for the crack-tip within an inclusion of arbitrary shape. The Eshelby approach is mathematically rigorous for an infinite
This method is based on transformation toughening theory afptrix containing a single ellipsoidal inclusion. When the inclu-

Esbelby equivalent inclusion approach. The accuracy of the soRion undergoes a uniform stress-free transformation strain, the
tion is validated by numerical examples. stress and strain within the inclusion are uniform. However, in

order to utilize the approach in more realistic situations, there has
been considerable activity in extending Eshelby approach to vari-
ous problems, such as the interaction of two ellipsoidal inclusions,
[9], the behavior of hybrid composit¢]10], and short fiber-
2 Mode and Formulation re_rinforced co_mpc_;site_$8], the calc_ulation of the_ stress fieId§ in-
o o ) ) side a nonellipsoidal inclusion which are not unifofrh], to cite
_As shown in Fig. 1a), the crack-tip is partially penetrating angnly a few examples. In the present study, we extend the Eshelby
inclusion, which may have an arbitrary shape, but is assumedd@proach to the case of an inclusion with arbitrary shape embed-
be symmetrical with respect to the crack plane. The Youngged in a crack-tip field. Either the nonellipsoidal shape of the
modulus and Poisson's ratio of the inclusidf, and v, differ inclusion considered or the singular crack-tip field will result in a
from those of the matrix materidy and vy . It is assumed that nonuniform stress-strain field within the inclusion. However, we
the size of the inclusion is small compared with crack length angisyme that the Eshelby theory can be used to each differential
other dimensions of the crack body. Therefore, the inclusion igement within the inclusion, which undergoes uniform transfor-
within applied remoteX-field and the near-tip fields are assumeghation strain determined b{2.3) and the resultant stresses in
to have the same classical form, denoted<yy: which are uniform. Then a nonuniform transformation strains,
- therefore also the stresses, inside the inclusion, can be obtained by
e eSS S O S e o0 0 inegrating(2:3 n the domain of he inclusion
CHANICS. Manuscript receiverc)i by the ASME Applied Mechanics Division, Oct. 10, . For SImplICIt_y’ itis assumed In the present paper that the_ |ncl_u-
2001; final revision, Sept. 19, 2003. Assaciate Editor: B. M. Moran. Discussion 0N and matrix material are elastic and isotropic and their Pois-

the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journa@in’s ratios are the same, denotedibyrhen we have

Applied Mechanics, Department of Mechanical and Environmental Engineering Uni-

versity of California-Santa Barbara, Santa Barbara, CA 93106-5070, and will be Ci=aCy (2.4)
accepted until four months after final publication of the paper itself in the ASME

JOURNAL OF APPLIED MECHANICS. where
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e o, aﬁa’y(ﬂl r—>o { El , Vl
problem(a) Ky
E,v, o, aﬂau(ﬁ)‘ r—0
4.
E, v,
K ) Fig. 2 Spherical geometry used to infer solution to auxiliary
0',, —)—G'i/ g r —>© . .
auxs:ary(b) ” fﬂ; problem (c) shown in Fig. 1
problem d o, >—25,0) r>0
i \/ﬁ i .
Ac To obtain theKy,/K solution for the primary problem in Fig.
1(a), we adopt the method developed by Hutchingdéh The
5 7 solution is constructed using solutions to two auxiliary problems
Vi a,»,—>\/"_"5!.,(x9)y row denoted by(b) and (c) in Fig. 1. Once the solutions to the two
auxiliary ” ;j” auxiliary problems are in hand, the ratio of the stress intensify
problem(c) o, > \/z'La,,(o)v r—0 factors sought is given by
r
Ktip K?ip Kgp
rom ) K \K)/ Ky (2.10)
&=Lim(K—’?”)(i) 0y . . . .
Solution to primary problem (a) : K > K TKy whereKy,/K is the ratio of the near-tip to remote intensity factor
0 in the auxiliary problem(b), and KﬁP/Ktip is the corresponding

Jromib) ratio in the auxiliary problentc).

The solution to the auxiliary probleitp) can be written down
Fig. 1 Definitions of auxiliary problems  (b) and (c) and their  jmmediately using2.8)

use in construction of the solution to the primary problem (a)

KSP Ewm f -320)(aT
— =1+ —— | 1 0O(e,4,0)dA (2.11)
2 ap
a=E, IEy. (2.5) : 2\2m(1 =K Ja
Combining(2.3) and(2.4), it gives where the area integral extends over the upper ha¥af exclud-
e'=Le? (2.6) ing the inner circular region.
To generate the solution to the auxiliary probléch Hutchin-

son[1] exploited a special regioA¢ for which Ky, /K is known.
L=[(a—1)S+1] Y1 a). (2.7) The special regio¢ is the infinite strip with a centered semi-
infinite crack shown in Fig. 2. From a simple energy argument or

Here,| is the identity ten_sgr_. Thus, the tendorelates the equiva- 5 jication of the J-integrabeen(3.15 in the next section for the
lent transformation straie’ in the inclusion to the applied strain case ofy, = 1,,) the following relation holds:

e* without going into the details of the form of tHg, and C,,
tensors. According to transformation toughening theptg,13,
the increment in SIF due to the differential element with transfor- Kiip

where

mation straine’ defined in(2.6) is given by K - Va (2.12)
o _ 1 Em_ _sn o1
thip_z\/ﬁ 1,2 Q(eqp,0)dA (2-8)  exactly for this problem. Then by evaluatid /K for this spe-
) cial mode, one can “back out” the desired universal result
for a plane-strain mode | crack, where K/ Kip for the auxiliary problem(c) used in(2.10. The details
. - 0 . 560 for evaIuatingKﬁletip for the auxiliary problem(c), and Kgp/K
(€5, 0)= (1,1 €2)COS—- +3€7,C0S—-sin g for the auxiliary problem(b) will be given in the following
section.
3 1 1. . 56
+ E(ezz— e;y)sin 05|n7. (2.9)

It is essential to note that EqR.8) is derived for the case that 3 The Crack-Tip Stress Intensity Factor
the transformation area have the same moduli with its surround-Throughout this paper, it is assumed that the size of the inclu-
ing. Therefore, the elastic modul&s, used in(2.8), and theK?ip sion is small compared with the length of the crack. Under this
is the stress intensify factor for the crack-tip within a medium afondition the applied strain field to the inclusion shown in Figs.
same moduli as matrix materials, not the desired fagtgrfor the  1(a) and(b) is that of the mode | crack controlled by the remote
case shown in Fig. (&). stress intensity factak
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K 0 0 36 and other components are zero. Substitutig) into (2.7), it
A . . .
e;;=———=(1+v)cosz | (1—2v)—sinzsin— ives
11 EM [_27Tr 2 ( 2 2 g
5 « (1+v) 9(12)+'0'30
e=—F—— v)cosz | (1—2v)+sins sin—
Emv2ar 2 22 L _(1-@)(1-p)(3-4v+5a—dva) )
K 6 0 36 11117~ L2222=
el,=————(1+v)cos; sin5 cos— (1+a—2v)(1+3a—4va)
Env2ar 272 2 B . (I-a@)A(1-v)(1-4v)
e§‘3: 6?3: ezAa:O for plane strain y Liazz=loo1=~ (1+a—2v)(1+3a—4va)
(31) (170[)21/ > y
For a differential element with circular section inside , the L11ag= L2233:(1+ a—2v)’ Lageg=(1-a)
components of the Esbelby tensor are given[h¥], 41— a)(1—v) 2(1—a)
54 4v-1 ) M ([ 3a—dva)w T e 1o,
S11117= S1127 m v S1127 0117 m (3.3)
v 3—4v
S1135= Spo35= 21=2)" Si157 TR b (3.2
1 and other components of thetensor are zero.
Si317= 32323:? The transformation strains used(ih9) are determined b{2.6)
J

4(1-a)(1-2v)(1-v?)K 6
T A A
€,.= (L1 tL et ey = coSz
( 1111 1129( 11 22 (1+0(*21})EM\/% 2
4(1—a)(1-vdK 36
T T A A H H
e,—e;;=(Li111—L e—er) = sin@dsin— . 3.4
22 11 ( 1111 1122)( 22 11) (1+3a—4va)EM\/2_7Tr 2 ( )
2(1—a)(1-v?K 30
T A i
e,,=L = sSin @ cos—
2 S b a) By 2T 2 )
[
Substituting(3.4) and (2.9) into (2.11), we have We return to the problem shown in Fig. 2. The integral in the

0 definitions of B8, and B, are easily evaluated for this geometry

i 1(" (B1=0.5, 8,=—0.125). Then, the solution to the auxiliary prob-
tp _ 1 1 P2 3
K 1+ - fo {IN[R(6)]=In p} lem (c) for this geometry is given by
3 Ki
0 0 P _ —
x| Cy coszcos?JrCz sin? 6 cos6 |do K =1+0.5C,-0.12%, (3.10)

from (3.10 and(2.12, one immediately obtains the solution for

=1+p,C1+B.C, (3.5) the auxiliary problem(c) shown in Fig. 1c).
where K§ 1+0.5C;—0.125C, (3.11)
1:(1*0()(1*21/) 36 Kip Ja '
(1+ta—2v) By combining (3.11) and (3.5 according to(2.10), the general
3(1-a) solution for the primary problem shown in Figia) can be finally
C,= (3.7) dgiven by

T 2(1+3a—4va
( : Kip  Va(1+B1Ci+ B,Cy)

(3.12)

1 (" 0 36 K — :
B1=—j IN[R( 0)]0035 cos?de (3.8) K 1+0.5€,-0.12%,
mJo To obtain an explicit solution, it was assumed in the previous
1 derivation that the Poisson’s ratios of the inclusion and matrix are
T . the same. This assumption sets a limit to apply the(Bd.2) for
'82_77 L In[R(6)]sin’ 6 cos¢de. (3.9) more general case. However, this limitation may be relaxed by

introduction a modified factor. The J-integral from integration
Since the integralf §(C, cos#l2 cos 2+ C, sir? fcosf)dg=0 contours that circle the crack tip lying outside inclusion is given
in (3.5), the ratio ofKﬁp/K is independent of the radius of thePy
inner circular corep. It can be also seen tha; and B, are J=(1-13)K2IE,, (3.13)
unchanged wheR(6) is replaced by\R(6) and are thus depen- ] S o
dent on the shape, but not on the size of the inclusion. Wken While the J-integral for all such contours lying inside inclusion is
is a circular region centered at the crack t#§,=B,=0. These Jgo=(1—19)K2 |E (3.14)
characters of the solution to the auxiliary probléo) are consis- tip 1/ ipt = '
tent with those obtained by Hutchiséh. Then one obtains
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Kip  [Juipe (1= vip) 1
(l_Vl) E\I’an
for the plane-strain condition. 20+
For the case of,=vy,, (3.12 and(3.15 are identical if the (v, =v,=03) "
effect of the inclusion ol can be neglected. This is true becaus 1/4 .
we have assumed that the remote stress-strain field is control 15} e T
by K, i.e., the perturbation of the small inclusion on the remotx | % =77
K-field is neglected. Consequentl{3.12) and (3.15 leads to a ;g P
modified factor/(1— sz)/(l— 1/2|) in (3.12, 10k ]
Ktip
—=Cy(1+B,C;+8,C 3.16 / = FE Results
K ~Col1HAiCitACr) (3.16) sEl’ A Present solution, Eq. (3.12) |
’ ’ S Modified lowest order result [1]
where /)
1 a(li VZ ) I' 1 1 1 L 1 L 1 n n 1 L 1
Co= - 3.17) 000 ' 20 25 30 35 40
1+0.5C,—0.125C, (1— Vz) 0.0 0.5 1.0 1.5 .0 5 . : :
|
for the case o, # vy, . It should be noted that the Poisson’s ratic E,/Ey
used inC, andC, is vy becauseéC; andC, are derived from the _
remote stain field. As well be seen in following section, the modFig. 4 A comparison of the results calculated from Eq.  (3.12),
fied formula gives good approximation for the casevpf vy, . the modified lowest-order solution and finite element analysis

for a square inclusion
4 Numerical Examples

_ The accuracy of the fundamental formu&12 and the modi- Ky /K were analyzed for the two calculation models. It was found
fied formula(3.16) were examined by three numerical examplespat there is nearly no specimen configuration and scale effects on
An exactly numerical solution to circular inclusion centered &, /K so long as the specimen sizes are two or three times of the
the tip of a semi-infinite crack has been given[R, which is  crack length and the rati®/a of the inclusion radiusR to the
firstly used to measure the accuracy(®fL2). As shown in Fig. 3, crack lengtha is less than 0.15. The same conclusion was ob-
good agreement between our solution and Steif’s results is foungined in[4]. In the present finite element analyses, the calculation
For comparison, the lowest order solution and the modified lowesibdels are constructed to be no scale effecKg/K, and there-
order results|1], are also plotted in Fig. 3. Though the agreemeriore their geometries are unnecessary to specify. The finite ele-
is good for the modified lowest order results wHen'E, <2, it ment results, for a circular inclusion centered at the crack-tip are
fails asE, /Ey, becomes larger than 2. also plotted in Fig. 3. They are excellent agreement with the exact

Detailed finite element analyses were performed for a centSQlution obtained by Ste[P]. Therefore, the finite element analy-

cracked plate and a three-point bending specimen under pla,[ S can be used to measure the accurad$.a®) and (3.16 for

. " . - ; ; e inclusion with arbitrary shape.
strain conditions. Identical circular inclusions are centered on Figure 4 compares the results calculated fr(8r2 and the

each crack tip for the two calculation models. To calculatele o qified lowest order solutiori1], with those obtained from fi-
in the finite element analyses, three J-integral contours within ifiie element analyses for a square inclusion. The crack-tip par-
clusion were set around the crack-tip. TRg, was calculated by oy nenetrates the inclusiofl/4 edge length As shown in Fig.

(3.14 from the mean value of the three contourte, in fact, ", rasyits are in good agreement with those of the finite ele-
that they nearly have no differengd,, . TheK used to normalize nient analyses. 9 g
a

Kip is calculated for models of the homogeneous matrix materi
at the same applied load. The configuration and size effects on the

1.75 Y T T T T T T T T T ] T T v T
3.0 : i T : | , . [ w —
1.50 > E, v 5=
- - £ y M M E
25 L EM,V\, ——_,_._‘—= i (/,/’/
’ 125 - / — .
=03 Sl : "
- & W, =v,=03) _—~7--"71 gl
20 - st e . 100 - L :
& L A e 4 = e
. £075] o 1
X5 |- AT e XT 7
T et 7
L ST 4 0.50 /€ ®  FE-Results (v, =0.4,v,,=03) |
o el 2 ® FE-Results (v, = 0.2,v,, = 0.3)
10 >4 — // ——EQq. (3.16) (v, =0.4,v,, =0.3)
- 2 Y e (exact) [2] i 0%5rg T FEIO =02 =09
] - °
05 | / ,‘I ~~~~~ Lowest order result [1] =
’ .:" F 2 Modified lowest order result [1] 0.00 R ST S S I SN (B T
L] Present solution, Eq.(3.12) ¥ 000 025 050 075 100 125 150 175 2.00
0.0 i I, | I | L | 1 | I | El /EM
0 1 2 3 4 5
E /Ey Fig. 5 A comparison of the results calculated from the modi-
fied Eq. (3.16) and finite element analyses for a circular inclu-
Fig. 3 A comparison of the selected results for a circular in- sion in which both elastic modulus and Poisson’s ratio differ
clusion centered at the crack tip from those of matrix material
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In F|g 5, the values OKtip/K for a circular inclusion centered [2] Steif, P. S., 1987, “A Semi-Infinite Crack Partially Penetrating a Circular
at the crack-tip predicted from the modified formuy16 are '”CCJ”S'°”~"ASM§(JB- Appl. "éeCh-f"; pp-“87h‘92-| _ e With & Crack
compared with the results of finite element analyses for the cast! Erdodgan. F., and Gaupta, G. D., 1975, "The Inclusion Problem With a Crac

. Crossing the Boundary,” Int. J. FractLl, pp. 13-27.
WhereV| and vy are dlﬁerem’ and gOOd agreement can be found'[4] Li, R., and Chudnovsky, A., 1993, “Energy Analysis of Crack Interaction With

. . . an Elastic Inclusion,” Int. J. Fractg3, pp. 247-261.

5 Conclusions and Discussions [5] Evans, A. G., and Faber, K. T., 1981, “Toughening of Ceramics by Circum-
When a crack is lodged in an inhomogeneous inclusion the _ ferential Microcracking,” J. Am. Ceram. Sod4, pp. 394-398. _
near-tip field will be changed by the modulus difference between® #”g’u“gﬁz':i’;g'iS'B'i\ft'léaM”gtEr‘i’;’S‘S; JA'A?n" éi?:r'n"'\gicsga’;)'gs 201 ZTrgzzforma“o”
!nclusmn ant_j m"’!t”x m.atenal' A closed-form SO|UtI_On for predlpt— [7] Eshelby, J. D., 1957, “The Deiermination of the Elaétic Fields of an Ellipsoi-

ing the Ktip'fleld 1S denv,ed bas.ed On. transformation tothen'ng dal Inclusion, and Related Problems,” Proc. R. Soc. London, Se24A, pp.
theory and Eshelby equivalent inclusion approach. The numerical 376_396.

examples for different inclusion shape and modulus ratio betweens] withers, D. J., Stobbs, W. M., and Pedersen, O. B., 1989, “The Application of
inclusion and matrix provide compelling evidence that the funda- the Eshelby Method of Internal Stress Determination to Short Fibre Metal
mental formula is satisfactory in accuracy. The fundamental for- Matrix Composites,” Acta Metall.37, pp. 3061-3084.

mula(3.12 and its modified form(3.16) provide a quick estimate [9] Moschobidis, Z. A., and Mura, T., 1975, “Two Ellipsoidal Inhomegeneities by

for the effects of shape, location, and stiffness of an inclusion, _ e Equivalent Inclusion Method,” ASME J. Appl. Mech?, pp. 847-852.
surrounding crack-tip on the crack-tip field. PlO] Taya, M., and Chou, T. W,, 1981, “On Two Kinds Ellipsoidal Inhomegeneities

S92 . in an Infinite Elastic Body: An Application to a Hybrid Composites,” Int. J.
The limitation of the fundamental formula is that the remote  g;;i4s Struct.17, pp. 553-563.

appliedK field was used to calculate the equivalent transformatiofy) johnson, w. C., Earmme, Y. Y., and Lee, J. K., 1980, “Approximation of the
strain of the inclusion. Hence, the size of the inclusion must be  strain Field Associated With an Inhomegeneous Pricipitate,” ASME J. Appl.
small compared with the length of crack and other dimensions of Mech.,47, pp. 775-780.

the cracked body. Consequenﬂy, the derived equations are indéz] Lambropoulos, J. C., 1986, “Shear, Shape and Orientation Effects in Transfor-
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Brittle to Plastic Transition in the
Dynamic Mechanical Behavior of
Partially Saturated Granular
Materials

The effect of liquid viscosity, surface tension and strain rate on the deformation behavior

Simon M Iveson1 of partially saturated granular material was studied over a ten order of magnitude range
' of capillary number (the ratio of viscous to capillary forces). Glass spheres of average
Neil W Page size 35 microns were used to make pellets of 35% porosity and 70% liquid saturation. As

the capillary number increased, the failure mode changed from brittle cracking to ductile
plastic flow. This change coincided with the transition from strain-rate independent flow
stress to strain-rate dependent flow stress noted previously [lveson, S. M., Beathe, J. A,
and Page, N. W,, 2002, “The Dynamic Strength of Partially Saturated Powder Compacts:
The Effect of Liquid Properties,” Powder Techndl27, pp. 149-161]. This change in
failure mode is somewhat counter-intuitive, because it is the opposite of that observed for
fully saturated slurries and pastes, which usually change from plastic to brittle with
increasing strain rate. A model is proposed which predicts the functional dependence of
flow stress on capillary number and also explains why the flow behavior changes. When
capillary forces dominate, the material behaves like a dry powder: Strain occurs in
localized shear planes resulting in brittle failure. However, when viscous forces dominate,
the material behaves like a liquid: Shear strain becomes distributed over a finite shear
zone, the size of which increases with strain rate. This results in less strain in each
individual layer of material, which promotes plastic deformation without the formation of
cracks. This model also explains why the power-law dependency of stress on strain rate
was significantly less than the value of 1.0 that might have been expected given that the
interstitial liquids used were NewtoniapDOI: 10.1115/1.1753269

Faculty of Engineering and Built Environment,
University of Newcastle,
Callaghan NSW 2308, Australia

1 Introduction also predicted that increasing binder viscosity will reduce granule
formation,[15]. In contrast, at low strain rate® mm/min),

ills et al. [16] found that the crushing strength of granules made

in a number of fields, including agitated wet agglomeration, haWith 90—180,um sized sand was unaffected by binder viscosity

dling of filter cakes, extrusion and pumping of pastes, soil me- : - : h . /
chanics, and shape forming of ceramic pafs;6]. High strain ?ors fg:; different silicone oils of viscosity ranging from 0.02 to

rate deformation is involved in many cases. For example, hig
impact speeds and viscous binders are frequently present in mpressive strength of pellets in a high-speed load frame at

tated granulation. However, traditionally most research on WEfosshead speeds ranging from 0.01 to 150 miedsivalent to
granule strength has been performed at low and invariant St strain rates varying from ){11645,1 to 6 3. In initial
rates with relatively nonviscous blnqlel[§’,—9]. Saturated pastes ark they used spherical glass particles with an avéragajgizé
Iri]ri\i/ti (?ergz fguc:}dsi?a?na\;gt:gT\i:gig‘;ﬁﬁ dc%:glefﬂegc?a%itcon 5amicrons,[17]. The pellet porosity and liquid saturation were
9 4 DY held constant at 35% and 70%, respectively. Six different liquid

effects have also received some attention in the soil mechangOlers were used to cover a range of surface tengiand vis-

The mechanical behavior of wet granular material is of intere

Iveson and co-worker$l7—-19 have directly measured the

and slurry pumping literature due to the phenomena of vibrationgl _: ) )
liguefaction, but this work is restricted to saturated systems wi V::;y’“ from 0.025 to 0.072 N/m and 0.001 to 60-Barespec

water as the interstitial fluid, a relatively nonviscous liquid, The measured peak flow stress, results all collapsed onto a

[12,13. single curve when plotted as the dimensionless flow stress Str

Recently, more of an interest has been taken in the dynar¢ o\« ne capillary number Ca. This curve can be empirically
behavior of wet powders with viscous binders. Iveson and L'tStﬁfescribed by the equation

[14] found that using glycerala viscous liquid instead of water
greatly reduced the amount of impact deformation experienced by Str* =k, + k,Cd, (1)
granules. Discrete element simulations of granule impacts have ) ] o
where Stf =op,d,/y cosé, d, is the average particle sizé,is
ICurrently at the Department of Chemical Engineering, Universitas Pembangurff}e contact angIeCa= (_jp/“?/_(')’ COS@)_ and e is the bulk strain
Nasional “Veteran” Yogyakarta, JI. SWK 104 Condongcatur Yogyakarta 55283, Irate (deformation velocity divided by instantaneous pellet length
donCeSI?-_ S-Tzﬂglv%so?(?ogn'f\hneth s Division offE A © Str* is the ratio of peak flow stress to capillafyurface tension
ontrioute Yy the Applie echanics Division ol MERICAN CIETY OF H H H H _fi
MECHANICAL ENGINEERSsfor publication in the ASME QURNAL OF APPLIED ME- forces. Ca is the ratio of viscous to capllliry force_s' The best-fit
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 1,Values of the three parameters W(kﬁe:5.3_0.4, kz_— 280'_"_40, .
2002; final revision, Nov. 20, 2003. Editor: R. M. McMeeking. Discussion on thandn= 0.58+ 0.04. Subsequent work has also varied particle size
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal fid morphology]18,19.
Applied Mechanics, Department of Mechanical and Environmental Engineering Uni- f :
versity of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will bei From Eq'(l) I.t can b.e seen that at l.OW Stra'” ratesf the flow
accepted until four months after final publication of the paper itself in the ASMSU€SS Was strain-rate |.ndependent‘ while at high strain rates the
JOURNAL OF APPLIED MECHANICS. flow stress was proportional to strain rate to the power 0.58. Ive-
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(a) 0.01 Pa-s Silicone Oil (b) 1.0 Pa-s Silicone Oil (c) 60 Pa-s Silicone Oil
0.01 mm/s; Ca = 1.1x10° 0.01 mm/s; Ca =8.2x107 0.01 mm/s; Ca =4.9x107

Fig. 1 Photos of pellets after 10 mm deformation at various speeds for (a) 0.01 Pa-s, (b) 1.0 Pa-s, and (c) 60 Pa-s viscosity
silicone oils. Initial pellet aspect ratio 1.25 (25 mm X 20 mm). Scale: diameter of bottom platen is 38 mm.

son et al.[17] commented that this power-law dependence wasver, the pellets bound with 1.0 and 60-®ailicone oil showed
less than the value of 1.0 expected when viscous effects dominate.visible cracking(Figs. 1b) and Xc)). These pellets appear to
They speculated that this might be attributed to the width of theave failed by uniform plastic flow. They retained their integrity
shear zone increasing with strain rate. In this paper, we developygd could be easily removed in one piece after the test.

model based on this hypothesis and also present photographs gfor the 1.0 and 60 Pa silicone oil bound pellets, the failure
the deformed pellets that show a transition from brittle to plastigode changed from brittle to plastic as the deformation velocity

failure as viscous effects become significant. increased. Even for the 0.01 Rasilicone oil bound pellet§Fig.
1(a)), the extent of brittle failure appears to become less extreme
2 Experimental as the deformation velocity increased. Hence the velocity at which

Figure 1 shows photographs of the pellets bound with 0.01, ff@)e transition from brittle to plastic flow occurred decreased with

and 60 Pas viscosity silicone oils after a total compressive straif'créasing liquid viscosity. _ i .

of 0.4 at strain rates ranging fromx4104s™% to 6 s* (full These observatloqs suggest that the. brittle-to-plastic transition
details of the sample preparation and testing procedures are $8P€nds on the relative importance of viscous forces. This is high-
ported in Iveson et a[17]). There were two different modes oflighted in Fig. 2 where schematic drawings _of a selection of the
failure. At low velocities, all pellets displayed brittle behavior andleformed pellets are shown above the previously measured flow
failed by large-scale cracking. Several of the recovered specimé&tess datd,17]. The transition from brittle to plastic flow behav-
displayed the commonly reported “apple core” shape, where pepr occurred at Ca in the range 1Hto 10 3. This coincides with

let failure occurs by shearing along planes at approximately 4f3e transition from Region (strain-rate independent flow strgss
deg to the direction of the applied load. These specimens fell aptartRegion Il (strain-rate dependent flow strgss

and could not be recovered in one piece. At high velocities, how-This same pattern of brittle failure at low speeds and plastic
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1.0E+3 C) (a) Single failure plane.  (b) Uniformly distributed failure

1 5
£ 9
A 2
«—

Fig. 3 Schematic of shear failure modes for  (a) dry granular
Region | : Region Il material and (b) Newtonian liquid in laminar flow

1.0E+0 -WWM

1.0E-10 1.0E-8 1.0E6 1.0E4 1.0E-2 1.0E+0 This change from single-layer to distributed multilayer defor-
Bulk Capillary Number, Ca (-) mation is similar to the transition observed in Figs. 1 and 2. Fail-
X Water & Glycerol 00.01 Pa.s Oil urle in single isola}ed planes will resuhlt in Ibrittle cfragrliing be;:ause
. . . a large amount of strain occurs in the planes o gion ).
£0| Pais Ol 21 Fas0il = BOFes O However, when failure occurs over an extended zone, each layer
only experiences a small portion of the bulk strain. This inhibits
[17] with added schematics of deformed pellets shown above the formation of cracks and results in plastic _rojWleo_n 1. .
selected points. Pellets: 35% porosity, 70% saturation, 35 mi- Hence, we propose that a bulk granular material with interstitial
cron glass ballotini. Line shows best fit of Eq. (). liquid can exhibit yield behavior similar to either a dry bulk solid
or a liquid. Which behavior occurs depends on whether it is strain-
rate dependent viscous forces or strain-rate insensitive capillary
friction forces that dominate.
ranular materials in unconfined compression fail by shear
gl_long some plane. In a continuum model there are potentially an
infinite number of planes along which the material could fail. The
rmals to these planes are inclined at an aagte the direction
the imposed compressive force given by

Dimensionless Flow Stress, Str* (-)

Fig. 2 The dimensionless flow stress results of lveson et al.

failure at high speeds and with viscous binders was also obser\?enrg

when the platens were lubricatddy/], and when particle size was

varied,[18]. This transition was also present, although less pr

nounced, with particles of nonspherical shapE]. Hence we

believe that this is a general phenomenon. Note that the |iQLH$

content was held constant, so the transition to more quuid-likoe

flow at high strain rates is nothing to do with changes in liquid T ¢

saturation. W=7+, 2
The response of materials to increasing strain rate is material

dependent. For some metals, high strain rates causes adiabatiere ¢ is the material’s internal angle of frictiofi25].

heating which softens the metal and hence promotes ductile flow.The simplest yield condition is defined by the Mohr-Coulomb

In contrast, for most polymers, increasing the strain rate reducggeria

the time available for the long-chain polymer molecules to relax — o, tang+c 3)

and rearrange. This results in a shift from ductile to brittle behav- Tn=n '

ior, [20,21]. Concentrated pastes and suspensions usually exhiherer, is the limiting shear stress on that plane once friction is

shear dilatancy. This causes a reduction in pore pressure. At highy activated,o, is the normal stress on the failure plane arising

strain rates, liquid is unable to flow in fast enough to fill thérom the applied load and is the internal friction and cohesivity

dilated regions and cavitation occurs. This results in a transitiaf the material,[25]. For a cylindrical sample subjected to

from ductile to brittle behavior at high strain rat@sg., materials uniaxial compression and laterally unrestrained, as shown in Fig.

such as Silly Putty™ [22—-24]. 4, a Mohr-Coulomb analysis of the stress conditions on the failure
Saturated suspensions closely resemble the partially-saturgtéahe gives

granular materials we are studying. Hence, one might expect that

the effect of strain rate on both systems would be similar. How- o=

ever, the brittle-to-plastic transition seen in Fig. 1 and Fig. 2 is the 2

exact opposite of what is generally observed with saturated susyy

pensions and pastes. We now propose a theory to explain this

transition from brittle to plastic flow behavior. This theory also Oaz

predicts the lower-than-one power-law dependence of flow stress Ta=—, COS¢, (4b)

on strain rate observed in the strain-rate dependent region.

Taz

(1—sing) (4a)

3 Theory = 0: No slip. Slip in Plane 1. Slip in Plane 1 & 2

A dry granular material whose strength is determined by inter- o g}:fe'e; tfailure of g}g:fe‘e; tfellure of
particle friction will begin to fail along its weakest plane at an l
orientation in which the yield criteria is met. Once initiated, fail-
ure is generally confined to a narrow shear zone with the rest of |*.o,
the bulk material remaining relatively undeformé¢iig. 3(a)). (]
This is because inter-particle friction forces are relatively strain-
rate independent. Also, the kinematic coefficient of friction is gen- AT Planes of
erally lower than the static coefficient and dilation of material in @) incipient
the shearing layer further lowers its strendt2]. | 7] failure

In contrast, when a Newtonian fluid is sheared under laminar
conditions the shear strain is uniformly distributed across the en-
tire shear zonéFig. 3(b)). This is because liquids have a strain-
rate dependent shear stress. Hence it is not energetically favoraide 4 Schematic of model showing how successive planes
for all the shear to occur in one thin layer. simultaneously fail as applied bulk strain rate increases

Plane [\
of ’
failure
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where o, is the compressive stress applied along the axis ofteecomes the flow stress; such that it must overcome both fric-

cylinder, [25]. tional and viscous components to maintain flow. Hence from Egs.
For a wet granular body, the cohesivity in E8) arises pre- (4a) and(10)

dominantly from liquid adhesion forces. Surface tension effects

; ; ; : d
impose an isostatic normal stress on the granular materigl ( Tt% _ cosd—tand(1—sind) 1~ 2 ta (s D
To a first approximation then coso [cos¢ al 2 () Ya(s,P)
= u

e oectand. © 25, 0) 9), an
The static cohesive strength. of liquid-bound granular materials ycos
arising from the capillary force has been found to be proportionalhich is of the form
to the liquid-solid adhesion tensiopn \ cosé and inversely pro- _ 0
portional to the average particle sizig, [26]. It is also some St =a+bCa*, (12)

functionW; of the liquid saturatiors and particle packing fraction where

®, thus . 1
a=[cos¢p—tan¢(l—sing)] (2 tang- (s, P)], (12a)
coséd . _
7= q Y(s.®). (6) b=[cos¢—tanp(1—sing)] [2¢,(s,®)],  (12b)
p
and
Substituting Eqs(4a), (5), and (6) into (3), the static limiting .
shear stress on the slip plane is Ca=(pnu)(ycoso) - (1)
. cosd Ca is the capillary number defined in terms of the slip velocity
= _az(lfsin &)+ Y 1(s, @) [tan . (7) in a single plangwhereas the capillary numb@&a in Eq.(1) is
2 dp based on the average bulk strain rate of the pellet. Equéti®n

escribes the strength of every potential failure plane. At steady
e(whether static or in failurethe transmitted stress between
hese planes of material will be equal.

Equation(12) has a similar form to Eq(1), except that the
exponent of the capillary number is one, whereas the experimen-
tally fitted exponent wa$=0.58+0.04. We now introduce an

u assumption which allows us to resolve this apparent discrepancy
Tﬁ#(g)- (8) between the expected and observed power-law dependency of
stress on strain rate.

If we assume that the average gap distance between particles i any granular material there will be a distribution in the
proportional to the particle size, then we may write a generatrength of planes due to irregularities in the packing and liquid
expression for the viscous shear stress for shearing a plane of distribution. Therefore, we shall assume that the magnitude of the
granular material as static friction coefficienta varies between planes. For simplicity

we shall take the viscous coefficiembf all planes as a constant.
-~ In reality b would also vary for the same reasons thatloes,
Tv*“d_pq’Z(s’q))’ ©) however, this assumption greatly simplifies the analysis that fol-
lows and does not alter the general conclusions of the model. Let
whereyr,(s,P) is some unknown function of liquid saturation andthe plane with the lowest static friction coefficient be known as
packing fraction. The exact form of the functional relationshipglane 1. This is the plane in which failure will initiate. Let the next

1(s, @) andyr(s, ) is not important in this work becausend  weakest plane be plane 2, and so on, suchahat>a; for all i.
® were both held constant in the experiments shown in Figs.The shear strength of planés then given by

and 2.
In this analysis we have assumed the pore pressure is constant. Stif =a;+bCq™, (13)
In a saturated granular system, if dilation occurs in response, i@ are Cais the layer capillary number in plane i, based on the
shear, then the pore pressure is lowered. This low pore press iB velocity u; in that plane of material
resists particle motion and causes liquid to be sucked into theyyhen 3 compressive load is first applied to the material, failure

sheared regiofthis effect can be seen when walking on wet beach,eq not occur until the applied stress exceeds the static strength
sand. At high enough strain rates, cavitation will eventually oc-

. ; : of the weakest layer. For 3tr-a,, the material will slip on plane
cur. However, in partially saturated granular materials, the poie :
pressure remains essentially constant because air can flow fre(fl
into and out of the assembly. Hence this model does not apply
saturated systems.

If the internal friction coefficient used in E¢7) was that valid
for sustained shed(critical consolidation of the granular mate-
rial, then the static component of the shear stf&sg (7)) would
also be valid after yield has been initiated. Then E@s.and(9)
can be added to give the total shear stress on the slip plane once St =a; +bCa>a,, (14a)
yield has been initiated, namely

Once failure occurs, there will also be a dynamic component 8
the shear stress due to viscous forces in the liquid phase. Fo?t%t
continuous liquid film of viscosityx, between two plates a dis- all t
tanceé apart and sheared at a speedipthis viscous shear force
would simply be

with i=1.

%There is a velocity below which failure will remain confined to
plane 1. Above this velocity, however, the applied stress will ex-
ceed the static strength of the second weakest plane, plane 2.
Failure will then start to occur simultaneously in two planes. This
occurs when

or equivalently

o cosé
r= ot 1= | 22 (1-sing)+ 27y (s,0) |tand Ca>(a;~a1)/b. (140)
2 dp . " . . .
For even higher velocities, a third plane will start failing, and so

pu on. Once more than one plane is slipping, the applied bulk shear
g Yas®). (10)  velocity u will be distributed between all failing planes such that
p
At the onset of slip, the shear stress on the slip plane is given by u= E Uj. (15)
i

Eq. (4b). Once slip is established, the normal applied stiess
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Hence, the capillary number based on the overall bulk strain rate 1000

can be expressed as the sum of the layer capillary numbers in each — Single failure plane
plane, i.e., [
100 § = Muitiple failure planes
Ca=, Ca. (16) 0
I :ﬁ 10 1
Note that once multiple planes are in simultaneous failure, fur- @
ther increases i cause the slip velocity irall of the failing
planes to increase so that a constant transmitted stress is main- 1
tained between each layer i.e; does not remain at the value it 3:=1.0; A2 =0.01; b = 0.1
was when plane 2 began slipping. 0.1 . . . .

This model assumes a steady, non-accelerating state of failure. ' ' ' ' '
This requires that inertial effects be negligible. This assumption is 0.1 1 10 190 1000 10000 10000
partially supported by recent work comparing copper and glass Ca () 0
powders which found negligible difference in flow stress for a i )
fourfold increase in solid-phase densifg.9]. Liquid densityp, F_lg.|5f .FI'OW Sltress asdalf“”Ct'O” of Cap'"gryh““mbf.r 1|‘orfth|e
has not been altered in any experiments to date, so the significajy :'n?(')g:'pEage Tfs)eéngq('u)(luzs)i’n an a t=(19 OmuAt;pfc') %'1”:;@
of inertial effects in the liquid phase has not been establishegl_y | » BG4S ' g 4= o
However, we may estimate the film Reynolds number in order to
check whether the flow conditions are laminar or turbulent. If we

assume the film thickness is of the same magnitude as partiFalleers is less than the overall percentage increase in bulk strain
diameter, then for the highest deformation rate studiedter- ra¥e because the bulk strain is dpstr'b tec?o er a greater number of
bound pellets at 150 mm/s Y u n1s distribu v 9 u

layers than previously. In the limit as—we, Caxn? and Stf«n.

pLud, (1000 kgm~3)(0.15 ms )(3x10°° m) Therefore Str«Ca® at high strain rates. This is illustrated in Fig.
e w (0.001 Pas) 5 using arbitrary values for the model parametys Aa andb.
The single failure plane model has a power law exponent of one in
=4.5. the viscous region, whereas the multi-layer model has an exponent

0.5. This is very close to the experimentally observed value of

58+0.04, which is encouraging given the very simplistic as-

In order to proceed further with this analysis, we need to knogymptions .Of constan_ia and cpnstanb th"."t were made. When
e}Q the strain occurs in single isolated failure planes, cracks de-

how the static strength varies between planes. In reality this LU
likely to vary in a stochastic fashion, dependent on slight vari¥!0P- However, when the strain is distributed over a large number
' f.planes, the actual amount of strain in each plane is lessened,

tions in packing, particle orientation and shape between plan% v . . :
within the granular material. For simplicity we will here assuméf"i§|ICh inhibits crack growth and results in plastic behavior.

that each plane is a constant amouké, stronger then the pre- . . .
vious weakest plane i.ea; . ;=a;+Aa. Therefore 4 Discussion and Conclusions
_ _ It has been shown that partially saturated liquid-bound granular
an=a,+(n-1)Aa. A7) material can exhibit the dynamic flow behavior of either a dry
Let us consider what happens when plane n is on the vergehofik solid or a liquid. Which behavior dominates depends on the
starting to slip. This occurs when ratio of liquid viscous forces to capillary forces, which can be
L represented by the capillary number. Inter-particle friction, con-
Strf=a,=a,;+(n—-1)Aa. (18) trolled by the capillary forces, dominates yield behavior at low
At this point (n—1) planes are already simultaneously slippingstrain rates and results in dry-powder-like brittle behavior. Viscous
In each of these planes the relationship betweeh &td Ca is forces dominate at high strain rates and result in liquid-like plastic
given by Eg.(12). Summing the two sides of Eq12) for all flow. In effect, we have identified a strain-rate-dependent phase
(n—1) slipping planes gives transition in the behavior of partially saturated granular systems. It
is noteworthy that this is the opposite of the transition from plastic
to brittle behavior with increasing strain rate that is usually seen in
(n—1)Str = .Zl a+ bzl Ca. (19)  fylly saturated slurries and pastes.
A model has been proposed to explain the functional role of
Evaluating the sum of the arithmetic serigto a,_,, dividing binder viscosity in influencing the dynamic flow stress and defor-
both sides by if-1) and substituting the global capillary numbemation characteristics of wet granular materials. It is hypothesized

This is well within the laminar regime, so inertial effects in th(‘:gf
fluid films between particles should be negligible. :

n—-1 n-1

for the sum of the layer capillary numbek6) gives that when viscous forces become significant there are multiple
— planes of material in simultaneous failure. This model success-
St* =a, + (n—2)Aa Ca (20) fully explains the observed brittle-to-plastic transition in pellet

2 TPy
Equating Egs(18) and(20) and rearranging gives

flow behavior and also shows good qualitative agreement with the
experimentally observed dependence of compressive flow stress
on the capillary number.
— n(n—-1)Aa One important practical implication of these findings is that
Ca= ~2p (21) measurements performed on wet granular material at low strain
rates cannot be used to draw conclusions about their strength or
Equations(18) and(21) give the applied stress and the bulk capmode of failure at high strain rates. A strain sufficient to cause a
illary number, respectively, when plameis about to fail. liquid-bound granule to crack and fall apart at low strain rates
These results can now be used to interpret the discrepancy bgy not cause any breakage at high strain rates. The applied force
tween the expected and observed power-law dependency’f Sequired to cause a given amount of strain may also be much
on Ca in the viscous controlled regime. When the bulk strain ralbégher. Hence, viscous effects must be considered when modelling
is increased, the number of layers in simultaneous failure ithe deformation and breakage of such material during impacts or
creases. Hence the percentage increase of strain rate in individather high strain rate events.
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efficient and novel third-order finite element is presented that provides a representation of
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relatively large element sizes. Using a weighted residual approach, the discretized motion
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1 Introduction bending stiffness. In a previous work, the authors presented a
The use of numerical models to simulate the dynamics of ufl[St'ord.er lumped parameter model to simulate a three-

derwater vehicles and moorings has been presented extensiveIalmensmn'fJII ROV tethe[,2§]: By estimating the curvature of _the
Yetfler from the nodal positions, bending effects were applied to

eX|sIt|ng Ilt;aratur((ej. N%Te&'cal ”?Ode's p(;owde a means _for th[ﬁe linear elements of this model as equivalent transverse nodal
analysis of towed cable dynamids,—5|, deep water moorings, ¢,rces The experimental results of this work showed the impor-

[6—8], and marine riser§9—14], prior to the actual development 506 of including a bending stiffness model in the slack tether
and/or deployment of the system. In addition, accurate dynamigsnamics. However, the linear elements of this approach, like the
models have proven to be effective mission planning toolsz haviRgethods of[24] and[25], require a fine spatial discretization of
been used to study both towcable management and turning st{gks tether to capture any rapid variations of curvature along the
egies for towed underwater vehicl¢s5-20 and in the design of tether, resulting in a potentially large computational overhead. To
systems to provide heave compensation for tethered deep-ggaviate this problem, higher order curvilinear elements could be
ROV platforms[21,22. An application that has not yet seen sigused to better approximate the twisted lay of a tether with a larger
nificant attention is the time domain simulation of underwategpatial discretization. To date, third order finite element tech-
remotely operated vehicldROVs) with slack tethers. niques have been applied to the analysis of mooring lines, marine
Despite advances in autonomous technology, ROVs are still thsers, and flexible pipeline§9—12]. Depending on the particular
predominant tool for complex intervention tasks. These vehiclefement formulation, the state of each finite element presented in
typically follow omnidirectional paths during operation and dethese works is defined by a vector of 12 or 13 state variables, as
ploy a twisted lay of low-tensioror slack neutrally buoyant compared to the six state variables required for the first-order
tether, or umbilical cable, along the path. Travel to the limits diimped parameter elements. This increased number of state vari-
the tether, sudden movements of the ROV and/or environmenglles detracts from the accuracy of the higher order element, and
loads can cause the tether to become taut. During such tensionihdf therefore desirable to develop a higher order element with a
the ROV response is dominated by the rate of and direction &fduced number of state variables.
tensioning,[23]. Given the complexity of the tasks that are at- This work develops a novel finite element cable model based on
tempted using ROVs, the ability to simulate an ROV deploymef third-order element with a reduced-order state vector. Following
a priori is a valuable asset. In order to extend the capabilities 8fe developments of Garr¢12] and Nordgren13,14, we de-
numerical dynamics models to include the simulation of rRovelop the no_n-Iln_ear motion equations for_the continuous tetht_ar in
platforms, including the motion of the slack umbilical tether, it i$€ms of an inertial frame of reference using the Frenet equations.
necessary to develop an accurate representation of the higherg. Show how these motion equations can be discretized using
der internal effects that contribute significantly to the motion dpalerkin's method of weighted residuals to produce the system of
the slackened tether. ordinary differential equations, element equations, that govern the
To date, efforts to model underwater vehicles with slack tethef@otion of the chosen cubic element. We will show how these
have included a two-dimensional implementation by Grosenbau§fgmental equations are assembled to form a global set of equa-
et al.[24], and a three-dimensional model formulated by Banerjd®"S which define the motion of the entire tether. Finally, we will

and Do[25]. Both works provide a representation of the tether’ emonstrate that our particular choice of finite element allows the
' assembled system of equations to be reduced into a system that

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF has the same dlm.ens.lon as the S|mpler linear Iumped parame.ter
MECHANICAL ENGINEERSfor publication in the ASME QURNAL oF AppLiEDME-  MOdel, but yet maintains an accurate and complete representation

CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 110f the higher order bending and torsional effects.

2002; final revision, October 8, 2003. Associate Editor: N. Triantafyllidis. Discussion

on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal . .

of Applied Mechanics, Department of Mechanical and Environmental Engineering, Equatlons of Motion

University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be . . . .
accepted until four months after final publication of the paper itself in the ASME To create a numerical model that includes the desired bending

JOURNAL OF APPLIED MECHANICS. and torsional effects it is necessary to derive the dynamics equa-
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Fig. 1 A diagrammatic presentation of the coordinate sys-
tems, the Frenet and body-fixed frames, used to describe the
tether element. The discretized tether is formed from an assem-
bly of cubic elements, with the  ith element extending between
the ith and J+first nodes.

tions for a continuous tether, considering the tortuous profile th

lar horizontal directions, and is aligned with gravity. The rota-
tional inertia of the cable is considered to be much smaller than
the other terms of E¢2), and is thus neglectefll]. The dynam-

ics equations are formulated using two local frames of reference,
the Frenet frame and a frame of reference oriented with the prin-
cipal axes of the cable, Fig. 1.

The Frenet frame t(A b) is oriented with the space curve
formed byr(s,t). As the curver(s,t) is traced, the changing
orientation of the Frenet frame is quantified by two parameters:
the curvaturex, and the torsiony. Assuminge <1, the base unit
vectors are defined as=r’, Ai=r"/«x, andb=r"Xr"/x and their
gradients are defined d@$=«-A, A'=y-b—«-t, andb’'=—y
-i. The curvature, defines thp bend of the cable within an
osculating plane that is formed byandf at the point considered.
Both k and y are defined in terms of the spatial derivatives of the
space curvg27]:

I,I . (rHX rlr/)

n e\ 1/2
re-r ) ’ o

x=(

The torsion of the curvey, is the spatial rate of change of the
osculating plane’s orientation about the tangent vector, and con-
sequently the orientation of the bend, about the tangent vector,
As such, the torsion represents the twist experienced within the
tether due to the shape of the tether profile. However, when con-
sidering twist of the tether, one recognizes that torsional couples
plied at the boundaries of a tether section create additional an-

a tether forms in three-dimensional space. In existing Iitgratur&um displacemente (the torsion deformation throughout the
the cable is modeled as a slender flexible rod that sustains efYmer scope. Thus, we introduce the body fixed reference frame

ronmental, gravitational and buoyancy forces. Of particular r
evance to this work was Nordgren’s presentation of the vect

equations of motion for a continuous cabl&3], (Figs. 1 and 2
which are

eg([ y 2 which remains aligned with the principal axes of the

ther cross section, as shown in Figs. 1 and 2, and is separated
from the Frenet frame by an angleabout the tangent direction.
As discussed by Love, the internal momeht, generated at

1 any point within the tether is proportional to the curvature and the
F'+q= dezpc)'r' (1) twist observed at the poifi28]:
M’ 41" X F 4 m=0. @) M=EIxb+GJrt 3)

. . . . . where the overall twistz, of the cable at the point is given b
wherep. is the density of the cable, including the water entrained 7 P 9 y

in the voids between the strands of the cable armor where appro-
priate,d is the diameter of the cable(s,t) is a position vector

describing the space curve formed by the center line of the cal . : )
. ; : moments applied between the tether boundaries (), Eq.(3) is
qis the vector of applied forces per unit length,represents the substituted into Eq(2) to produce a definition for the vector of

applied moment per unit lengtk, is the vector of internal forces, ; .
M is the vector of internal momentk,is a 3X 3 identity matrix, internal forces at any location along the tether
(") denotes differentiation with respect $p the unstretched cur-
vilinear coordinate along the cable, afid denotes differentiation

=vy+a'.
blfé)llowing [12] and[13], and assuming that there are no external

F=T-t—El«'-A—Elk-y-b+GJIr «-b. (4)

with respect to time. We express(s,t) in terms of an inertial

frame of referenceX Y 2), whereX andY point in perpendicu-

4 ﬂ(:+d.v)

Sy R\, y / As+ds) (s+ds)

v
M+dM

Fig. 2 A close up view of a differential segment of the ROV
tether. The distributed load g contains weight, buoyancy and
hydrodynamic loads. An additional degree-of-freedom, a, de-
fines the orientation of the body-fixed frame relative to the
Frenet frame.

Journal of Applied Mechanics

The spatial derivative<’ is a nonlinear function of the spatial
coordinates and complicates the finite element procedure to fol-
low. The second term on the right-hand side(4f can be ex-
pressed as

Elk'-A=(Elk-A) —Elk-y-b+EIx%1 (5)

which, eliminates<’ in (4). Thus, substituting Eq5) into Eq.(4)
yields

F=—(ElxR)' +(T—El«®)t+GIrxb (6)

where the term-El«? is included to cancel the spurious compo-
nent of the internal force induced when considering the tangential
component of changinfl. The internal axial forceT, is defined
using the constitutive relationship

T=EAe+Cippé, e=[(r'-r)¥?—1] 7

where ¢ is the strain andC,p is an internal viscous damping
coefficient. This simple viscous damping model is used to repre-
sent the dissipation of energy within the tether via friction be-
tween the layers of conductors, armor, and polymer coatings of a
typical tether. Equatioi6) defines the internal force as an explicit
function of the tether’s elastic deformation as defined by the axial
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strain, curvature, and twist. Substituting E&) into Eq. (1) re- 3 Finite Element Formalization

Sggf; :ahqeu:tlzlgnOtrrlgtngle;i/r?g;o;heeqtueatlﬂg?z t?;r?;l({atl%nnatlo ﬁoﬁgflﬁ% Equations(8) define the motion of a continuous tether in terms
terms of these three elastic deformations, and a scalar constr%m paces, and tlme,t._ The true solution to this s_ystem of equa-
lons is a vector functiom(s,t) and a scalar functior(s,t) that

equation that defines the variation of the twist along the Cable'are defined over the entire tether scope and the time domain of the
—(EIr")"+[(T—El&)r'] +[GIr(r' Xr")]' +q modeled ROV maneuver. Because of the tether's geometrically
nonlinear profile, the strong nonlinearities contained in the hydro-
dynamic term, and the wide range of tether states that can occur
during ROV operation, we look to find an approximation to the
true solution of the differential equations of H&) using numeri-
(GJn)'=0. (8) cal techniques. The calculation of this approximate solution, or

. . ) . ... trial solution, using a finite element approach is accomplished in
In this work, the applied force vectay, consists of the distrib- stages:

uted weight, buoyancy, and hydrodynamic force, which is defined . .
using Morison’s well-known approximation. Since the Keulegan- 1. We consider a small section, or element, of the tether and
Carpenter number of ocean cables is always very large, Morisoagnstruct two trial solutions;(s,t) and «;(s,t), that are formed

i"

1 2

approximation is valid. from interpolating polynomials in terms of the spatial coordinate
3 5 s. These trial solutions apply over the length of this element, and
2 foCoup, VUp, TU5, the coefficients of these polynomials are chosen as the values and
_ spatial derivatives of(s,t) and «(s,t) at the end nodes of the
a=(pc—pw) 2 g—1/2pydL 4 prDvﬁZ\/vél-i-vgz e?ement. (s.0) (s.0)
quDUa|Ud| 2. We substitute these trial solutions into E§) and apply an
_ optimization criterion that transforms the continuous differential
—LinMal ¥ (9) equations into a series of algebraic equations that defines the op-

. L . . imum fficients of th Wi lynomial roximations.
whereg=[0 0g]" is the gravitational acceleratiopyy is the den- timum coefficients of these two polynomial approximations

sity of sea water.y is a transformation matrix relating the axes

of a hydrodynamic frame, to be described shortly, to the inertial 3.1 Selecting the Trial Solution. As shown in Fig. 1, we
frame of referenceCp is the normal drag coefficienM , is the consider the tether to be a contiguous selNafubic segments, or
diagonal added mass matrix, expressed in terms of the hydro@jements, which have the same physical properties as the continu-
namic frame. The relative velocity of the cable through a wateus cable. The trial solutiom;(s,t), defines the three-dimensional
column with a currenj is v= L,TH('r—j) Wherevﬁl' U, andug profile of theith, tether element which extends between the nodes

are the components of this velocity in the hydrodynamic frame bf 1 andi of the discrete tether:

reference.
The hydrodynamic framef); p, §) attached to the cable seg- p+1
ment, composed of @ axis that is tangent to the cable, ppaxis r(s,t):se[si~D,sM]~r,= 2 o (Db (9)
Y. ’ [ [ i,j '

that is normal to the segment andpa axis that completes the
right-handed coordinate system. The hydrodynamic frame is used

to resolye the relative fluid velocity into components normal ang, coefficientso, . are time-dependent generalized displace-
tangential to the tether such that the hydrodynamic loads can e o b isa shaijpe function that defines how tta general-

. ' D
calculated based on the loading coefficiefigsand f,. These ;4 gisplacement contributes to the shape of ithetether ele-
coefficients are functions of the incidence angle of the relativgq ¢ andp is the order of the trial solution. In order to ensure
fluid flow on the tether element and account for the nonlinegt 1o concatenation of the elements maint@ih), continuity
breakup of drag between normal and tangential directions, resPEC<moothness across the node pointis often chosen as a cubic

tively, as discussed by Folb and Nelligg?9]. Since the calcu- o : : . : )
lated hydrodynamic load is transformed back into inertial repr%iz?s'tfh'g‘;el;%%ls:r'ggtﬁgIﬁgzmﬁ%])' ;:gr%;an;z“f::gg:tp:z?
sentation for application in the motion equation of E§), the (1) (i) . - .

particular orientation of théd, and p, axes about the tangent©S:" andr’™, observed at the—1 andi node points. In
direction is inconsequential. The transform between the axes (IS case, twelve state Var'ab_lﬁf' ar,% _r%qu'{i?d o fu!l()i/)deﬁnetme
the hydrodynamic and inertial framek,y , is formed from a €lément: the components of =, r , Y, andr’™.

Z-Y'-X" ( 6 9 set of Euler angles. These successive rotations Rec@lling that we assume no moments are applied along the
bring the inertialZ-axis into alignment with the tangent directionteth.er' rather the_tet_her 1S sus_pended in the water column and_ IS
of the cable segment, and the orientation of heand p, axes is subject to only distributed weight, buoyancy a.nd hydrodynamic
constrained by setting one of the Euler angles, the initiabta- [OfCeS, We expect the curvature to vary continuously over the
tion about the inertiaZ-direction. to zero. Thus entire scope of the tether. Referring to E8) we recognize that

' ' this loading scenario produces a tether profile that exh®i(s)

cosfd sin@siné sin@cosé continuity. To replicate this behavior within the finite element
model we model the tether with an assembly of finite elements
that possess an additional degree of continuity relative to the cubic
—sinf cosdsing cosdcosé Hermite element. The twisted cubic spline element provides this

level of continuity,[31]. We define the element profile,, as a
where# andé can be considered as traditional pitch and roll of thgyisted cubic spli}:u[e s]egment: P '

cable.
The added mass values M, are zero for flow acceleration
parallel toq and equal to the displaced mass of water for flow

Liy= 0 cosé —siné

—_ (-1 _n(i—1 (i -
acceleration in thé; andp, directions,[30]. 01,1 =10"0 0= gy =10 g =10
1 0 O
M —EdeP 0 10 sth—s 1
AT cPw - b= (3= N2
4 0 0 0 ¢i,l_s(i)_s(i_1)!¢l,2 6(¢|,1 ¢|,1)LI'

478 | Vol. 71, JULY 2004 Transactions of the ASME



sfs(ifl) S(i)
b= gD bia= g ($ra~ dialll (10) f (Bl = [(T=EIe?)ir{ 1= [GIn(r/ X)) ¢l

(i-1)

+

1 ., .
gi— ZWd pcl ri)¢i,j ds
where (¥~V and (Y represent evaluation at the left and right 0
end nodes of elemerit respectively,L;=s—s(~1) is the un- =[((EIrf") = (T—EI&®)r{ = (GIri(r{ X1{))) i ;1| %i-1,
stretched length of théth element. Referring to Eq10), it is
apparent that our trial solution,, is formed from a superposition
of a linear component that interpolates the node positions and a
cubic refinement that interpolates the curvatures at the node points
and thus ensures second order continuity between the elements. JJ'

j=1234 (12)

&)

’ ' _ s P
Of course, it remains to ensure that a concatenation of the ele- (,,1)( vital) g ds=[GIni]djlq-u, [=13. (12)

ments exhibits smoothness, or first-order continuity. Later we will
show how this additional constraint on the element geometry
enforced. . . . the element length. Referring back to E§), it can be shown that
To complete the trial solution, we model the torsional deformqhe boundary term in Eq11) evaluates to
tion within the element as a linearly varying quantity. This ap-
proach is a standard, and widely accepted, practice in structural
finite element analysis that relies on the premise that the torsional
deformations are limited and not fluctuating rapidly over the body,
[32,33. Thus, we use the; 1(s) and ¢; 5(s) shape functions to NO)
define an approximate variation of the torsional deformation =[(= Fi)d’i,J“s(i*l)-
throughout thath element; :

S

We have assumed that the material properties are constant over

[((EI) = (T=ELRyr = (GIn(r/ X 1)) by 115

From Eq.(11) it is apparent that enforcinG?(s) continuity of
the element, and thus eliminating the second integration by parts
_ ) step, has eliminated any boundary terms involving moments from
ai=al Vg, (s)+al e «s). the analysis. Rather, we are left with boundary loads that are de-
fined strictly in terms of the internal forces at the node points.

3.2 Application of the Galerkin Criterion.  Given the trial
solution, composed of both and «; , the solution of the dynam-

ics equations given in Eq8) over the domain of théth element jeqra1s of Eqs(11) and (12) over the spatial domain of thigh

is reduced to the problem of defining the coefficients of these Waiher element to produce the algebraic form of the residual equa-
polynomials at any given instant in time. To transform the partigt,ns These integrals contain nonlinear functions of the spatial
differential equation of Eq(8) into a series of algebr_alyc equationseoordinates and to complete the integration of E@.1) and Eq.

that define these coefficients, we apply Galerkin's method @f9) it js necessary to approximate these nonlinear terms with
weighted residual$33,34. At this point it is important to outline jntegraple functions. Since most cables are locally stiff in tension,

how the choice of the twisted spline element affects this discrefhe rate of change of these spatial functions is small and can be
zation process. approximated by low-order polynomial functions. We approxi-

Referring to the vector equation of motion given in E8), one  mate the axial force within theth element as a constant quantity,
can see that the highest order differentiat(,t) is of order four. ) (g):

The most common approach to the discretization of such a systan

is to integrate this differential equation by parts twif®4]. This

procedure ensures that the natural boundary conditirescon- (T—EI&?);~\;(s)=(T,—EI(r"-r")(i~ 12) (13)
ditions on the highest derivatives of the element prafilandr”)

remain un.c.onstrained, and that the essgntial boundary conditigvr].?ere ()4-Y2 indicates evaluation at the midpoint of thth
(the conditions onr and r’) are constrained by the element’s

. " X . ; lement, and the internal elastic tension and damping forces
mathematical definition. The benefit of this approach is that Onﬁiithin theith elementT,; , are calculated following Ed7) using

C'(s) continuity is required of the trial solution, leading to the average values of strain and strain rate over the eleneernd
use of the cubic Hermite element in prior developments. In thege, respective'y_ To evaluate the average strain ofithecurvi-

more conventional developments, the second integration by pafiear element, a Romberg integration algorithm present¢@5sh
step introduces moment terms in the boundary conditions devg'adapted to approximate the integral expression:

oped for ther” derivatives. It is the specification of these mo-
ments at the element boundaries that provides the unconstrained
conditions on the higher order derivatives. s
The premise of this work is to take advantage of the fact that ( f
the elastic body being modeled should demonstrate a continuous & =
second derivative,”, due to the type of loading it is subjected to ' Li
(distributed environmental loads with no externally applied mo-
ments along the tether lengthror this reason we have introducedTo complete the calculation of the internal damping effects, the
an element withC2(s) continuity which, through its definition time rate of change of the element strain is calculated using the
given in Eq.(24), provides a constraint on the curvature, or seawo end node velocities. The average element veloeiky, is
ond derivativer”, observed at the element nodes. Therefore, gubtracted from the velocities of the-1th andith node points
applying Galerkin’s criterion with this new element type, only théeaving only the velocity components which create change in the
value of the third derivative at the element boundani&s,must element shape. The quantityis calculated by finding the portion
remain unconstrained. Thus, we formulate our residual equatiarfsthe remaining velocity vectors that lie in the tangential direc-
by integrating by parts one time. This produces the following 1don at each node and determining the net axial stretch that is
scalar residual equations: induced. That is

3.3 Evaluation of the Residual Equations. In order to
evaluate Eqs(11) and(12) numerically, it remains to evaluate the

ri’~ds—Li)

-1
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Ej L.
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The hydrodynamic component of the distributed load veqgtor

h;, is approximated as

hi~hi(s)=h0"Y¢; 1 +hD e 5,

prDvﬁl

)]

2 2
VO, FUp,

h)=—1/2pyd| Ly fPCDvﬁz‘/U§1+U§2

quDUﬁ|U&|

Following the approach of Huar{@] and Buckham et a[.19],
we represent the added mass effects as an additional inertia wher
the added mass component of the distributed lgasl removed,
and the tether element’s mass is increased to reproduce the added
mass forces. The added mass attributed toi theelement is ap- 3
proximated as the average of the added masses calculated at the

boundingi — 1th andith nodes.

1 1 ) 1 .
Mi:(zﬂdépcl)+ E(L|HMAL?—H)(I71)+ E(L'HMAL'TH .

The 12<12 system matricepKg];, [Kal;i, and[K,]; embody
generalized bending, axial, and torsional forces, respectively, that
are applied at the element nodes and result from the curvature,
axial strain, and twist experienced throughout the cable element.
The generalized load vectoW;, H;, andB; define the weight
and buoyancy, hydrodynamic, and boundary forces respectively,
and the 1 1 vector,X;={r( =" (-7 (0T pri®NT gefines

the element trial solutiorr; . The element mass matrixM.]; , is

a full 12X 12 matrix constructed from multiples of thex®3 mass

matrix, M; :
14
o Iy Zlewm iu ALY
§ i E i i 6 i ﬁ) i i
2 ~7 31
s —liem 2t
ga5- M 3ot M Te100- M
fMe]i:Li 1 -1,
M, ZELM,
SYM 2 L
I 9451 Vi

The stiffness matricefKg]; and[K,]; are the following 12
X 12 element matrices:

(15)
o I 0 -l
To facilitate evaluation of Eq(12), we must approximate the EIlO 0O O O
torsion over theth element,y; . Having selected a linear form for [Kg]; T 0 -1 0 1 (29)
the trial solutiona;, we recognize that the' term in Eq.(12) :
will evaluate to a constant quantity over the element. To maintain 0O 0 0 O
this level of approximation within Eq.12) we model the torsion
of the element with the constant quantigy:
Ry . . . -
2 ” my\ (1= 1/2) B L_I !
o ri-(rixr") i i
y~ i VD= (% (16) X -~
il “2Ls 0 -y
45" 360"
j NP [Kali= (20)
Equation(16) thus allows the twist within theth element to be B ﬁl 0
modeled by L,
SYM — ﬁ L3
T=y+ai. (17) L 4571 |

Substituting Eqs(13)—(17) into Eq.(11), we evaluate the residu-

als to yield

([Kgli +[KAali+[K J)X+W;+H;+Bj=[Mg];X;.

Due to the cross product within the torsional term of the re-
sidual equation, the generalized forces produced by the twist of
the element are non-linear expressions. To express the torsional
effects in first-order form, we choose the following factorization

[KT]i:
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where Q1) represents the 83 skew symmetric cross productpoints,r”®|N |, must satisfy a series of constraint equations de-
matrix constructed from the components of the vectdP. The fined over the scope of the concatenated twisted spline elements,
load vectorsW,, H;, andB; take the following form: [35]. For a cable witiN elements that are concatenated to extend
between nodes 0 and, these constraint equations take the form:

(lh(i—lufh(i))
’ ° Ly Ly 0 0 0]
rios Dol 3 6
45 360 L, Li+l, L
H=L 1 1 ZI 2| 0 0 rlr(O)
I I ) _— p—
(lh(i—lu Eh(i)) 6 3 6 (D)
6 3 0 : : 0 :
7 . 1 . L B |_ - +|_ |_ r!I(N—l)
(—ﬁ)h(l 1)_4_5h(l))Li2 0 0 NGlI N ; N, ENl )
L L
1 0 0 0 l o,
E(pcg_pwg) L 6 3]
L2 r p(1)_ p(0) -
d? 2_4|(ch_ng) L,
Wi=li—) ; (22) r@_ @) (D)0 o
E(ch*ng) L, - L, 0
—L2 = : + (24)
2—4'(pcg—pwg) PN p(N-1)  ((N=1)_ (N-2) (()N)
f— r/
—_g(-1) L Ln-1
(I) r(N) — p(N=1)
Bi= O (- I Ly |
0

The solution of Eq(24) requires the specification of boundary
Substituting Eq(16) into Eq.(12), yields additional X 2 system conditions. If the orientation of the tether at nodes ONbris
of equations that defines the torsional deformati@n, over the constrained by a clamped termination to a vehicle or a stationary
element platform, this orientation must be specified througk” or, re-

_ i1 (i-1) spectively. Conversely, in the case of a boundary idealized as a
GJ 1 1i(ali-D Yi —~GJr| R ()
- @ 1=GJ "+ 0 (23) spherical joint, or a free boundary, at node ONr r"**’=0 or
Lil-1 1]l a Yi Gl r"N)=0. For terminations that only partially constrain the tether

where the boundary tern@JTi(i—l) and GJTi(i) represent the in- orientation, a combination of the free and clamped conditions_ can
ternal restoring torque at the boundaries of the element. gﬁeipt)iglrlwed across ¥, Y, andZ dimensions at the boundary in
Equation(24) defines ther”® values directly in terms of the
node positions,r;|iL,, and the element unstretched lengths,
The element equations given by E48) and Eq.(23), provide L;|,. Thus, for any given set of node positions and prescribed
relationships between the observed state of a tether element, Isieundary conditions, there is a unique set of curvature vectors that
fined by X; anda;, and the resulting motion of that element, agproduce a smootiC?(s) continuous tether between the tether
defined byX; a 6X1 vector. The components &f are the accel- ends. Thus, an assembly of the twisted cubic spline elements only
eration of the — 1th andith node points, which quantify the tem-requires specification of the node positions to fully define the
poral change of the linear portion of the element shape, and thfile of the cubic elements.
temporal change of the node curvatures, which quantify theWe choose to use the unstretched element lengths in the coef-
changing curvilinear profile of the element betweenithd andi  ficient matrix of Eq.(24) to calculate the curvature vectors so that
node points. Applying the explicit solution scheme[89,21,2§ the coefficient matrix can be calculated prior to the simulation.
to this higher-order formulation, the model will be advanced ihis, however, introduces an error factor of#)? in the calcu-
time by solving for the node acceleratiori€), and the second- lated curvatures, a factor which is significant only in high tension
order time differentials of the curvature vector¢(), and inte- situations. However, in such circumstances, the magnitude of the
grating these quantities to produce the updated generalized désisile forces dominate the tether dynamics and dwarf any bend-
placement values at the next time step. Thus, the discrete elemegtand torsional effects based on the third order component of the
motion equations are a ¥12 linear system: double the size oftether profile. Thus, the use of the unstretched lengths ifZ).
the conventional lumped mass motion equations. is expected to be acceptable in instances of both slack and taut
Earlier, we demonstrated the second order continuity of thiether. Another consequence of the low-tension assumption in Eq.
twisted spline element. Now, we will show that by enforcing firs24) is that the clamped boundary conditions are completely
order continuity of the elements, or smoothness, across nastecified by the orientations(®) andt™ sincer’®~t® when
points, we can reduce the number of variables required to defithe axial strain is very small.
the element state, and correspondingly the element motion, to six

matching that of conventional lumped mass approaches. 4.2 Reduction of the Elemental Motion Equations. The
system of smoothness constraint equations ®4) transforms

4.1 Enforcing First-Order Continuity. In order to enforce disturbances in the tether profile, given as changes in the series of
smoothness, o€'(s) continuity, of the twisted spline elementsnode positions, into changes in the curvatures observed at the
across the node points, the curvature vectors observed at the nooées of the assembled system. The resulting curvatures ensure

4 Forming the Reduced Element Equations

Journal of Applied Mechanics JULY 2004, Vol. 71 | 481



the twisted cubic spline fit through the resulting node configurath element that is accelerated as curvature changes at modes
tion retains the desired smoothness and second-order continuityl andi produce a temporal variation of the higher order com-
The symbolic form of Eq(24) is ponent of the element profile.

R'=K R+ K,r' @O+ K '™ (25) 4.3 The Lumped Mass Approximation. Drawing on the
results of previous developments in the area of cable dynamics
where R:{r(O)T MO L r(N)T}T and the entries of the 8(+1) Modeling, one can argue that the added degree of complexity in-

X 3(N+1) linear transformatiorK; and the 3{+1)x 3 trans- duced by the inclusion of thie’ =) andf " terms in Eq(27) is

forms K, and K are functions of the element lengtHs,|., not warranted. Since its introduction by Walton and Polacti8tk
pfl=1" . . .

Considering a case in which the element lengths are constant, {i@ success of the lumped mass approximation in the study of

K,, K,, andK transformations map, respectively, time rates oyarious underwater cable dynamics probl_ems has be_en well docu-

change of the node positions, the top boundary conditions, and fAENted: [2,3,5,7,16,19-21,2526 A detailed analysis of the

bottom boundary conditions over the evolving nodal curvature&MPed mass approach was presented by HuanfBjnwhich
Differentiating (25) twice with respects to time in the case conShowed that the lumped mass approximation is consistent with the
sidered: dynamics of an actual highly flexible cable in the limit of differ-
ential element size. Kamman and Huston rationalized the use of
R/ =K, R+ K,F' O+ K gp' M) (26) the lumped mass approach through its superior computational per-
formance, and equivalent accuracy, compared to more compli-
Examining the structure of Eq24), it is apparent that thé, cated methods that used a more distributed representation of the
matrix has no zero entries, reflecting the dependence of the aceelble mass]16].
eration of theith curvature vector, and the corresponding changes The premise of the lumped mass approach is a redistribution of
in the ith element’s curvilinear profile, on the acceleration of anpe cable element's mass such that it is concentrated at the node
node in the assembled system. Thus for itte element, it is points. The consequence of this approximation is that changes in
necessary to use E(6) to replacef "0~1 andi”() in Eq.(18) the higher order shape of the element profile, caused by changing
with linear combinations of the node acceleratioif8|\.,, and curvature at the element end nodes, do not accelerate any cable
boundary termsi’ @ andi’™), to ensure the evolving curvatures™aSS: Rather, only inertia associated with the acceleration of the
maintain the smoothness of the discrete cable. node points is co_ns!dered. The Justlflt_:atlon for th|s_ rt_ed|str|but|pn
This coupling of the element states goes against the premiseoj)iihe cable inertia is b.ased on physical and heL‘1r|st|c. reasoning.
a finite element method. Conventionally, the state ofitheele- >\NCe the ROV tether is a slender body, there is a limit to the
ment would be defined strictly in terms of variables possessin qount OT mass _that is being S.h'ﬁed’ and hen_ce a limit to the error
physical association with only ttiéh element. Element definitions 1S Shift incurs in the evaluation of the motion equations. Sec-
following this rule ensure sparsity in the resulting element equ ndly, the lumped mass approximation serves to d'?COUP'? the_ mo-
tions. However, due to a synergy between the twisted spline e on of the n'ode points and th's ensures comp.utatlonal simplicity
ment and a lumped mass approximation to the cable continuumij¢th€ solution of the resulting motion equations. The lumped
is possible to express E(L8) strictly in terms of node accelera- hmgs approximation to the cable dynamics is reahzed by a direct
tions while maintaining the desired independence between the Ganipulation of the inertial terms of E@27). Using the lumped
ements of the assembled. We first compress the element mo%ﬂﬁss approximation the complete element motion equations can

equations down to two vector equations by pre-multiplying both€ 9iven by
sides of Eq(18) by P, where PL([Kgli+[Kali+[K ) Xi+ W+ H;+B]
1 ! | 0 O -
L_iZ EMi pi-1)
Pi= 1 =Li 1 [ F (D) ] (28)
0O =m
0o 0 | fizl > M;
The result is a reduced form of the motion equation foritre | ne aforementioned synergy between the lumped mass approxi-
element: mation and the twisted spline elements is evident when consider-
ing Eqg.(24) and Eq.(28). Given that the curvature vectors, which
PI([Kgli+[Kali+[K, DX+ W, +H;+B] completely define the curvilinear element profile and thus afford
calculation of the bending and torsional effects, are an explicit
14 53 function of the collection of node points, it is necessary to inte-
— —|
M, O 45 360 fi-1) grate only the time rates of change of the node positions to capture
=L, [ (1) ] the complete tether state, including internal twist, at the next in-
U E Eﬂ stant in time. Thus, the lumped mass motion equations (),
360 45 are in terms of only six state variables—the node positions. Since
9 263 the curvatures are calculated at each time step, the only conse-
1_ | _ quence of eliminating the curvature time differentials from the
) 945 15120 | (y"(-1) element motion equations is the error associated with the heuristic
L 263 19 0 (27)  mass redistribution.
15120 945

5 Solution Procedure

The term in parentheses on the right-hand side of @d) The reduced motion equations, given by E2g), and the tor-
describes how the mass of the tether element has been associsitathl constraint equations for the element, E28), form the
with the possible modes of element motion. The first matrix in thignal element equations that are to be used in calculating the dy-
parentheses of Eq27) quantifies the mass of the element, connamic response of the ROV tether to changing boundary condi-
sisting of both tether mass and added mass, that must be accelens. The tether is approximated by a series of the cubic cable
ated as the element’'s nodes, nodesl andi, accelerate to pro- elements and a global system of dynamics equations, that repre-
duce translation or rotation of the element in the water columaent the behavior of the entire tether, is assembled from the final
The second matrix in the parentheses quantifies mass within #lement equations. We will now illustrate the solution procedure.
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5.1 Assembly of the Discrete Tether Model. To create a where[Kg]g, [Kalg, and[K,]g are the global bending, axial,

discrete representation of an ROV tether, we concatenate a segigd torsional stiffness matrices, respectiveig; is the global

of the twisted cubic spline elements. This process, referred toasctor of hydrodynamic forces acting at the node points of the

assembly, is represgnted mathematig:ally by the application of Egsempled modelV;, is the assembly of weight and buoyancy

t(ﬁg)gé}ggjiﬁzrloro;?nlo't?éﬁ'e.qJ:lJé:i—grlli _assembly process formsforces; andBg defines the boundary loads applied over the as-
’ sembled tether. For example, accounting for the pre-multiplication

[[Kglo+[Kala+[K,JgH{r@ @M. prN=-DT (T QT of each elemental hydrodynamic force vector Ry the global

vector of hydrodynamic forces is given by

+Hg+Wg+Bg=[M]gR (29)
|
‘11—:L1h<0>+ %Llh(”
%Llh@u (%Lﬁ gLZ) h(H+ %Lzh(z)
Hg= :
%LN,M—% i—gLN,l+ i—gLN) h(N=1) 4 %LNMW

Previously, in Eq.(22), we expressed the boundary loads for thie element in terms of the internal forces experienced at the
boundaries of the element.

To define the global vector of boundary loads, we recognize that instantaneous changes of the internal force across the node points
are created by external forces applied at the node points. Atinode

PO (0,10

wheref{) is an external force applied at notl®f the assembled tethef{")=0, andF{}"),=0. Using these substitutions, the global
vector of boundary loads is given by

BG:{f gO)Tf gl)T. f gN)T}T.

The global boundary load vector facilitates the application of external forces at any node point of the assembled system. These
applied loads provide unconstrained boundary conditions on the third derivative of the tether gtofile,

The inertial terms on the right-hand side of the equation consist of the global mass matrix that is formed by tNrigdtemces of
the element mass matrices and the vector of node accelerations. For instance, using the lumped mass assumption the global mass matrix
takes the form

1
ELlMl O 0 0 O
1 1
0 5LiM1t 5LM, 0 0 0
[Mle=| © 0 0 0
1 1
0 0 0 ELN—lMN—l"‘ ELNMN 0
1
0 0 0 0 LMy

In addition to the global system of motion equations, the torsional constraint equations given @B)Ege assembled to produce
a global system of constraint equations that define the torsional deformation throughout the tether:
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- 1 -
- _= 0 0 0
Ly Ly
411 0 0 «© ” TO
Ly Ly L Lo “Fl) v n 0
GJ © 0 : =GJ : +< 0 (30)
0 0 1 1 1 1 a‘”(;)” YNT IN-1 ?N)
Thv Lea Ly Ly l@ RE T
1 1
0 0 0 _ = el
L L L

where 19=-GJ7? and ™ =GJ7{(Y are external torsional 6. The global system of equations is assembled. Specifying the
couples applied at the boundaries of the assembled tether. In wiieundary conditions, one ¢ or r(® and one off™ or r®™),

ing Eq. (30) we have assumed that no torsional couples are afe. (31) is solved for the node acceleratior'rig?H\‘:o.

plied at the interior nodes of the assembled system of elements. 7. The node accelerations are augmented with the velocities of
the current tether state to form the time derivative of the state

the node curvatures are an explicit function of the node positioﬁ’fcrow(tk)' which is integrated to generate the next state of the
the left-hand side of Eq29) is seen to be an explicit function of cable, Y(ty. 1)
the node positions and, through the hydrodynamic terms, node
velocities. T_he series of global motion eq_uations in E29) Fhus 6 Conclusions
forms a series of 3+ 1) second-order differential equations of ) )
the form We have presented a cubic cable element that provides a more
compact representation of low-tension cable motion than existing
. .. finite element models. Rather than the 12 or 13 state variables
F(RR)=[M]gR. 31 defining the cubic elements of these more conventional finite el-
ement approaches, the state of this new cubic element is defined at
Equation(31) is a classic initial value problem that defines theny instant by six variables: the positions of the end nodes. This
motion of the assembled tether node$)| ,, during a ROV reduction in the number of required state variables is achieved by
maneuver. To advance the model in time using an integration rathoosing an element form that enforces second-order continuity of
tine, the initial value problem is recast as a seriesNffist-order the cable profile. This choice of element reflects the fact that in
differential equations by introducing the node velocitié8|L,, ROV maneuvers, and in many other tethered systems where low-
as additional state variables to be included in the integration pr&nsion dynamics are likely, the tether is not subject to externally
cess. Thus, given an initial state of the tethét,) applied moments. The chosen element form allows the element
motion equations to be formed strictly in terms of the forces act-
Oy )7 W7 C(N-1)T ing on the node points and the resulting translation of the nodes.
Y(to) ={r™ (to) I (to) r'”(tg) -~ ¥ (to) The ability of the model to capture the dynamics of slack cables in
T LT three dimensions while maintaining the advantages of simpler lin-
r (to) 1 (1)}, ear finite element a it sui i
pproaches, makes it suitable for solving a
much wider variety of undersea cable dynamics problems than its
the integration scheme produce¥(ty), Y(tz),....,Y(t), predecessors. The model's ability to capture long periods of low-
Y(ti1)s - - -, Y(ts), wheret; is the duration of the simulation. To tension cable motion makes it a desirable tool, not only in tethered

advance the model each time step we propose an explicit @OV applications, but in any application that involves alternating
proach. For théth step advancing the model from the st¥(¢,)  taut and low-tension regimes.

at timet, to t,.,, the following sequence of calculations pro-

duces the next stat&(t,,):

5.2 Solution of the Initial Value Problem. Recalling that
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Herbert Balke Field singularities of collinear and collinear periodic interface cracks between an elec-
Institute of Solid Mechanics, trode and a piezoelectric matrix are studied in terms of the Stroh formalism for mixed
Technische Universitat Dresden, boundary conditions. In contrast to the relevant work done previously on this subject, the
01062 Dresden, Germany problem is solved based on the assumption that the upper and lower planes embedding

the electrode consist of two arbitrary piezoelectric materials, and the cracks are assumed
to be permeable. The problem is reduced to an interfacial crack problem equivalent to
that in purely elastic media. Explicit expressions are presented for the complex potentials
and field intensity factors. All the field variables exhibit oscillatory singularities, and their
intensities are dependent on the material properties and the applied mechanical loads, but

not on the applied electric load$DOI: 10.1115/1.1767168

1 Introduction The assumption of collinear cracks based on the consideration

pi lectri ics h b idel di tuat that they may exist before a main crack emerges. The assumption
iezoelectric ceramics have been widely used in actuators, sSPbermeabIe cracks will be explained later.

sors and other components. In these devices, the most coSigection 2 outlines the Stroh formalism. In Section 3 we derive

efficient geometry is that of the (_:oflred multllaye_r actuators Wl.tt‘he general expression for the complex potentials, in Section 4

metal electroded,1]. Due to the different mechanical and electriseveral solutions of field intensity factors at the crack tips are

cal behavior of electrodes and ceramics, the field variables cgjiven, and in Section 5 we specify numerical examples. Section 6

centrate around the electrode edges. The nonuniform local figloncludes the paper.

induces crack initiation and crack growth and finally leads to the

failure of the device. Thus, with increasingly wide application of

ceramic multilayer actuators made of piezoelectric materials, t . .

problems of local fields near electrodes have received much at:gn- Stroh Formalism for Mixed Boundary Value Prob-

tion in the recent decade. m
Some important results have been presented by Yang and Sutn a fixed rectangular coordinate systen(i=1,2,3), we iden-

[2], Hao et al.[3], Shindo et al.[4], Ye and He[5], and Dos tify the displacement by; , the electric potential by, the stress

Santos e Lucato et 6] for the cases of electrodes in a homoby ajj , the strain byy;; , the electric displacement 1y; and the

geneous material, and also Deng and Mediidand Ru[8] for eleptric field byE; . The basic equations for a linear piezoelectric

the case of interface electrodes between two dissimilar piezoel&€lid can be expressed 441],

tric materials. These cited works are focused on the cases without o =0. D =0 1)

cracks. In fact, experiments have demonstrgi@d,], that cracks e T

are formed preferentially at the interface between the electrode

and the matrix. Thus, it is of both theoretical and practical impor- Yij :E(Ui,i tupi), E=—9, )
tance to study the fracture problems of electrode-matrix interface
cracks. On this subject, several analytical results have been ob- 0= Cijia Yk — &ijEk,  Dy=€xijvij + e )

tained byl Tl[ltl]' R(tecfently, War;_g a;? Srjg.mz] ha_ve dlevelct))lped whereCijy , €, ands;; are th(_e elastic constants, the piezoelec-
a general treatment for generalized two-dimensional probiems i, ¢onstants, and the dielectric constants, respectively.
anisotropic piezoelectric bimaterial with interface defects. For a generalized two-dimensional probléail the field vari-

In the present work we study the generalized two-dimensiongdjes are independent &) a displacement vectar can be in-
problem of collinear electrode-ceramic interface cracks in piezgpduced as[13],

electric bimaterials. The solution of a single crack is included as a

special case as well. The piezoelectric media located at the two u=[uy up uz ¢]"=af(x;+pxz) (4)
5|de_s of thehelectrolfie layer are ass:Jmed to be generally anigPiare the superscript T represents the transgfdge:+ px,) is an
tropic, and the cracks to be permeable. analytic function,p is a constant, and a constant four-element
R column. Equationgl), (2), and(3) are satisfied by4) for arbi-
1To whom correspondence should be addressed. trary f(x,+ px,) if
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Cizke €2

, 1,k=1,2,3.

.
€ e

The condition for nontrivial solutions of5) requires|T+p(R
+RT)+p?W|=0. The eight eigenvalues consist of four distinct &5
conjugate pairs with positive imaginary parf$3], such thap,, l

Pura=P, with Imp,>0, «a=1...4.Thus, the general solution
of uis

4

U= [a,fo(Zo) +8,fu(z0)] With z,=X1+pX,.  (6)
a=1 electrode layer

The associate stresses and electric displacement can be obtaindD5

by inserting(6) and (2) into (3), such that

©
T 021

4
[Uz;yDz]T=Zl[baf;(za)JrEyf;(za)], =123 (7)

90
® o
Ty »
4
a0

[0y DalT== 2 [bPufL(2) TB, B (2], =123 o2

(8) Fig. 1 Arbitrary collinear electrode-ceramic interfacial cracks
whereb, are determined by

b,=(RT+p,W)a,=— i(TeraR)aa, a=1...4. (9) wherel is a(4,4) unit matrix.
Pu

From (6), (7), and(8) we have 3 Complex Potentials
u=Af(z )J“Km (10) As shown in Fig. 1, we consider an electrode layer between two
“ “ dissimilar piezoelectric half-infinite bodies distinguished Yy
$=Bf(z,)+Bf(z,) (11) ands™. Assume that these two bodies coexist in the state of

generalized two-dimensional deformation under the mechanical-

where electric loads (r;j. ,D%) at infinity, containing collinear interfacial
A=[a, a, a; a,], B=[b; b, by b,], cracks between the electrode asd denoted byL.. The un-
cracked part along the;-axis is represented hly, .
f(z,)=[f1(z1) fa(z2) f3(z3) fa(za)]", Since the electrode layer is commonly much thinner than the
_ T _ T matrix, its mechanical properties will be neglected.
$1=loz D], and —¢o=[0y; Di]. The cracks are assumed to be permeable. That means that the

To simplify the solution of problems with permeable cra¢ids electric potentiale is continuous across the crack faces®(
corresponds to a mixed boundary value problewe define two =™, [13,18]). We should like to mention besides that because of

appropriate vectors as the electrode layer, the electric potential is not only continuous
~ A across the crack faces but also constant inside the cracks. That is
0=[uy Uy Uz ¢4] and ¢p=[d1 ¢, ¢3 ¢] just the condition for conducting cracks. Therefore, the reader

may refer the considered cracks to conducting cracks. This makes
no difference in solving the problem.
a=I,u+l,¢ and ¢p=lu+l ¢ (12) In [19], Balke et al. modeled fracture tests of compact tension
) ) ) ] and three point bending specimefperformed by Park and Sun
with  the diagonal matrices I,=diagd 110) and I; [20]) by means of finite element method. In their numerical cal-
=diag0 00 1). Note, for general mixed boundary value probgylation they compare the total energy release rates for three dif-
lems|, andl; would be any diagonal matrices, whose elementgrent types of cracks that are impermeable, permeable, and lim-

where( and ¢ can be expressed as

are either 1 or 0 and satisty+1,=1, I,-1;=0. ited permeable crackf21]. From their work one can realize that
Substituting(10) and(11) into (12) leads to “the cracks behave more like permeable cracks, than like imper-
A o A —_ meable cracks.” Additionally if22], Schneider et al. study an
U=Af(z,)+Af(z,) and ¢=Af(z,)+Bf(z,) (13) indentation crack in a homogeneous PZT ceramic using Kelvin
where probe microscopy and atomic force microscopy. They determine
the dielectric constant of the crack interior to be about 40, which
A= I,A+1;B and B= I, A+1,B. (14) s significantly higher than 1, which is expected for a crack filled

N . ) i with air. Schneider et al. state as one possible explanation for this
The nature oA andB was studied by Ting and Warid4], Wang high dielectric constant that.'. . the potential difference across
et al.[15], Homulka and Keef16] for the case of purely aniso- the crack is reduced due to charge compensation at the crack
tropic media, and also by Haler and Balkg¢17], and Wang and surfaces. This would reduce the electric field interior to the crack,
Shen[lZ] for the case of pieZOEleCtriC materials. It is found thabadmg to an elevated apparent permittivity_" In the case of
these matrices have a similar nature to thafa@ndB, e.g., they electrode-ceramic interfacial cracks the presence of the electrode
are nonsingular and moreover satisfy for a proper normalizatigfyer will support this effect. Furthermore, Schneider et al. illus-
of a, andb, the following relation: trated the consequence of this elevated permittivity for a Griffith
crack. They point out that “The theoretically predicted effect of

BT AT|[|A A I 0 an applied electric field in retarding crack growth decreases sig-
= 7 =" lo | (15) nificantly with increasing permittivity. In practical situations in
B A]|B B terms of crack length, applied electric load, and electric field
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level, the retardation of crack growth is negligible when the di- To rewrite Eqs(19) and(28), we use(20), (21), (22), (26), and
electric constant of the crack interior is higher than 20.” So wé&?7):
believe the studied permeable electrode-ceramic interfacial cracks

are physically justified.

In consideration of the aforesaid assumptions the following

boundary conditions hold:

Ey=E; =0, 0,=0,=0, Xx;el (16)

+ - +_ - +_ -
Ei=E; =0, uj=u;, oy=0y, Xi€lp.

7

Because of these boundary conditions and owing to the configu-
ration of the problem, the one-complex-variable method intro-
duced in[23] is appropriate. Eaclz, from the function vector
f(z,) has to be substituted by a common complex variable
=X;+ {X, where the imaginary part of is positive. Instead of
f(z,) we can writef(z) henceforth. After the solution d{z) has

iIAG=9g(x))—a(X;) (29)
ba(x1)=65+A""gx))+Ag(x]) (30)
where
HélFlo(z), ZESl
= 31
g(Z) [ HBBzeo(Z), Ze 52 ( )
A=Y,+Y,, Y=iAB ™ (32)

It can be shown tha¥, andH are positive definite]25].
The continuity of the displacement dn, and the jump of the

been determined the, have to be resubstituted to compute fieldliSPlacement across the cracks give

guantities.
From (13) we have

0.,=AF(2)+AF(2) (18)
¢ ,=BF(2)+BF(2) (19)
whereF(z) =df(z)/dz
For the present problenf(z) has the form
Fl2)=c +Fw(2), k=12 (20)

where ¢, is a constant vectorE,,(z) is an unknown function

vector ins™ (k=1) orins™ (k=2), andFyq(«)=0.

First let us determinegy . It is obvious thatcy is the complex
potential corresponding to two completely bonded half-planes
subjected to the applied uniform loads at infinity. For the subprob-
lem, the continuity of deformation and stress on the entjraxis

requires(cf. (18) and(19))

Alcof"‘zlgz'&z(g"‘izg: & (21)
Bic; + By =B,05+ By05 = 05 (22)
where
éf=[0 00 D;O]Tv 6’;:[0';1 0';2 0';3 0]T~
With respect ta15), from (21) and (22) we achieve
G =Ble]+ALo5=Allo5 05 05 D317, (k=1,2).
(23)

The remaining task is to finéo(z). Using (16) and (17) it
follows
ba(x1)=1(x7), (24)

Substituting(19) and (20) into (24), together with(21) and (22),
leads to

—oo<IXy <o,

ByFyo(X7)+ B1E].0(XI) =B,Fao(X; ) + ézfzo(xf)-

—o<X <0, (25)

Equation(25) expresses thaf24],
BiF12)~BoFof2)=0, zes, (26)
BoFoo2)—BiF1d(2)=0, zes,. @7

Based on(18), we introduce a jump function:

PAG;=i[05(x7)—0.4(x7)]

=i[ALFL() +AFL (X)) ]~ i[AaFa(x; ) +AgFa(x1)].
(28)
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A :O,XlE Lb )
[A0:00)]| Loyycpr =123 (33)
Substituting(29) into (33) leads to
gi(x1)=0gj(x1), =123, x.ely (34)

which means that thg;(z) are analytical in the entire-plane
except on the cracks.
Writing out the components dB0), we have

4 4
gbi,l(xl):a'gi—i_;l hijgj(Xf)'*‘jZl h_ugj(xf), i=123
(35)
4 4
¢4,1(x1>=j§1 h4jgj<xf>+]§1 Nggy(x7)=0, —oo<x;<+c
(36)

whereh=H"1,
Multiplying both sides of36) with 1/27i [~ Zdx,/(x,—2z) , and
using Cauchy integration theor24], we obtain
4

El h,0;(2)=0, zes” (37)
=
4
_Zl hg,(2)=0, zes™. (38)
<
Hence,
1 .
_h_4421 h4JgJ(Z), ZeS
i=
94(2)= Nk (39)
- h_4421 hs9;(2), zes
=
whereh,, is real and greater than zero.
Inserting(39) into (35) gives
3 3
Bialx) =75+ 2 Aygi(x)+ 2 Agi(xp)  (40)
i= i=
where
hig .
A”:h”_h_44h4] y |,j:1,2,3. (41)

It can be shown that the3,3) matrix A=[A;] is positive defi-
nite and is equivalent toHs3) %, in which Hss is the upper left
(3,3 hand block ofA.

With
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The general solution of47) is

) . 1 [ Xa(DXH()
— Q 79,(2)=—diag 777, | Rotdiad — . — | Ro

(49)
where
T mTa Tz
a a L a  a si %(Z—Ziasa) sec%seci
[ . | ~
L [ = \ b L_J:| . Xal(w)xw(2)=
“1 b b

b b |7? + & 22
- —pl—» g tg

Dr 2b Y 2p
Tz ma ] i¢a

tg——tg—

ga ga

X —

wz 7a

tg— +tg—

9% "%

Ro=[AQ] o3

The derivation of the formul&9) is given in the Appendix.
In order to calculate the field intensity factors we define a vec-
tor as,[28],

k,=lim V27r[ AQ]diag r'?«)[ AQ] te(r) (50)

Fig. 2 Collinear periodic electrode-ceramic interfacial cracks

Go1=[d11 da1 31", 05=[03 0% o5,

and g,=[g; g, Qal rm0
(40) reads in matrix notation as wherer means the distance from the crack-tip amg{r) stands
_ A for the stress vectawr,(X;) ahead of the crack tip for a coordinate
boa(X1)= 02 FAG, TAG, . (42) system moved to any right crack tip.
On the crack faces the stress boundary condition is Noting (34), it results from(42) that
¢s1(x1)=0, Xjelc. (43) [AQ] to,(r)=diag 1+ e*™«)Q  g,(r)+ Ry,
Substituting(43) into (42) results in r=x,—a—2nbel,. (51)
Ag; +Xg; =—0%, Xel. (44) Substituting(51) with respect ta49) into (50) yields
To determine the complete solution @#4) we have to consider k,=ma[ AQ]diag (2a)"*«w,)[AQ] o5 (52)
the condition of unambiguous displacement. This requires
where
J [Aa,l(xl)]jdxlzor j:1,2,3- (45) B ma [ma L (77& —ig,~1/2 Ta ie,—112
Le w“_seCZb sin b (1-2ie,) b tg b
Because the cra_cks are per_meable, Fhe electric potential is auto- (53)
matically unambiguous, unlike the displacement. Inserti2g The bimaterial intensity factors are following from E&2) by
into (45) leads to multiplying it with [AQ]~* (cf. [13,23):
f [0 (x)—g (x)];dx =0, j=1,2,3. 46) [AQ] 'k, =k=\madiag(2a)“w,)Ry, Ro=[AQ] ‘0.
Le (54)

Up to here, the problem has been reduced to an interfacial craldke relations between the components of the vecthrs
problem equivalent to that in purely elastic media. It can be solved[K,; K, K5]7 and Ry=[Rg; Rg» Ros]", respectively, will be
according to traditional methodg.g., Muskhelishvili[24], Suo given below.

[23], and Boniface and Banks-Sil[26]). If b—oo, from (53) it follows that

4 Field Intensity Factors and Energy Release Rate w,=1-2ig, (55)

Now, as an example, the solution @) will be derived for the and thus(54) becomes
case of an infinite number of collinear periodical interfacial cracks o 8,01 _ o
with equal length 2 and equal interval B (b>a) as shown in k=ymadiag(2a)"+(1-2ie.))Ro (56)
Fig. 2. In order to get the solution ¢#4) for an other system of which is the corresponding solution of a single electrode-ceramic
collinear cracks we refer to the discussion in paragraph[@8}f interface crack. In addition(54) and(56) show thatk is indepen-

Equation(44) can be transformed into dent of the applied electric load.
N e 1w If b—a, from (53) by settingb=a+c andc<a we have
9, =AT'Ag,=-A"l05, xiel. (47) ,
. . g\ (At2iey) a
For convenience, we introduce k=ma diag{ (2a)i« E) gleanalc \/:) Ry. (57)
c

—1A-1 — i 27e —2me —di 27e
Q "A"AQ=diage € 1)=diage ™) (48) Here we additionally assumed<1, which holds normally. It can
whereQ is a constant matrix. The positive and real constant be seen that the amount of the intensity factors increases rapidly
depends on the material properties and characterizes the oscliha-\/a’c while the complex intensity factors are rotated by the
tory singularitieq 27]. anglee, In a/c if the crack tips get closer to each other.
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Further, fore—0 (as in a homogeneous matejiale obtain ~ Table 1 Material properties of PZT4 and PZT5H  (c; in
10* N/mm?, e; in 10% nAs/mm?, and &;; in 10% nAs/MV mm)

2b  ma 2b  ma "
K=\ 7al0gp VmaRe and k= \[otogpmaoz, Ho o Y% Y s “4so
PZT5H 12.6 5.50 5.30 11.7 3.53
respectively. The latter is the known solution of a periodical array s € e 11 £33
of cracks in a homogeneous material. PZT4 -6.98 13.84 13.44 6.00 5.47
The intensity factors are related as follows. FréQJR, PZT5H —6.50 23.30 17.00 15.1 13.0

= o3 and(48) it can be seen tha’.DRozadiag(e‘z"%)Ro. Since
Q=[qqqs], wheregs; can be chosen red23],

0 1 0
0-q/1 0 0 5 Numerical Examples
In the following numerical examples transversely isotropic pi-
0 0 1 . : ) i EORL
ezoelectric materials are considered. The poling direction is as-
applies and thus sumed to be parallel to the-axis so that the matrices of E(p)
yield to (note that Voigt notation is used here
Ro]_: GZ#SROZ R03: R03 and K12827£K2 K3:K3. (58) Cll O O O
Because the cracks are permeable, the energy release rate fol- 0 cy 0 €15
lows from the purely mechanical crack closure integfai3]. T— Coec
From it we obtain o o X2 o |’
2me T, AVAKK
e (A+A)gKK 1 - —_ 5 0 e 0 R
= +Z + 15 11
G 4 cosif we g da(A+A)a:Ky (59) (64)
whereK=K,. The Eq.(58) shows thaiG is always greater than 0 ci3 0 ey Cxq 0 O 0
zero except foK=K3=0. _ _ _ Caq O O O 0 cCi3 0  es
Below a short outlook is given to interfacial fracture mechanicR = , and W=
In consideration of58) we can unambiguously define a mixed 6 0 0 O 0 0 cyy O
mode angley as e;s 0 0 O 0 ey 0 —eg3
, Im(K1#) In the numerical calculation we use for the material in the upper
p=tan Re(KI™) | (60) half-plane PZT4 and for the material in the lower half-plane

PZT5H. The material properties are given in Table 1.
wherel is a reference length, whose choice is discussgagh A The numerical solution of5) with respect to(9), (14), (32),
second mixed mode angle, introduced by $[&5], Section 11,  (41), and(48) provides

can be defined as 244250 131277 0

ie N
¢=tan’1(|f<l I). (61) A=|-13127 231890 O |,
3 0 0 15630.
According to[25], in terms ofy, |, and¢ we propose a criterion 05 05 g
for the initiation of crack advance in the interface in form@®f
=T(4,1,¢), wherel is the toughness of the interface. Q=| 0.513152 —0.513152 O|diagc; ¢, c3), (65)
For the most important situation in practical applications, where 0 0 1
the poling directions of thdtransversal isotropjcpiezoelectric
materials are in plane and no antiplane load exist§0), K, Q A 'AQ=diag 1.11675 0.895455 )1

=0 applies. For it the energy release rate is given by
with e=0.0175745. The constants (i=1,2,3) are arbitrary ex-
e2mqT(A+ /T)EKK cept zero. As mentioned above, because of the in-plane-poling of
G= (62) the transversely piezoelectric materials, the fields gixection
decouple from the in-plane fields.

Consequently, a criterion for initiation of crack advance in the FOr comparison, without an internal electrode layer we would

4 cosh me

interface can be stated as ave
G=A(sl) (63) 27748.8  1629i7 0 N
A=| —1629.7 23219.3 0 ,
analogous to the criterion for the initiation of crack advance in the
interface of two(isotropig elastic materials;29]. 0 0 15630.
The toughness of the interfadq 4,1, ¢) andI'(,1), respec- 0.5 0.5 g

tively, must be determined by experiments. As our results show
for permeable electrode-ceramic interfacial cracks, these experi- Q=| 0.546598 —0.546598 O |diagc,; ¢, c3), (66)

ments can be purely mechanical experiments. Nevertheless, in a 0 0 1
finite structural component the piezoelectric coupling could pro-
duce stress due to the influence of the boundaries or due to an Q‘lA‘1XQ:diaq1.13722 0.879339 11

applied inhomogeneous electric field. This stress could cause field
intensity factors. For this reason the electrical loads can’t be neith ¢ =0.0204649 as shown {180]. Note, although the structure
glected a priori in a finite structural component. of the results for interfacial cracks with and without an internal
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electrode layer are identictf. [[30], Eq. (34)] and (44)), the Acknowledgments
ways of solving the problems and the involved matrices are dif-
ferent.

On the other hand, without an piezoelectric effect by setti
€;; =0, as for(permeablginterfacial cracks in anisotropic elastic-
dielectric bimaterials with or without an internal electrode layer,
the matrices are given by

The authors would like to express their gratitude for the support
f the German Research Foundation and the Alexander von Hum-
Idt FoundationfGermany.

229300 39115 O Appendix
A=| —391.15 21303.4 0 N ’ ThiDerivati_on of Eq. (49). Multiplying both sides of(47)
by Q™+ and using(48) we have
0 0 15630.
R*(x,) +diage?™«)R™ (x,)=—Ry (A1)
0.5 0.5 0 , , _ .
whereR(z) is a function vector an® is a constant vector, which
Q=| 0.518839 ~—0.518839 O |diagc; ¢, c3), (67) are defined as
0 0 1 _ C1a—1
R(2)=Q7'0,(2), Rp=Q 'A™'0}.
Q 'A"'AQ=diag 1.03603 0.965227 )11 Writing the components ofA1) in separate equations results in
with £ =0.0056328. RZ(XI) + eZﬁaaR;(Xl) — RaO . a=1.23. N)

For a single interface crack {be) the field intensity factor
K,=K is given by Eq.(56). With the use of the matrices from The general solution ofA2) is, [24],
Egs. (65), (66), and (67) (c;,c,=1) and only considering the
in-plane loadsoy;=5,,N/mn? and o5,=G,,N/mn?, it follows —Rao

X (2)X; (=)
that R(2)= T gzme,

1+e?™a

RaO + Xa( Z) Pa( Z)
(A3)

whereX_ 1(=) stands for the principle part o, *(z) at infinity,
P.(2) is a polynomial, and

PZT4/EL/PZT5H K= \/ma(2a) "*(1+2i&)(0.3880%F 5,
+i0.39822,,10 4
PZT4/PZT5H K= \/ma(2a) "*(1+2ie)(0.33863,;

+i0.3701%,,10* X (2)= [[ [(z—2nb)—a] Y2 e (z—2nb)+a] Y2+iee,
. n=—=
e;=0 K=/ma(2a) *(1+2ie)(0.42836,, (Ad)
i -4 68 A
+i0.4445@ 5,10 %, (68) x-4(x)= [ [z-2nb-2iae,].
n=—w
respectively. Setting=a mm the corresponding energy release )
rates are given by62) For the present case it can be shown that
N P.(2)=0. (A5)
PZTA4/EI./PZT5H G=74(0.3595%2,+ 0.3787@3,) 10 *— _ _
mm Thus, (A3) reads in vector notation as
o > 2 104 o . 1 [ Xa(DXH()
PZT4/PZT5H G=4(0.3224%5,+0.3853%75,) 10 g (69) Q 'g,(z)=—dia Trem. R, +dia —11em. | Ro
(A6)
N
;=0 G=74(0.354765,+ 0.38200}52)10‘4%. Using the identity
- 2
It can be seen that thg electrica_ll boundary condition in the |n sinmz= rrzH (17 iz)
terface as well as the piezoelectric performance of the materials o1 n

influences the field intensity factors and the energy release rates.
The energy release rates with and without an internal electrod€ have
layer differ about 12%, considering the terms(69) which con- _ _;
tain G5, However, the difference between the energy release rafes (*)Xo(2)
is only about 1% for the case of an internal electrode layer com- 7 _.[z—2nb—2iae, |l _.[(z—2nb)—a] ¥?7i*a
pared to the case;=0. = %___[(z—2nb)+a]?= "«
n=-—o

m(z—2ias,) ][  [m(z—a)]] Y& %
. =Ssi sin
6 Conclusions 2b 2b
We studied a generalized two-dimensional problem of collinear m(z+a)]] Y2t
(periodig electrode-ceramic interfacial cracks in piezoelectric bi- X4 sin T (A7)
materials. Based on the Stroh formalism for mixed boundary con-
ditions, the problem is reduced to an interfacial crack problem ysing
equivalent to that in purely elastic media. The solutions of the
field intensity factors are obtained in very explicit form. It is | m(zxa) 7z Ta Tz . wa
found that the field intensity factors and the energy release rate are SIN =5 | SIN5p, COS5; = Cos5psin -
dependent on the material properties and the mechanical fields,
but not directly on the electric fields. Eqg. (A7) can be transformed into
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1 Introduction all response much softer than it would be without the possibility

Granular assemblies consist of individual particles, each havif} Iri(rjlllInglamstlz:?Sglévﬁrizl:\?a??glé)?n@ﬂ)é %Z?Sr?ggt?gélyéfpagﬁﬁar
its own translational and rotational degrees-of-freedom. In addpng piay 9

tion to elastic deformations, the particles are able to slide as wgﬁsemb“es'

as to roll across each other, and both mechanisms have their roldost of the literature related to particle rotations and to rolling

in the global deformation of the assembly. The meaning of contgatenomena focuses on assemblies of ideal circles or spheres. But
deformation and sliding is unambiguous, but this is not the casice the extension of the results is questionable for real situations

for the concept ofrolling. The aim of this paper is to give a with nonideal particle shape, we only consider those studies that

general definition of rolling between particles. apply to more realistic particle shapes.

We shall consider particles whose stiffness is large enough toThe effects of particle rotations and contact rolling—taking into
ensure that the particles retain their shapes except in the sn@ltount noncircular or nonspherical particle shapes—have also
vicinity of their contacts. It will also be assumed that the contatteen analyzed by several authors. These studies have been per-
surfaces are so small that in their geometrical description, tfermed on two-dimensional assemblies, through physical experi-
contacts can be modeled as points. ments(Oda, Konishi, and Nemat-Nass&?]) as well as by com-

When two particles are in contact, and move relative to eaghiter simulationgRothenburg and Bathur$8], Ting et al.[4],
other, a wide range of mechanical phenomena may occur at #re Matsushima and Konaddi]). The literature also includes a
contact point. If the two contacting particles move in such a wdgw studies of three-dimensional numerical simulation regiois
that the distance between any arbitrarily chosen points on the tewample, Lin and Nd6]). The importance of rolling as a defor-
particles remain constant during the motion, then the particle pamation mechanism has been clearly identified in these investiga-
performs arigid-body motion. Otherwise, two types of phenom-tions, and the fact that the particle shape strongly influences the
ena may occur in the contaateformationandrolling. material behavior has also become clear.

In spite of all these experimental or numerical results, there has
Pﬁen no general definition of what is meant by a “rolling displace-

nent” of two arbitrarily shaped, possibly three-dimensional par-
'cﬁes. Different researchers may think of different phenomena
when using the expression “rolling displacement.” Sometimes it
is interpreted as the relocation of the contact point on the two
dauching surfaces, which requires principles of differential geom-
&lry to describe the local surface shagbtontana[7]). Some-
times it is simply understood as the tangential component of the
. difference between the rotation vectors of the two particles. The
(2) Rolling ) . rolling displacement can also be that part of the common transla-
Two particles mayoll across each other without energy dissipajon of the contact point which originates from the particle rota-
tion or storage. This possibility provides for extra degrees of fregyng (Iwashita and Od41]).

dom for a granular _assembly. In extreme situations assemblieSpye do not think that there is a unique way to define the rolling
may be deformed without anfor, at least, with very smallen-  gigplacement. On the contrary: all of the®e othe) approaches
ergy investment, due to the ability of particles to roll along eacly gefine a rolling displacement may be correct and useful for
other. The effect is also present in general cases, making the O\&frtain applications, provided that the definition is given in an
I exact, mathematically clear manner.

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF We present a version of rolling displacement that can directly
MECHANICAL ENGINEERSfor publication in the ASME OQURNAL OF APPLIED ME- . . . .

CHANICS. Manuscript received by the Applied Mechanics Division, October 220€ €xpressed in terms of the translations of particle centroids and
2002; final revision, November 25, 2003. Editor: R. M. Meeking. Discussion on ti@f the rotations of the particles about their centroids. In this way
e Hnics Degmren of Nesvancn vt Enommar) Sronamae Jorve @ microlevel inematical varable-_assigned (0 the
Ugﬁllersity of Califorhia—ganta Barbara, Santa Barbara, CA 93106-5070, a?nd will gntaCts_that can easily b.e applied m.numencal or real experi-
accepted until four months after final publication in the paper itself in the ASMEN€NtS to analyze deformation mechanisms, and that can be the
JOURNAL OF APPLIED MECHANICS. basis for defining a global kinematical state variable for rolling.

(1.) Contact deformation
The neighborhoods of the two particles around the contact po
may be deformed. From a kinematical point of view, contact d
formations, whether elastic or dissipative, are usually separa
into relative translationgboth normal and tangentjaandrelative
rotations (both bending and twisting

These deformation types are well known and are widely appli
in distinct element simulations for the description of contact b
havior.

Journal of Applied Mechanics Copyright © 2004 by ASME JULY 2004, Vol. 71 | 493



Fig. 2

To find such a definition of the rolling displacement, we extenitlentity 1 a-(bXc)=b-(cxXa)=c-(axXb)
the concept that was suggested by Oda eft2dland by Iwashita i
and Odd 1] for special situations, and develop a general definitiofdentity 2 (axb)xc=(a-c)b—a(b-c)
for particles having any smooth convex or concave shape in bq ; “b)-(cxXd)=(a- A (A, )
two dimensions and three dimensions. This general definition M (@xb)-(exd)=(a-c)(b-d)~(a d)(b-0)
rolling displacement will have the following three properties: Identity 4 (wXb)(c-n)—(wXc)(b-n)

1. Itis objective, and as a result of objectivity, its magnitude is =n((b-n)(c-t)—(c-n)(b-1)),
gzgr;ezcgsdpe%ctgep;?mmon rigid-body-like motion of theassuming that the triplet of unit vectofs,t,w) satisfies(1).
2. It produces no tangential or normal deformatishding or . .
indentation at the contact in the sense that the two particle  1WO Circular Particles

can move in a manner that produces rolling but no relative 2.1 The Definition of Rolling Displacement. In this sec-

translation at the contact. : . : : :
- . . . ion we analyze the rolling displacements of two circular particles,
3. (I;(;ed_ucis tctn1 the rc]ieflnltlon of rlolllng given Iby (Ijv_vashlta ancsp,, and “q,” forming a contact “c” (Fig. 2. The infinitesimally
a in[1] when the two particles are circular discs. small neighborhood of “p” around “c” will be denoted as “pcla

We apply an incremental approach: the incremental rolling dig1aterial point attached to “p” and moving together with imi-
placements belonging to a contact will be expressed in termslafly, the material point “qc” denotes a small neighborhood on
the incremental rotations of the particles about their centroids apdrticle “g” around “c.” Vectors rP andr point from the cen-
their incremental translations. In Section 2 we analyze the spediids of “p” and “g” to the contact, and the unit vector@,t,w)
two-dimensional case of circular particles and suggest a definitigre the same as those definedin n andt are shown, anav is
of what will be termed “lwashita-Oda rolling.” A generalization perpendicular to the plane of analysis. The translations of the par-
for arbitrary two-dimensional particles will follow in Section 3.ticle centroids, dP and di%, take place in thén,t) plane, and the
Finally, in Section 4, we introduce a definition for the genergbarticle rotation vectors, @& and 9, are perpendicular to that
three-dimensional situation. plane and are parallel te. The displacement of any point on

The usual Cartesian coordinates will be used. All formulas wilither particle can be computed from the translation of the particle
be written in tensorial notations, with vectors and higher-ordeentroid and its rotation. In this section we consider the
tensors denoted by bold characters, and scalars denoted t4ljrectional translations only.
normal-weight characters. The scalar product of two vectors will Thet-directional components of the particle translations will be

be denoted by-* and the vector product byx’: denoted by d”!tand di?!, with directiont and magnitudes
c=ab for the scalar product, duPt=duP-t and di%=dud-t. 2
and The magnitudes of particle rotations will be denoted 8 dnd

d#9 and since in two dimensions the particle rotation vectors are

i o | § . parallel with the unit vectow,

Figure 1 illustrates the two particles, “p” and “gq” forming a

poin?—like contact “c” in a gen%ral three-%imensignal situzgtion. doP=de®-w  and I=do?-w. ©)

The incremental translations of the particle centroids afeashd Though before the incremental motions of the two particles the
du?, and the incremental rotations of the particles about their cefwvo material points “pc” and “qgc” have the same position, this
troids are @ and d9. Vector n denotes the unit normal of the might not be the case after the particle motions. Using the nota-
common tangent plane at “c,” directed outward from particldions defined in(2) and(3), their t-directional translations can be
“p.” The triplet of unit vectors(n,t,w) is assigned to the contactexpressed as

and form a right-hand system, with dUPC- t= duP- t+ (dOPX rP) - t=duPt+ dgP(rP- n) (4a)

c=axbh for the vector product.

nxXt=w; tXw=n; wXn=t. (2)

du®®- t=du t+ (d@9% r9) - t=du®+ded(r9. n). (4b)
In the case of two-dimensional analysis, the tangent veciah

nt . /SIS, . tgudt deP ded uni i
lie in the plane of the particles and is directed counterclockwise |N€ four scalars @, du®, d6®, d6 uniquely determine the
from n around “c,” andw is perpendicular to the same plane. Fo -directional translations of any point. But the following four al-

three-dimensional analysis,andw are arbitrarily specified unit ternative quantities will be more useful in characterizing the tan-

vectors satisfying1) gential contact motions:
In the derivations and proofs the following identities will be(1) the t-directional rigid-body translation of the contact point,
used: defined as
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Fig. 3
P. a.
duc’t'rigid:: rrn duq,t_ r-n dUp't. (5)
(rp_rq).n (rp_rq).n
(2) the rigid-bodyt-rotation of the particle pair:
du®'—duP*
dgi=——— and @B4=dg"w (6)
(rp_ rQ) .n

(3) the “excess” rotation of particle “p”:

dgPexeesi=dgP—dgt  and d@PCE=deP—dBt  (7a)
(4) the “excess” rotation of particle “q”:
dgrexeesi=dgi—dgt  and d@*cesE=dei-dgt.  (7h)

The diPt, du?t, dgP, de9 displacements can be uniquely calcu

lated from these four displacements in the following way:

duP'=du®t199—dg(rP- n)=du®"9— (dB'xrP)-t  (8a)
du®t=duStmeid— dgi(r9. n)=dusteid— (dgtxr9%.t  (8b)
d6P=dBt+ dgpercess (%)
def=dp'+ dgaereess (%)

so that we can change the variableg2a) and (2b), to give an
alternative expression for thiedirectional displacements of the

contact point:

duPS. t= duc,t—rigid+ dgp,exceserp. n) = duc,t—rigid+ (dap,exces@( rp) .t
(10a)

dudc. t= duc,t-rigid+ daq,exceserq. n) = duc,t-rigid+ (daq,exces% rq) -1,
(10b)

To illustrate the meaning of the displacementsd9¢, dg!,

Elementary case 1: rigid-body displacements in
t-directional translations

If the excess rotationsa:¢*“®ssand h9-¢*“*Sare both zero, the
two particles translate and rotate together as a single rigid body, at
least in regard to theit-directional translationgFig. 3). In this
special case thedirectional translations of the contact point on
the two particles are equal:

duPS. t = dude. t = duotrigid

regard to

(11)

Elementary case 2: pure particle rotations

If the translation d°t"9 and the rotation 4" are both zero, the
particles rotate about their centroids without translating in the
t-direction (Fig. 4)

dgP=dgP-excess (12a)
d9=dgaexeess (120)
and thet-directional translations of the contact point are
duP®. t=dgPeCeFrP. n) = (d@> K rP) - t (13a)
du®. t=dgrecefra. n)=(dOTSK r9) - 1. (130)

If these two translations,u®t and di“-t, are equal and non-
zero, the two particles move together in a gear-like fashion at
contact “c,” a situation of pure rolling. However, if the two trans-

lations are not equal, we can calculate their differencé¢ft
du®* %= du®. t— duP® t (14)

which is the tangential deformation of the contact; and their aver-
age, dictavs:

1
ducv"a“=§(duqc-t+du"c-t). (15)
This average is the “common” motion of the contact point on “p”
and “g,” hence this motion can be considered as a rolling dis-
placement:

1
duc,t-roII:E ((daq,exces% rq) St (dop,exces§< rp) . t). (16)

The general case:

A general system of particle displacement$'ti du®t, doP, dg?
can be uniquely expressed in terms af t19, dg!, dgPe*°ess and
dg?exess Any general system of particle displacements can, there-
fore, be considered as the superposition of a rigid-body displace-
ment in regard to thé-directional translations plus the “excess”
rotations of the particles. To define thalirectional rolling dis-

dePeeessand PISCeSS (o elementary cases are now discussd@lacement for the general case of two circles, we release the re-

(Figs. 3 and 4

Fig. 4

Journal of Applied Mechanics

strictions of elementary case 2, and give the following definition
for the general case:

duc,t—roII::% (dop,exces% P+ d@o-excesse rq) -t (17)
which can also be expressed usii®) as
duc,t-roII: ductavr— duc,t—rigid (18)

or in terms of the particle displacements, applyiAdgand (5):

(rP+r9-n

1
dustrl=—|d@Px rP+d@9x r9—
2 (rP=r%-.n

(duq—dup)} -t.
19)

We now show that our suggested expression of rolling is
equivalent to the Iwashita-Odgl] rolling. Denote the particle
radii with the positive scalar®” andRY, evidently,R°=rP-n and
RY9= —r%n. Now (19) can be written as
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duc,t-roll:% { (d#Pw) X (RPn) — (d8%) X (Rn)

P_RY
— duf—duP) | -t 20
ol ) (20)
and because dfl), this is equal to
1 P_RY
du®tl==| dgPRP— dgIRI— (dud—du”)-t| (21)
2 RP+RA

which is the same as the Iwashita-Oda rolling.

2.2 Objectivity. We now show that thé-directional rolling
displacement i®bjective meaning that

(a) If the observer O'—located at the origin of the coordinate

system—undergoes an incremental movemen? dind #°

Fig. 5

1
duc,t-roII:E doP(rP.-n)+de%(r% n)

(where d9°=d0°w), the observer will measure the same

t-directional rolling displacement of the contact as if the observer

was stationary, regardless of the displacemenfsahd d9°.
(b) If the coordinate system is relocatddith the observer

(rP+r%-n

(rp_rq).n((duq—dup)-t) .

27)

resting in its origin anywhere in the plane by a finite translationyy, the right side of Eq(27) we find scalar products of vectors

and rotation, the observer will measure the sard&ectional roll-
ing displacement of the contact.
Obijectivity (a)

whose lengths and whose angle with each other do not change
during the rigid-body-like translations and rotations of the coordi-
nate frame. Consequently, the whole right side remains un-

An arbitrary point A, located atx”, whose displacements arechanged. Objectivityb) is shown.
du® and B* (d@”*=de*w), is seen by the moving observer as

making the displacements
diA=du?— du®—d@°x x* (22)
dor=de”—de°. (23)

Thet-directional rolling displacement if19), as seen by the mov-
ing observer, is

. 1l . - (rP+r%.n -
ductrol=_"| 4@Px rP+ de9x r9— (dud—duP) | -t.
2 (rP=r9%-n
(24)
Substituting(22) and(23) into (24), we find that
R 1
duc,t-rou:E (dgP—de°) x rP+ (d@9—de°) xra
rP+r9%.n
- ;((duhduofdaoqu)
(rP—=r9%.n
—(duP—du®—d@°xx?)) | -t. (25)

Noting thatx?—xP=rP—r9, and substituting19),

0]
dac,t-roII: duc,t-roll_ 1 L
2 (rp_ rq) -n

= (WX (rP=r9))((rP+r9)-n))]-t.

[((WX (rP+r9)((rP=r%-n))

(26)

The expression in brackets is a vector paralleht(see ldentity
4), and hence it is perpendicular toConsequently,

dﬁc,t-roII: duc,t—roll
and the objectivity(a) is shown.

Objectivity (b)
According to Identity 1, the definitioil9) can be written as
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3 Two Arbitrary Two-Dimensional Particles

In this section we extend the definition of rolling given in Sec-
tion 2 to arbitrarily shapegut smooth two-dimensional particles
(see the illustration in Fig.)5

The t-directional rolling displacement in Eq¢l7), (18), and
(19) apply to any pair of two-dimensional particles, provided that

(rP=r%.n+0. (28)

A counter-example is shown in Fig. 6, where th&-{r9) vector is
perpendicular tan, so that thet-directional rolling displacement
does not existsee also Section)5

As with circular particles, the scalar valued™' is objective
for noncircular particles, since the derivations in Section 2.2 did
not impose any relationship among the two-dimensional vectors
rP, r9 andn.

In the case of generally shaped particles we have no reason to
restrict ourselves to the analysis wélirectional translations. As-
suming that

(rP—r9.t#0, (29)

we can define am-directional rolling displacement,ud™™" in
an analogous way:

duc,n-roII: % (dupc+ duqc> n— duc,n-rigid’ (30)

Fig. 6
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where

B 1Pt rd.t
ducrigid—— — (dudn)— —— (duP-n). (31) .
(rP—r9.t (rP—r9.t Fig. 9

This rolling motion can also be expressed in terms of particle
displacements:
ing and those that do not. This triplet will be denoted x$t(z)

duc,n-rollzl dOPX rP+ d@9x ri— (rP4r) -t (du®—duP) | -n and defined with the help of the branch vecterrP—r9 (Fig. 9.
2 (rP—rd%.t ' Now we separate the branch vector into two components: one
(32) parallel tot:
If the branch vectorr®—rY) is perpendicular ta (for instance, if I'=((rP—r%.t)t (33)

the two particles are circlgsthe n-directional rolling displace- ; :
ment does not exist. Another example of this situation is shown ?r?d the other one perpendiculartigsee Fig. 3

Fig. 7. Ft=1—1'=(rP—r%— ((rP—r9-t)t, (34)
The objectivity of di®™"" can similarly be checked in the man-

ner of Section 2.2, so we shall not repeat the arguments here.WhOse magnitude is

|Lt: /|Lt.|Lt. (35)

Provided thati*'+0, the vector\' is defined as the unit vector
4.1 Definition of t-Directional Rolling Displacement in pointing in the direction of‘":
Three Dimensions. In this section we focus on the displace-
ments of two arbitrary three-dimensional particles, “p” and “q,” Ao (36)
forming contact “c.” The triplet of unit vectorgn,t,w) is assigned Tt
to the pair, as was explained in Sections 1 and(Eig. 8. We
shall first analyze the-directional translations of the contact point(obviously, I-'=I-\"), and the vector' is
on p and q leaving the definition of n and w-directional A Xt 37)
rolling to Section 4.3.
In the two-dimensional caséSection 2.1, and Eq20), we The vectors }',t,7) form a right-handed system with
H H H -avr
§eparated thecta}xﬁragejlrectloqal contact. displacemenud te XAt and Ab=txZ (38)
into a part d® corresponding to rolling, and another part
du®t9 corresponding to a rigid-body-like motion. A similar lineas illustrated in Fig. 9.
of thought will be followed here. Since the displacements in three We can decompose the particle translations into thei, and
dimensions are more complex, to define thdirectional rolling A!-directional components. Since tleand \'-directional transla-
displacement, we first introduce a triplet of unit vectors that wilions do not lead ta-directional translations of the contact point,
help to separate those displacement components that produce taky will be excluded from the analysis. We need to consider the
t-directional translations only:

duPt=duP-t  and di%'=dud-t. 39)

The particle rotation vectors and d#% can also be decomposed
into theirt, Z, andA!-directional components:

4 Two Arbitrary Three-Dimensional Particles

|J_t

doP=doPt+ doP?Z+dePA N and
d6%=de%t+ de?z+ dgoM '\, (40)
where
doP'=deP-t  det'=de9-t
doPZ=deP-z and @I?=ded. 7 (41)
doPM=deP- At deoM =ded- AL,

We now analyze their contributions to the averdedirectional
Fig. 8 displacement of the contact point.
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do*? —

e
c,t-in
du rd
)
P
r \
” A},t \__‘09
do6P i1~
t
Fig. 10
1 Particle rotations about Note that if the other rotation components and the particle trans-

The rotation vectors (@) and (%) do not produce any lations are both zero, this situation is analogous to elementary

. . tein : . .
t-directional translation at “c,” so we can exclude them from th&ase 2. in Section 2, andi™ is the same as thedirectional
analysis. rolling displacement of that case.

. . .
2 Particle rotations about" 3 Particle rotations abouk":

. t t
The rotation vectors (€"?z) and (9?2 produce translations _ The rotation vectors (& M) and (*\) are parallel to the
whose direction is parallel to thex'—plane(shaded in Fig. 10 shadedt-\'—plane in Fig. 11 and rotate the particles about the

and the correspondingdirectional translations of the materialdirection. If the contact point is not located in the shaded plane
points are in Fig. 11(a), these rotations causelirectional translations of the

material points:

duPSEN= ((dOPZZ) X rP). t=dPZ(rP- A 422
u (( Z) ) ( ) ( ) dupc't'ou‘Z((dﬁp')‘t)\t)Xrp)~t: _dgp,)\l(rp.zt) (44&)

and and

dydetin= ((deq’izt) Xr9)-t= deq,zt(rq_ )\t)- (420) duactout ((d@q'}‘t)\t) xrd).t=— dﬁq’)\t(l’q'zt). (44b)
Their average, caused by these “in-plane rotations,” will be deI:he average of these two translations will be denotedu&$®
noted as d°*'" and calculated as '

ctout_ 1 pc,t-out, qc,t-ou
duti= 3 (duPeHN+ du9etn = £ (d6P4(rP- NY +de% (rd-NY). du 2 QU AT l
(43) = 1 (—dePN(rP-2t) — deaN (r92)). (45)

de*)

Fig. 11
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1
duc,t-rolI:E (d@P-ZY(rP-AY+ (d@9- 2 (r9- Y

B ((rP+r9-AY
((rP=r%-aY

provided thatl*'+0. If I+ is zero, then the-directional rolling
displacement does not exi& situation analogous to the one il-
lustrated in Fig. 6 and discussed in Section 5

((du®—duP)- 1) |, (52)

4.2 Definition of the n and w-Directional Rolling Displace-
ment in Three Dimensions. The n and w-directional rolling
displacements can be analogously defined.ri=directional roll-
ing, we decompose the branch vectanto two components: one
that is aligned in thea-direction, and onédenoted by ") that is
perpendicular tm. We can then identify the unit vectoxd andz"
that are analogous t@®6) and (37). The triplet A",n,z") forms a
right-handed system. The-directional rolling displacemer(as-
suming that*"+0) is

duc,n-roII: duc,n»avr_ duc,n-out_ duc,n-rigid

This component does not exist in a two-dimensional analysis. The 1

displacement g“°“is not a rolling motion, but as is seen in Fig. =5 (d@P-z"(rP-AM+(d@9-z") (r9.- A"

11(b), is the effect of the common rotation of the two particles,

and it is made possible only by the out-of-the plane location of the ((FP4 1) - ™)

contact point. - ((du9=duP)-n)|. (53)
Following the approach in Section 2, we identify the part of the ((rP=r%. A"

Itinog I%?(ethdelsgzﬁe%eig trsotra]\ﬁ:)r?,or(;zig?gc? Sa;;ot; (:ngjﬂtt?oggnhléee ™We can also determine a vectot and, if|-*+0, the associated

calculated from the-directional translations of the two particlesUnit vectors\™ andz". Thew-directional rolling displacement is

duPtand di?!, where di”'=duP't and di%'=du®' (Fig. 12: duEW-Toll— [ CW-avi__ o C.w-out_ (j cw-rigid
du®'—duP! 1
t_ == P.Z%)(rP. AW a. 2% (r9. AW
dpt= T (46) 5 | (d0P-Z")(rP- %)+ (de"- 2% (r%- A)
—directi i i ion i rP+rd). A"
Thet-directional translation caused by this rotation in the contact _(« )-A") ((dud—duP)-w) |. (54)
point is ((rpi rd. A%

duCt99.= (duP+ dBx rP) - t=(dud+dBxr9)-t.  (47) 4.3 Objectivity. To demonstrate the objectivity ofufit™",
N we must show thata) an observer that is located at the origin of
The displacementuf*"9¢ can also be expressed in terms of thehe coordinate system and undergoes arbitrafyahd & incre-
particle translations: mental displacements will measure the same rolling displacement
as if it was stationary; and th&b) regardless of where the coor-
e igid 1 b Nt G (e x b dinate frame is Iocated,_the observer at its _origi_n_will always mea-
du® ::th((r -N)du®t=(r9 N)duP). (48)  sure the same rolling displacement. For simplicity, we shall only
deal with thet-directional rolling displacement, since the other
rolling displacements can analogously be checked.
Obijectivity (a)
An observer with displacementsud and d#° measures the
following particle displacements:

We now give the definition of-directional rolling displacement
by considering the excess in-plane rotations of the particles:

duetroll.— % ((dap,z‘_ d,B‘)(rp- )\I) + (dgq,z‘_ d,Bt)(l’q' )\t))

(49) diP= duP— du®—déPx xP;  d@P=deP—de° (55)
which equals d09= dud— du®— déPx x%  d#%=de9— deP. (56)
1 After substituting these expressions ints2), the t-directional

ductrol= gy&tin— Edﬁ‘((rpﬂq)-)ﬁ). (50) rolling displacement measured by the observer is

R 1
With the use of Identities 1 and 2 and E45), thet-directional ~ di®"™'=du®*" "+ 5[—(d00'Zt)(l’p')\t)—(dao'Zt)(fq'ht)]—
rolling displacement can also be written as
11

duc,t—r0||: duc,t-avr_ duc,t-out_ dUC’t_rigid, (51) _ E F [(( _ dd) X (Xq_ Xp)) . t) ( ( rP+ rq) ) )\t)] ’ (57)

an ex.presslon shlrnllqlar to that 'r;] EQL8) for thcedlmor-]dlmdensmnal where ai®t™" s the “reference” rolling that would be measured
situation, but which contains the new terra“ t’ at does not by a stationary observer. Identit§) gives

exist in two dimensions. In terms of the particles’ displacements;
the t-directional rolling displacement is (d@P X (xI—xP)) - t=d@P- ((xI—xP) X 1) (58)
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and sincex%—xP=1, Egs.(36) and (37) imply that

(X9—xP) X t=1+1Z, (59)
and hence
(dPX (x9—xP)) - t=1+1d6P- 2. (60)
Applying these substitutions t®7) gives
1
dac,t-roII: duc,t-roll+ E [ _ (dao. Zt)((rp+ rq) . )\l)]
11
+ = —[I1+Yd@°- 2 ((rP+r%-AY] (61)
2 |Lt
or
dac,t—roII: duc,t-roll (62)

and the objectivity(a) is shown.
Objectivity (b)

Since the scalar products (#9) do not change with finite rigid-
body translations and rotations of the coordinate system, the

t-directional rolling displacement remains unchanged.

5 Discussion: Special Cases

duc’t'“’"=% [ (d@P-w)(rP-n)+(d@%w)(r%n)

(rP+r%-n
— T((duq—dup)-t)} (66)
duc*”'m”:%[(dop-w)(ﬁ(—t))+(d0q~w)(rq-(—t))
P+rd).(—
_ Y i de)y ) 67)
I-(=1)
duc,w-roII: 0. (68)

Because of Identity 3, expressi@b) is identical to(19), and(67)

is the same a&32), which means thahe general two-dimensional
situation is a special case of three-dimensional analySisther-
more, if the two particles are circles with radiPRrP-n and R

= —r%n, the n-directional rolling displacement does not exist,
and (66) becomes identical t¢21): the Iwashita-Oda rolling is a
special case of the general three-dimensional definition.
Situations when a rolling displacement vector can be defined

The definitions of the scalar quantitiesid™", du®"™" and
du®*" may have given the reader an impression that these sca-
lars are the, n andw-coordinates of a single vectou®®". This

is not true, as such au@™" vector does not exist in general.
Instead 0f(52), (53), and(54), we can write the general form of a

In this section we shall discuss a few special situations, whiskdirectional rolling displacement as
should give a clearer understanding of this definition of rolling

displacements.

Situations when the rolling displacement in a certain direction

does not exist

The vectord"!, I'", or "% (generally denoted d$(")) are used

for determining the unit vectors(") in (31). If the branch vectot

is aligned with any one oh, t, or w, then the corresponding
lengthI-() will be zero, and the-)-directional rolling displace-

1
(1|u°'V-ff>":E (dOPXrP+d@%xr% — ((dOP- NY)(rPX \Y)
(rP+r%. Y

+ (d0q~)\")(rq>< )\V))— m

(du%—duP) | - v.

(69)

ment cannot be defined. The most likely instance of such a situBeth the second and third terms in the brackets will change with a

tion is whenl is aligned with the contact nhormah. This will

changing direction ofv, so the quantity in the brackets is not

happen, for instance, in case of two spherical particles; since iatiependent of directiom. This means thatin general the scalar
theml*"is always zero, and the-directional rolling displacement duc¥®" cannot be considered as thadirectional projection of a

does not exist.
If 1-() is zero for a certain direction from amomgt, or w, it

single vector d¢™'.
But as a special case, if the branch vedte(rP—r9) is aligned

cannot be zero for the other two directiofise branch vector can with either oft, n, orw, the situation is somewhat different. Let us
be aligned only with one of the three perpendicular directionsconsider, for instance, thkn case(the other two cases, i.glit
Consequently we cannot find more than one direction for whigthd |jw, can analogously be analyzedNow the di®™™" rolling

the rolling displacement does not exist.

displacement does not exist, and

The unit vectord andw were chosen at the beginning of the

analysis to be perpendicular to each other ansiatisfying(1) but

otherwise arbitrarily. If the branch vector is perpendiculamto

(see, for example, the situation in Fig, Gve can always define

andw such as one of therflet us sayw) would not exist, by After some algebra52) and(54) gives

simply aligningw with the branch vector, so thkt" will be zero.

Two-dimensional analysis as a special case of the general three-

dimensional definition

In two dimensions the unit vectar is perpendicular to the

plane of analysi§Section 1. Thel+() lengths and tha(") and
Z() vectors for determining the, t, and w-directional rolling
displacements are

L= —t: A=—t; Z'=w (63)

tt=n: A=n; Z=w (64)
|

[LW=]: AW=-: Z"=A"Xxw, (65)

wherel is the length of the branch vectdr=|T-I. If all the dis-
placements take place in tha,t) plane, then by applying52),
(53), and(54) the rolling displacements are
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N=A%=n (70)
Z=w; Z"=-t. (71)
duc,t-roH:%[(ngXn)(rp.n)+(d0q><n)(rq.n)
((rP+r%.n)
- T (dui—duP) |- 72
((rp—rq)-ﬂ)(u O =
duc,w—mll:% (d@PXxn)(rP-n)+(d@¥xn)(rd-n)
P4 rd).
_w(duq_dup) LWL (73)

The expression in brackets {@2) is the same as i73). More
generally, we can consider a unit vectom the (t,w) plane(v is
perpendicular to the branch vector, but otherwise arbitrarize
v-directional rolling displacement is

Transactions of the ASME



1 From this expression,ud™" and di®"™" are calculated by76).
du°"’"°"=5 (d@PXxn)(rP-n)+(de%xn)(r9-n)

((rP+r%.n) Conclusions

g (dut—du) v (74) We have presented a general definition of rolling displacement
((rP=r%-n) for the interactions of two and three-dimensional particles of ar-
The bracket contains the same vector a§7i®) or (73), indepen- bitrary shape. The defined rolling displacement is shown to be
dently of the direction of7. To summarize, in the speciih case objective, and reduces to that of Iwashita and Qtlawhen the
when then-directional rolling displacement does not exist, a tantwo particles are circular disks. The type of rolling in this paper is
gential rolling displacement vector can be defined as not based on following the trail that the contact point would trace
across the surfaces of the two particles, but instead provides an
independent definition of rolling by analyzing the displacements
of the material points that form the contact. The proposed defini-
tion can either be easily implemented in particle simulation com-

1
dﬁc,rolI:E (d@Pxn)(rP-n)+(dO¥<n)(r9-n)

((rP+r%.n) puter codes to investigate the relative importance and effect of
- f(duq—dup) , (75) rolling, or serve as a microlevel kinematical state variable in order
((rP=r%-n) to develop a global state variable for the characterization of roll-
whoset andw-directional components araigi' and @isw-!-  ing phenomena during the deformation of granular materials.
duc,t»roII: dﬁc,roll_ t; duc,w—roII: d':lc,roll. W (76)
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Three-Dimensional Vibration
Analysis of Thick, Complete
sae-toonkang § Gonical Shells
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Department of Architectural Engineering,

Chung-Ang University, A three-dimensional (3D) method of analysis is presented for determining the free vibra-
Seoul 156—756, Korea tion frequencies and mode shapes of thick, complete (not truncated) conical shells of
e-mail: jhkang@cau.ac kr revolution. Unlike conventional shell theories, which are mathematically two-dimensional
(2D), the present method is based upon the 3D dynamic equations of elasticity. Displace-
Arthur W. Leissa ment components,y u,, and u, in the radial, axial, and circumferential directions,
Adjunct Professor respectively, are taken to be sinusoidal in time, periodi@,imnd algebraic polynomials
Colorado State University, in the r and z-directions. Potential (strain) and kinetic energies of the conical shells are
Fort Collins, CO 80523-1374 formulated, the Ritz method is used to solve the eigenvalue problem, thus yielding upper

bound values of the frequencies by minimizing the frequencies. As the degree of the
polynomials is increased, frequencies converge to the exact values. Convergence to four-
digit exactitude is demonstrated for the first five frequencies of the conical shells. Novel
numerical results are presented for thick, complete conical shells of revolution based upon
the 3D theory. Comparisons are also made between the frequencies from the present 3D
Ritz method and a 2D thin shell theofypOI: 10.1115/1.1767843

1 Introduction 2 Method of Analysis

The literature that addresses the free vibratiothadk conical A representative cross section of a thick, complete conical shell
shells based upon 3D analyses is quite limited. Most of the exi§f revolution with the vertex half-angle, the radius of bottom
ing literature describes the vibration analysis thin conical Circle of the coneR, and the uniform wall thicknessh
shells and based upon a thin shell or membrane type of 2D sgriH Sin@), whereH is the vertical slant thickness, is shown in
theory, [1]. Among the literature on the thin conical shells, th 1. 1. The cylindrical coordinate system,f,6), also shown in

e . : . . Ihe figure, is used in the analysis. The axes,af and @ are the
vast majority of numerical results for the free vibrations deal wit dial, axial, and circumferential coordinates, respectively. The

truncatedconical shells mainly because of singularities occurringyigin of the (,z) coordinates is located at the vertex of the

at the vertex of acomplete(not truncatedi conical shell. midplane of the conical shell. Thus the ranges of the coordinates
The first contribution to the 3D analysis of conical shells wasre given for the conical shell by

by Leissa and Sf2] applying the Ritz method. Buchan&B] and
Buchanan and Won#] analyzed conical shells by a 3D finite O<r<R, rcota—H/[2<z<rcota+H/2, O<f<2m. L
element method. The present authd&#g|, gave numerical re- @
sults for shells having linearly varying wall thickness. However, Utilizing tensor analysis|7], the three equations of motion in
all the above literature related to 3D analyses is limitedron- the coordinate systenr z,6) are found to be(see alsd8], p.
catedconical shells. A search of the literature has revealed no 3@4):
analysis ofcompleteconical shells of revolution. 1 B

In recent research2—6], on vibrations of thickruncatedconi- Trr it Ozt (01 = 0ggt Trg,9)=pUr (29)
cal shells using 3D methods a conical coordinate system has been

used, whose original introduction was made by Leissa an®50 1 .

In the present analysis, a cylindrical coordinate system is applied, Trzg+ OazzF (01 026,0)=pUz, (20)

instead of the conical one, to avoid some complications in evalu-

ating energy integrals in the vicinity of the vertex. Gon ot oon 1(20 + g )= pli (20)
In the present 3D analysis, the Ritz method is used to obtain S R o

accurate frt_aquencies. Although the method itself does not_yiq}&here theo; are the normali(=j) and sheari@j) stress com-
exact solutlons,_ proper use of dlsp[acement components in ﬁb’@hentsur, u,, andu, are the displacement components inthe
form of algebraic polynomials permits one to obtain frequency and ¢ directions, respectivelyp is mass density per unit vol-
upper bounds that are as close to the exact values as desitade; the commas indicate spatial derivatives; and the dots denote
Frequencies presented in this work are thus obtained that are viéme derivatives. _ _ _
accurate, being exact to four significant figures. The well-known relationships between the tensorial streg9 (

and tensorial straine(;) of isotropic, linear elasticity are

Contributed by the Applied Mechanics Division ofif AMERICAN SOCIETY OF gij=\e 5ij + ZG*‘Jij ) (3)
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- . .
CHANICS. Manuscript received by the Applied Mechanics Division, December Mhere}\ and G are the Lameparameters, expressed in terms of
2002; final revision, October 16, 2003. Associate Editor: O. O'Reilly. Discussion ofoung’s modulugE) and Poisson'’s rati¢v) for an isotropic solid
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Applied Mechanics, Department of Mechanical and Environmental Engineering,

University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be Ev E
accepted until four months after final publication in the paper itself in the ASME A= G=——, (4)
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1 2 2 2 2
V= 5 QD\(Srr te,t 800+ 2G{Srr +eg, ey

+2(e,+e2,+€2,)}]r dr dz de, 7

where the tensorial strains; are expressed in terms of the three
displacements by Eqs5).
The kinetic energy(T) is simply

,E F2 52 52
T= 5 p(ur+uz+uy)rdrdzde. (8)
Q

For convenience, the radialand axialz coordinates are made
dimensionless ag/=r/R and {=z/H. Thus the ranges of the
nondimensional cylindrical coordinatég,Z,d) are given by

o<y<l, 6,<(<6,, 0=<6<2m, 9)

where

R 1
5zzﬁz//cota+—. (20)

R 1
5lzﬁz,//cota— 5

Ey

z For the free, undamped vibration, the tirtte response of the
three displacements is sinusoidal and, moreover, the circular sym-
Fig. 1 A cross section of thick conical shell and the cylindrical metry of the conical shell allows the displacements to be ex-
coordinate system (r,z,0) pressed by

u(¢,,0,t)=U,(¢,{)cosnb sin(wt+ a), (11a)

u,(,2,0,t)=U,(,0)cosnf sifwt+ a), 11b
e=e, +e,,1 &, is the trace of the strain tensor, adgl is Kro- AL 0D =Ualhd) Mot +a) (110)

necker’s delta. Ug(h,8,0,1)=U ,(,0)sinnd sin wt+ «), 11c
The three-dimensional tensorial strains are found to be related ¥4, 8.1) o40) i ) (1)
to the three displacements, u,, andu,, by,[7,8], whereU, , U,, andU, are displacement functions gfand{, o
is a natural frequency, and is an arbitrary phase angle deter-
U+ Ug g mined by the initial conditions. The circumferential wave number
en=Urr, &;;=U;z, Egp= r —, (5a) is taken to be an integen&0,1,2,3. .. =), to ensure periodic-
ity in 6. Then Eqgs(11) account for all free vibration modes ex-
cept for the torsional ones. Torsional modes arise from an alterna-

. :E(u tu), e 1 U, dre Yo tive set of solutions which are the same as E@4), except that
rzmp itz Barh BreT o) Hor roo | cosnd and simé@ are interchanged. Far>0, this set duplicates
the solutions of Eqgs(11), with the symmetry axes of the mode
1 Ty shapes being rotated. But far=0 the alternative set reduces to
€20= 5| Yot =~ (50)  u,=u,=0,u,=U? sin(wt+a), which corresponds to the torsional

modes. The displacements uncouple by circumferential wave
P ; ; number(n), leaving only coupling i andz
Substituting Egs(3) and(5) into Eqgs.(2), one obtains a set of The Ritz method uses the maximum potentsttain energy

second-order partial differential equationsuin, u,, andu, gov- . g ; .
erning free vibrations. However, exact solutions of these equationgnad and the maximum kinetic energy'(,, functionals in a
le of vibratory motion. The functionals are obtained by setting

are intractable because the independent variables are not all sé’éf o
rable (that is, # andt separate out, but and z remain coupley S (@t+a) and co§(wt+a) equal to unity in Eqs(7) and(8) after

and also because of the variable coefficients that appear in méhz displacementéll) are substituted, and by using the nondi-
terms. Alternatively, one may approach the problem from an eflensional coordinateg and{ as follows:
ergy perspective.
Because the strains are related to the displacement components,, _ﬁ L i( b ropt 13)?
by Egs.(5), unacceptable strain singularities may be encountered ™ 2H | | || G <1273
exactly atr=0 due to the term &/ Such singularities may be !

avoided by numerically integrating at Gauss-Legendre points 5 2 o 5 5
within the volume of the body such that=0 (for example, +2(k1+ kot 3) + kg Uit (k5+ k)T | pdldy,
10 5<r/R<1 instead of G<r/R<1).
During vibratory deformation of the body, its straipotentia) 12)
energy V) is the integral over the domaiifl):
po’RPH (L2, o, 2
1 Tha=—%— s [(Ur+U) I+ UGl gdldy,
V= Efg(arrerr+gzﬁzz+ O o8 99T 2017817 2074819 ! (13)
+20,48,9)1 dr dz de. () Where
Substituting Eqs(3) and (5) into Eq. (6).yields the strain en- = H Ur+nUa’ = EUr b k=U,,. (14
ergy in terms of the three displacements: R v R ™" '
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H nU,
K45Ur’§+ —UZJ/,, KSEUa(*

R R ¢’
H nU,+U,
Ke=R Ugy— —!ﬁ ) (14b)
andI’; andI', are constants, defined by
r 2m 2nad 27 if n=0
1=f0 cosnedo=1 i p=1
r 2m 2 nod 0 if n=0
= fo sin“nfd o= - i n=1" (15)

It should be mentioned here that tbenstantimits of integration
81 and 8, in Egs.(12) and(13) correspond to the cone edges (

7 (Vmax Tmaw =0, (m=0,1,2...,M;n=0,1,2... N).
ICmn
(1&)

Equations (18) yield a set of (+1)(J+1)+(K+1)(L+1)
+(M+1)(N+1) linear, homogeneous, algebraic equations in the
unknownsAj; , By, andC,,. For a nontrivial solution, the de-
terminant of the coefficient matrix is set equal to zero, which
yields the frequenciegigenvalues These frequencies are upper
bounds on the exact values. The mode shapgenfunction cor-
responding to each frequency is obtained, in the usual manner, by
substituting eachwo back into the set of algebraic equations, and
solving for the ratios of coefficients.

3 Convergence Studies
To guarantee the accuracy of frequencies obtained by the pro-

=R) shown in Fig. 1. For other edges, including ones normal teedure described above, it is necessary to conduct some conver-

the cone surfaces); and, would be variables. From Eg#l) it
is seen that the the nondimensional constatt in Eq. (12)
involves only; i.e.,

A 2v
G 1-2v (16)

The displacement functiond, , U,, andU, in Egs.(11) are
further assumed as algebraic polynomials,

| J

U (¢,0) = mZ) EO Ajpid (172)
i=0 j=
K L

Uy(h0)= nzgo ;O By ¢’ (170)
M N

Ug(4h,0)= mmE:O ngo Crntf™" (170)

and similarly forU?% , wherei, j, k, I, m, andn are integerst, J, K,

L, M, andN are the highest degrees taken in the polynomial term
Ajj , By, andC,, are arbitrary coefficients to be determined, an
the » are functions depending upon the geometric boundary cc
ditions to be enforced. For example:

1. completely freen, = n,= n,=1,
2. the bottom edger&R or =1) fixed:
== 1e=(—1)".

The functions ofy shown above, impose only the necessary get
metric constraints such as displacement and slope boundary ¢
ditions. Together with the algebraic polynomials in E4<)), they
form function sets which are mathematically compl@antorov-
ich and Krylov [9], pp. 266—268 Thus, the function sets are
capable of representing any 3D motion of the plate with increa
ing accuracy as the indicésJ, ... ,N are increased. In the limit,
as sufficient terms are taken, all internal kinematic constrair
vanish, and the functiond 7) will approach the exact solution as
closely as desired.

The eigenvalue problem is formulated by minimizing the fre
vibration frequencies with respect to the arbitrary coefficiéqts
By, andC,,,, thereby minimizing the effects of the internal con-
straints present, when the function sets are finite. This correspol
to the equation$10]:

(Vmax~ Tmad =0, (i=0,1,2...;j=0,12...J)
(188)

ﬂAij

J
(Vmax— Tmad =0, (k=0,1,2... K;I=0,1,2...L)
(18p)
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gence studies to determine the number of terms required in the
power series of Eq$17). A convergence study is based upon the
fact that all the frequencies obtained by the Ritz method should
converge to their exact values, when the displacement functions
(17) are used, and in an upper bound manner. If the results do not
converge properly, or converge too slowly, it is likely that the
assumed displacements may be poor ones, or be missing some
functions from a minimal complete set of polynomials.

Table 1 is such a study for a completely free, conical shell of
revolution with asmall vertex half-angle(e=15 deg and h/R

Table 1 Convergence of frequencies in  wR\p/G of a com-
pletely free, complete conical shell of revolution for the five
lowest axisymmetric modes (n=0) with a=15 deg and h/R
=0.3 for »=0.3

TZ TR DET 1 2 3 4 5
8 |1.515 2740 4383 6664 1275
12 | 1474 2360 3.529 6.183 7.782
16 | 1.469 2325 3308 5331 6.316
20 | 1466 2301 3234 4768 5.629
24 | 1463 2299 3219 4752 5324
28 | 1463 2298 3.209 4.735 5284
12 | 1.445 2.007 3017 3.934 5.503
18 | 1.439 1.883 2919 3.165 4.626
24 1433 1.827 2796 2.893 4323
30 [1.431 1.813 2.643 2850 4.157
32 | 1431 1.795 2554 2.831 4.066
16 | 1.434 1815 2636 2897 4248
24 | 1431 1758 2356 2.840 3.968
32 1430 1.738 2238 2815 3.552
40 | 1429 1.725 2.114 2.809 3.131
48 | 1.428 1722 2.073 2807 2.939
1428 1.720 2.051 2.795 2.845
20 | 1431 1.745 2251 23827 3.364
30 | 1429 1722 2.073 2810 3.029
40 |1.428 1717 2.020 2.779 2.809
50 | 1.428 1.715 1975 2.571 2.806
24 | 1430 1.729 2.045 2818 2.869
36 | 1428 1.716 1.968 2539 2.808
48 |1.428 1715 1.948 2430 2.803
28 | 1429 1.728 1977 2505 2.816
42 1428 1715 1.943 2340 2.800
56 | L427 1714 1937 2299 2.790
70 | 1.427 1714 1936 2279 2.749
32 1429 1.727 1971 2360 2.810
48 |1.427 1715 1939 2288 2.760
64 | 1.427 1714 1936 2273 2.716
80 | 1.427 1.714 1.936 2.269 2.678

owoauaaNe A MU UNE &S ERARWVWLWWWWRINNNDNNDN
NMEWNOBMAMWREWNVMEWNIIANSEWNIANARERWUWNNIOANE WUN
(7]
=)

Notes:
TZ = Total numbers of polynomial terms used in the z (or ¢ ) direction

TR = Total numbers of polynomial terms used in the » (or y ) direction
DET = Frequency determinant order
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a =60°

o =30°

|
a=75°

Fig. 2 Cross sections of conical shells with h/R=0.3

Table 2 Convergence of frequencies in  wR\p/G of a com-
pletely free, complete conical shell of revolution for the five

lowest bending modes for

r=0.3

n=2 with a=75deg and h/R=0.1 for

1

2 3 4 5

0.7713
0.2679
0.2670
0.2667
0.2665
0.2665

2.651 5.267 10.01 13.89
2.070 2.467 4236 6.660
1.773 2.404 4.093 4.277
1.764 2.401 3.999 4.252
1.764 2.401 3.998 4.252
1.764 2.401 3.997 4.252

0.5671
0.2587
0.2580
0.2578
0.2578

2.558 4.863 8.714 10.83
1.808 2.409 4.217 5.161
1.575 2.383 3.605 4.238
1.569 2.381 3.533 4.235
1.569 2.381 3.532 4.235

0.5259
0.2581
0.2577
0.2575
0.2575

2550 4.732 7.918 9.857
1.694 2.401 4215 4.852
1.565 2.381 3.569 4.237
1.563 2380 3.505 4.234
1.562 2.380 3.503 4.234

0.5071
0.2579
0.2576
0.2575
0.2575

2546 4.711 7.854 9.830
1.628 2.394 4.201 4.527
1.563 2.381 3.541 4.236
1.562 2380 3.503 4.234
1.562 2.380 3.503 4.234

STt WNE B A SR (WWWWWR RN DN

CHNEANZTRARAN SRRSO RN
[
]
S

162

0.4897
0.2578
0.2576
0.2575
0.2575

2.541 4.682 7.734 9.751
1.619 2.393 4.134 4.308
1.563 2.381 3.525 4.235
1.562 2.380 3.503 4.234
1.562 2.380 3.503 4.234

Notes:

TZ = Total numbers of polynomial terms used in the z (or §) direction

TR = Total numbers of polynomial terms used in the » (or y ) direction

DET = Frequency determinant order

Journal of Applied Mechanics

o =45°

o = 60° ' =175

Fig. 3 Cross sections of conical shells with h/R=0.1

=0.3 (see Fig. 2 for v=0.3. The table lists the first five nondi-
mensional frequencies imR\/p/G for the axisymmetric modes
(n=0).

To make the study of convergence less complicated, equal num-
bers of polynomial terms were taken in both théor ) coordi-
nate(i.e.,|=K=M) andz (or {) coordinate(i.e., J=L=N), al-
though some computational optimization could be obtained for
some configurations and some mode shapes by using unequal
number of polynomial terms. The symbdig andTR in the table
indicate the total numbers of polynomial terms used inzt@r {)
andr (or ¢) directions, respectively. Note that the frequency de-
terminant ordeDET is related toTZ and TR as follows:

TZXTR for torsional modes(n=0)
DET={ 2XTZXTR for axisymmetric modegn=0)

3XTZXTR for general modegn=1)
19)

Table 1 shows the monotonic convergence of all five frequen-
cies asTZ (=J+1,L+1, andN+1 in Egs.(17)) are increased,
as well asTS (=1+1,K+1, andM+1 in Egs.(17)). One sees,
for example, that the fundamentéle., lowes}t nondimensional
frequencywR/p/G converges to four digit$1.427 when 2x(7
X4)=56 terms are used, which results DET=56. Moreover,
this accuracy requires using at least seven terms in the axial co-
ordinate(TZ =7) and four in the radial coordinatd R =4). Num-
bers in underlined, boldface type in Table 1 are the most accurate
values(i.e., least upper boungiachieved with the smallest deter-
minant sizes.

Table 2 is a similar convergence study for a completely free,
conical shell of revolution with darge vertex half-angle =75
deg andh/R=0.1 (see Fig. 3 for »=0.3. One sees that the fun-
damental frequency0.2575 requires using at least{TZ,TR)
=(4,8) for the exactitude to four significant figures. It was noticed
that as the vertex half-angler) becomes larger, more termsiin
(or ) are needed to yield the converged values.

4 Numerical Results and Discussion

Tables 3 and 4 present the nondimensional frequencies in
wR\p/G of completely free, very thicki{/R=0.3) and moder-
ately thick (/R=0.1), complete conical shells of revolution, re-
spectively, with the vertex half-angles ef=15 deg, 30 deg, 45
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Table 3 Nondimensional frequencies in wR\pIG of com- Table 4 Nondimensional frequencies in wR\p[G of com-

pletely free, conical shells with  h/R=0.3 for »=0.3 pletely free, conical shells with  h/R=0.1 for »=0.3
n_s|a=15° a=30° o=45° a=60° a=75° n s|a=15° a=30° =45 a=60° a=75°
11267 2.466 3.526 4377 4938 11 1.323 2.559 3.623 4.442 4.959
211978 3.865 5.573 7.007 8.027 212161 4.181 5.925 7273 8.125
0" 32597 5.081 7333 9.206 10.31 0" 32971 5.751 8.159 10.03 11.21
41 3.214 1 6.274 8.982 10.70 11.20 4| 3.765 7.296 10.36 12.75 1427
513.875 7.566 10.73 11.38 11.68 51 4.556 8.842 12.54 15.45 17.31
1| 1.427 1.655(4) 1.608(3) 1.481(3) 1.289(2) 1] 1.443 1.535 1.394(5) 1.149(4) 0.7804(3)
21714 2.296 2.824 3.210 3413 21 1.677 2.012 2.135 2.121 1.937
0* 31935 3.233 3.787 3.926 3.904 0* 3| 1.945 2.713 3.164 3.384 3.451
4| 2.267 3.301 4.700 5.911 6.706 4| 2.287 3.244 3.872 4.071 3914
5| 2.665 4,257 6.197 7.699 8.563 51 2.664 3.565 4.576 5.487 6.035
1]0.6938(2) 1.718 2.024(4) 2.2034) 2.317(4) 1] 0.7495(5) 1.558 1.550 1.370(5) 1.110(5)
2| 1.189 2.029 2.520 2.662 2.718 2 1.276 2.040 2.438 2.617 2.654
1 3| 1.558 2.557 3.648 4.541 5.151 1 3 1540 2.134 2.550 2.665 2.720
4| 1.602 2.832 3.797 4,908 5.654 41 1.658 2.818 3.560 4278 4.746
5| 1.910 3.458 5.334 6.130 6.633 51 1.954 2.872 4.057 5.095 5.744
10.3949(1) 0.5155(1) 0.5999(1) 0.6626(1) 0.7032(1) 1]0.1831(1) 0.2209(1) 0.2434(1) 0.2545(1) 0.2575(1)
21 1.008(4) 1.651(3) 2.106 2.294 2.339(5) 2| 0.5495(3) 0.9244(4) 1.216(4) 1.424 1.562
2 311.603 2.583 2.873 3.220 3.502 2 3| 1.085 1.868 2.329 2.427 2.380
4| 2.098 3.129 4.059 4177 4,223 4| 1.525 2.557 2.798 3.183 3.503
512452 3.903 4.640. 5.755 6.503 511972 2.722 3.893 4.190 4.234
1]0.7627(3) 1.101(2) 1.299(2) 1.427(2) 1.503(3) 1] 0.4151(2) 0.4931(2) 0.5390(2) 0.5678(2) 0.5839(2)
21| 1.563 2.591 3.295 3.528 3.587 21 0.8984 1.362(5) 1.759 2.075 2.285
3 312200 3.519 3.835 4328 4.721 3 3| 1.425 2.385 3.209 3.570 3.603
412817 4.004 5.512 5.738 5.797 4| 1.942 3.442 3.648 4.046 4.484
51 3.454 5.088 5777 6.979 7.804 5] 2.525 3.475 4.886 5.753 5.816
1]1.061(5) 1711(5) 2.075(5) 2.292(5) 2414 11 0.7001(4) 0.8487(3) 0.92833) 0.97823) 1.007(4)
2| 2.059 3.432 4.417 4.630 4.675 2| 1346 1.933 2433 2.829 3.089
4 3289 4.516 4.786 5.439 5.933 4 3193  3.087 4.101 4.620 4.678
43775 4.899 6.661 7282 7.373 41 2.531 4.336 4.594 4.999 5.519
5| 4.477 6.209 7.105 8.138 9.032 51 3.144 4.424 5.932 7.248 7.411

Notes: Notes: . ' .
T=Torsional mode; A=Axisymmetric mode.

T=Torsional mode; A=Axisymmetric mode. ! XISYIT
: Y Numbers in parentheses identify frequency sequence.

Numbers in parentheses identify frequency sequence.

deg, 60 deg, and 75 deg fer-0.3. Tables 3 and 4 correspond t Comparison of the present 3D Ritz meth@DR) is made in

: ; : ; . ble 6 for the nondimensional frequenciesdR/p/G with the
Figs. 2 and 3, respectively. Thirty frequencies are given for ea N X
configuration, which arise from sti{( cirgumferential V\?ave numbe shell tht_aory(ZDS) for Fhe lowest four aX|syanetr|c mgdes
(n=07,01,2,3,4) and the first five modes<£1,2,3,4,5) for n=0) 72WIth the  stiffiness  parameter K=12(1-»*)
each value of, where the superscriplandA indicate torsional <("/R) /(tarf a-coS’ )=10000 andv=0.3. The parameteK
and axisymmetric modes, respectively. The numbers in parem%ponverted to the thickness ratib/R) for ea<_:h of thea shown
ses identify the first five frequencies for each configuration. T B Table 6. This ShO.WS that the corresponding shells range from
zero frequencies of rigid body modes are omitted from the tabld€ing moderately thickl{R=0.151, fora=15 deg to very thin

It is seen from Tables 3 and 4 that the fundamefimhesh (N/R=0.00290, fora=75 deg. The percent difference in fre-
frequencies of all the configurations are for modes having twW#'€ncies obtained by the two analyses is given by
(n=2) circumferential waves irrespective of the thickness ratio
(h/R) and the vertex half-anglgy). Tables 3 and 4 show that the 2DS—3DR
torsional mode it=0") frequencies are all higher ones. differenc& %)= ————=—— X 100. (20)

The numbers of polynomial terms 6FZ,TR) used for Tables 3 3DR
and 4 werg8,6), (7,7), (6,8, (5,10, and(4,12 for =15 deg, 30
deg, 45 deg, 60 deg, and 75 deg, respectively.

Numerically integrating the energy integral?) and(13) over
10 %< y=1, instead €y=<1, to avoid singularities encountered
exactly aty=0, corresponds to leaving an extremely small cylin-
drical hole at the vertex. Table 5 shows the change in the lowegfye 5 variation of wR\pIG for the shell (e=15 deg, h/R
frequencies with five digits for each for the shell(a=15 deg, =0.3) of Table 3 with a small cylindrical hole of radius ~ r=a at
h/R=0.3) of Table 3, as the hole radiga) is diminished &/R its vertex (lowest frequencies for each n)
=0.2,101,1072,10 3,10 4,10 ®) to essentially vanish. That is, a

It is observed that the 3D Ritz method yields lower frequencies
than the 2D thin shell results in all the frequencies irrespective of

very small hole has essentially no effect upon the frequencies. a/R
nl| 02 107 107 10° 10° 10°
5 Comparison With 2D Shell Theory 0712870 |1.2688 :|1.2671 |1.2671 | 12671 |1.2671
0*]1.5191 |1.4550 |1.4275 |1.4272 |1.4271 |1.4271

Dreher and Leissfl1,12 used the Donnell-Mushtari thin shell
theory and the exact solution procedure involving expansion
the displacements in terms of power series to study the axisy
metric (h=0) free vibrations of completely free, complete conica
shells of revolution.

0.90685 | 0.76936 | 0.69509 | 0.69385 | 0.69384 | 0.69384
0.39479 | 0.39487 | 0.39488 | 0.39489 | 0.39489 | 0.39489
0.76265 | 0.76267 | 0.76272 | 0.76273 | 0.76273 | 0.76273
1.0611 |[1.0612 | 1.0613 |1.0613 |1.0613 | 1.0613

F Rt S Iy
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Table 6 Comparisons of nondimensional frequencies in wR\p[G from the 3D
and 2D methods of completely free, complete conical shells of revolution for the

first four axisymmetric modes (n=0) with the stiffness parameter K=12(1
—v?)(h/R)™?/(tan* a-cos? @)=100,000 for »=0.3

lo, 4/R]
5 Method [15°,0.151] | [30°,0.0362] | [45°,0.0148] | [60°,0.00697] | [ 75°,0.00290]
2DS 1.742 1.562 1275 0.9017 0.4668
1 3DR 1.442 1.481 1.240 0.8916 0.4655
(Difference %) | (20.8%) (5.47%) (2.82%) (1.13%) (0.28%)
2DS 2.190 1.963 1.603 1.134 0.5868
2 3DR 1.697 1.795 1.527 1111 0.5841
(Difference %) | (29.1%) (9.36%) (4.98%) (2.07%) (0.46%)
2DS 2.686 2.408 1.966 1.390 0.7196
3 3DR 1.978 2245 1.888 1.365 0.7166
(Difference %) | (35.8%) (7.26%) (4.13%) (1.83%) (0.42%)
2DS 3315 2.882 2.353 1.664 08614
4 3DR 2.322 2.792 2352 1.663 0.8617
(difference %) | (42.8%) (3.22%) | (0.04%) |  (0.06%) (-0.03%)

Notes:

2DS = 2-D frequencies by the Donnell-Mushtari thin shell theory
3DR = 3-D frequencies by the Ritz method

Difference % = (2DS-3DR)/3DRx100

thickness parameteh(R) and half-angle of verteXa) as ex- Results were presented for completely free shells. However, as
pected, except for the fourths€4) mode for @,h/R)=(75 described in Sec. 2, the procedure could also be used for the shells
deg,0.00290 An accurate 3D analysis should typically yieldhaving the bottomn=R) fixed.

lower frequencies than those 2D thin shell theory, mainly because

shear deformation and rotary inertia effects are accounted for in a

3D analysis, but not in 2D, thin shell theory. It is noticed that the

frequencies by the 2D shell theory are accurate within 10% errdReferences
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On the Acoustic Nonlinearity of

Solid-Solid Contact With

Pressure-Dependent Interface
s swa' | Stiffness

e-mail: biwa@energy.kyoto-u.ac.jp
Nonlinear interaction between elastic wave and contact interface, known to result in the

S. Nakaumaz so-called contact acoustic nonlinearity, is examined in a one-dimensional theoretical
framework. The present analysis is based on a nonlinear interface stiffness model where
N. Ohno the stiffness property of the contact interface is described as a function of the nominal
contact pressure. The transmission/reflection coefficients for a normally incident har-
Department of Micro System Engineering, monic wave, and the amplitudes of second harmonics as well as DC components arising
Nagoya University, at the contact interface are derived in terms of the interface stiffness properties and other
Nagoya 464-8603, Japan relevant acoustic parameters. Implications of power-law relations between the linear

interface stiffness and the contact pressure are examined in detail regarding the linear
and nonlinear acoustic responses of the contact interface. Also, a plausible range of the
relevant power-law exponent is provided from considerations based on the rough-surface
contact mechanics. The analysis clarifies the qualitative contact-pressure dependence of
various nonlinearity parameters based on different definitions. A particular power law is
identified from existing experimental data for aluminum-aluminum contact, for which
some explicit nonlinear characteristics are demonstrated. The theoretical contact-
pressure dependence of the second harmonic generation at the contact interface is found
to be in qualitative agreement with previous measuremdmt®l: 10.1115/1.1767169

1 Introduction For elastic waves with wavelength much larger than the typical

Transmission and reflection characteristics of ultrasonic wavleesrﬁggts ?r?tlgrfgfc:ué?rwcebéoggiz?jhﬁsItalss kﬂﬁmﬂértpaitesyﬁtm the
propagating through contact interface between solid bodies haya - . . pring nt .
uivalent stiffness property. In this case, theoretical expressions

L. . e
long been known to be sensitive to the contact conditions SUChf%%%he reflection and transmission coefficients have been derived
the contact pressure and the true area of contact, and used a§oa

- . . . r-normally incident elastic waves in terms of the interface stiff-
experimental tool in contact mechanics and adhesion technolo%
]E;Lg:]b;yg;ﬁfgi%tssgﬁgstﬁ (caéﬁlggte(tjhzylct)g?j Egcstjhagﬁégnb m;er-_lmportantly, the interface stiffness introduced above depends on

e S ' pp Y Sl contact condition due to the aforementioned effects, and be-
face asperities. With increased load, more asperities come in

. . . . ttg’mes a source of nonlinearity in wave propagation. Theoreti-
contact while each asperity undergogs flattgnlng Qeformatlon. p('f'ﬁly Richardson18] has analyzed one-dimensional nonlinear
o the change of the contact asperity configuration with varyi avé propagation through a unilateral contact interface, where

contact pressure, the mechanical response of the contact interrjé??ﬁ

'ss and other acoustic parametgts?].

involves certain nonlinear behavior. As a consequence, secon er the displacement gap or the traction vanishes. In Richard-
: q ' %’s analysis, however, realistic features of finite and nonlinear

higher-order harmonics are generated when a wave interacts Wifbrface stiffness, in the sense that it may vary continuously with

gt]ﬁ dcogettﬁgg'22?{:&%%2‘;;‘0C:gnslti'rt]lé:,?@a_gﬁelastg\?ga??r\]’:lleiﬁa t?]e contact condition, are not accounted for. Such effects were
Y P onsidered by Rudenko and Chin An \[19], who used a

gators, [6—10], have experimentally demonstrated the contacﬁ-

ressure dependence of the second or higher-order harmonic istributed-microasperity model to analyze nonlinear wave
P P 9 Teflection from rough-surface contact, and interpreted existing

gg:]?ggp Iﬁlt;\/r?;s:st?(:tsvrggtnez c}IT égugchor?tgéfffccgsgti(f:ronrgn\l/iﬁggr§( erimental data. Nevertheless, it appears that implications of
: Mch nonlinear stiffness properties for the acoustic response of

has peen showp to exh'b't mych greater hqrmonlc generation tQF}Q contact interface are yet to be fully explored in a general
classical material nonlinearitiegl1,12, and is expected to offer circumstance

valuable information of the contact conditions, with possible ap- The aim of the present paper is to demonstrate a concise theo-
plication to evaluation of bond interfacgd,3], and detection of retical analysis to yield a basic insight into the nonlinear behavior

partially closed defects in materiafd.4-16. of elastic waves propagating through contact interface, as a basis

—_— of qltrasonic evaluation of contact conditions. To this end, a non-
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Contact interface Namely, the stress is continuous across the interface and obeys a
Po l Do functional relationship between the gap distah@nd the contact
pressurgp(h), which is in general a nonlinear one.

) : ; < 2.2 Reduc.ed Formulation. By introducing the following
finc _ frra change of variableg,18],
CAR— T{:w NA _—— e B
fref~.+.% X(t)={u(X_ ,t)+u(X, ,t)}/2, (52)
> J N Y(t)=u(X; ,t)—u(X_,t)=h(t)—hg, (5b)
]
the governing equations reduce to

1
—>‘:—;:<—Interﬁce gap . o
X X+ X=—cfi"(X_—ct), (6a)

) . . ) . ) 2
Fig. 1 One-dimensional wave propagation through contact _ inc’ _ = _
interface. Y=2cf"® (X_—ct)+ pc{p(h0+Y) Po}s (6b)

where dots denote time derivatives and primes denote differentia-

) ) ] o tion with respect to the argument of functions. The variab{es
reflection as well as the harmonic generation behavior is discussg v represent the translational motion of the contact interface
in detail. The analysis is shown to reproduce certain qUa“taﬂ\&]d the time-dependent change of the gap distance, respectively.
features of nonlinear acoustic response of contact interface oftre transmitted and reflected waves are in turn expressed as
served experimentally in previous studies, e.g., qualitative
contact-pressure dependence of the second-harmonic amplitudes,
and the appearance of “DC” displacement components in
transmitted/reflected waves.

flra(x—ct)=f"%(x—hy—ct) + %Y(t— (x=X;)/c), (7a)

1
ffef(x+ct)=—Ev(t+(x—x,)/c). (7b)
2 Theoretical Formulation

21 G ing Equai One-di ional elastic lonai Therefore, the problem is reduced to obtaining the solution to the
" overning £quations. Une-dimensional €lastic 1ongl- qt_order nonlinear ordinary differential equation in Efb).
tudinal wave propagation along the_aX|s 1S cor_15|de_red h_ere_ 8S  For a demonstrative purpose, Fig. 2 shows examples of trans-
s_chematlcall_y shown in Fig. 1. Two linear el_astlp solld_s with Idenrhitted and reflected waveforms for an incident wave of Gaussian-
tical propertiesmass density an_d the longitudinal stiffnesg) modulated profile with the center frequency 10 MHz, obtained by
are assumed to occupy the regionsX_ andx>X, , TeSPEC- Girect numerical analysis of Eq€6) and (7), with p=2700
tlvely, whereX_<X, . The mated surfac_es of these solids ar g/m?] andc=6420[m/s] pertinent to aluminum and by assum-
nominally flat but assumed to have certain roughness. The ref; G X, =X_ . The nonlinear functiop(h) is characterized by the
ence planes of both surfaces, e.g., planes of average hgdght, parar:]eter; as po=10[MPa] m=05 and C=6.0
are identified byx=X_ andx=X, , respectively. The quantity » s jiorps-12m=17 " which definitions will be clarified in later

X, —X_ denotes the gap distance between the reference plar}ﬁgwssions. Figure(2) is for the incident wave packet with peak

The formulation described in this section essentially follows a Iingmplitude of 5 nm, and Figs.(8) and (c) are the resulting trans-

similar to Richardsor{18], except that the present analysis aCoittad and reflected waveforms, respectively. Figurés)-af)

counts for a realistic relation between the gap distance and tgﬁow the corresponding results in the case of peak amplitude 20

contact pressure. For the sake of completeness, the formulation S . . - .
P P ' nm, which is a typical level in recent nonlinear ultrasonic mea-

will be recapitulated below including a straightforward outcomgurements[10 16, In the results in Figs. 8 and (), it can be

of Richardson’s analysis. . . served that the transmitted and reflected waveforms are some-
In the absence of elastic waves, the two solids are assume

o . . ; at distorted due to the nonlinear nature of the interface, while
ﬁsrﬁnfqu;'bg;ggﬁgger nFOoTIIr(I)iI ?&%ﬁglﬁzi?w%tgtha?igg%to the distortions are more or less negligible for the incident ampli-
the osgi]tivpex-directio%. the e Sation of motioﬁ ag \?vell as thetUOIe of 5 nm as in Figs.(B) and(c). Furthermore, in the spectral

posI , e €q amplitudes of these waveforms shown in Fig. 3, the frequency
stress-displacement relation are

components around 0 MHz as well as the 20 Midecond har-

U do Ju monic9 have appearethigher harmonics are also present but fall
— = ot po=E—, (1) below the plot range As discussed below, the harmonic genera-
at X X tion and the appearance of the zero-frequency component are

whereu(x,t) is the displacement in thedirection accompanying More evident in the case of larger incident amplitude.
the wave motiono(x,t) is the stress, antl denotes time. The
linear kinematics is assumed throughout the analysis. As a solu-

tion to Eq. (1), the following forms are considered: 3 Analysis for Harmonic Wave Incidence
u(x,t)=f"(x—ct)+fef(x+ct), x<X_, (2a) 3.1 A Perturbation Analysis. In order to propel the analy-
 itra sis further, the incident wave is now assumed in the form of a
u(x,H=f"(x=ct), x>X,, (D) monochromatic wave of the form
where fi"°(x—ct), f"®f(x+ct), f"¥(x—ct) represent the inci- _ ©
dent, reflected, and transmitted waves, respectively, and fine(x—ct)=A COS{E(X_X‘_CD]‘ (8)

=(E/p)*?is the wave velocity.

When the wave interacts with the contact interface, the gayhereA is the wave amplitude ana is the angular frequency.
distance varies with time, i.e., When the displacement accompanying the wave is small, the gap
distance changes only by a small amount. In this case the function

h(t)=ho+u(X. ) —u(X_.1). ©) p(h) can be replaced by its Taylor expansion niearhy up to the
The boundary condition at the interface is given as second-order term, i.e.,
o(X_ )=c(X, ,)=—p(h1), p(ho)=po. (4 p(h)=p(ho+Y)=po—K;Y+K,Y?, 9
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Fig. 2 Gaussian-modulated incident wave with center frequency 10 MHz, and

the transmitted and reflected waves at the aluminum-aluminum contact inter-

face characterized by the parameters py,=10[MPa], m=0.5, and C=6.0
X10°[Pa~¥2m~1]. (a), (b), (¢): Incident wave amplitude 5 nm;  (d), (e), (f):
incident wave amplitude 20 nm. The time scales are taken with the origin at

the center of each wave packet.

dp }dzp

= , =
dh h=h, 2 dh?

L 2Ky :
K,= (10) Y.+ E Y,=2Aw sinwt, (12)

h=h,
which solution corresponding to steady-state oscillation is readily

In the above expressio denotes the linear stiffness, al .
P K1 , Ak Qtained as

the second-order stiffness of the contact interface. Substitution

Egs.(9) and(10) in Eqg. (6b) yields oA
. 2K 2K Y1(t) = === sinNwt—=9,), (13)
Y+ p—ClYfp—CZYZZZAw sinot. (11) ! Vi+a%w? !

To obtain an explicit approximate solution to Ed.1), Y is ex- Where
pressed as the sum of a solution of the linearized equatjcemd

the perturbatiorY,, i.e., Y=Y;+Y,. ThenY, satisfies the lin- _ 2K,y _
earized form of Eq(11), a= oy =arctarw/a). (14)
10° - 10° :(b) Transmitte:i wave. 10° - (c) Reflected wave .
E E - 5nm 3 S A e 5nm 3
o F e [ —20mmje F ~——20 nr
R E 12 [ j
§1o-1_- 4 E107H 4 E10" 4
E E E is 3
E 1E 18 ]
210% 721 121
g F 1 15 3
Qo R J o 1o 4
£ [ 1 7 4 Al
Sl 0 b -3 [ FEE -3 [ R
10 0 10 20 30 10 0 10 20 30 10 0 10 20 30
Frequency [MHz] Frequency [MHz] Frequency [MHz]

Fig. 3 Amplitude spectra of the waves shown in Fig. 2. The spectral ampli-
tudes are normalized with respect to the amplitude of the incident wave at the
fundamental frequency (10 MHz).
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Then, assumingr,<Yy, the solution forY, can be obtained, K,A

again ignoring the transient component, as Bi= (19)
. 4K2 K2
2K ,A? sin2wt—268,+ 6. ! !
V()= 2 1— n( 1+ 52) . (15) 2K, \/1+ 5 5 \/1+ 5o 5
K, (1+a% »?) V1+4w?/a? pCw pCw
where Likewise, for the reflected wave, a similar parameter of nonlinear-
ity vy, is defined as
d,=arctanta/(2w)). (16)
SubstitutingY=Y;+Y, and Eqgs.(13) and(15) in Egs.(7a) and y,= KA (20)
(7b), the transmitted and reflected waves can be obtained as ! \/ 4K2 \/ K2 '
1 1
2 pcw 1+ 1+
f"a(x— ct)= K2A 2K4A p202w2 p202w2

+
2 2.2, 2 2 2,2, .2
Ki{1+4K3(p*c*0?)}  pew1+4Ki/ (p*c?w?) which is the ratio between the absolute amplitudes of the second

» harmonic and the fundamental component in the reflected wave.
xco% wt——(x—x+)—51] In contrast to the transmission and reflection coefficients, the
¢ above nonlinearity parameters are proportional to the second-
K A2 order stiffness of the interface. These parameters are also propor-
_ 2 tional to the incident wave amplitude, so the nonlinearity is higher
pco{l+4K3(p?c?w?) N1+ K3 (p?cCw?) for waves of larger amplitude. Since the contact stiffness param-
etersK,; andK, vary with the applied contact pressupg, the
(173) transmission/reflection coefficients and nonlinearity parameters
are dependent op,. These features are demonstrated below for a
particular nonlinear model of the contact interface.

) 2w
Xsin 2wt — T(x—x+)—251+ 8,

2
fref(x+ct)=— KA
Ko {1+ 4K?/(p2cw?)} 4 _ Power-Law Pressure Dependence of Contact
Stiffness
A 0}
- sinf wt+ —(Xx—X_)—46; 4.1 Derivation of Pressure-Gap Relation. The functional
2 2-2 2 Cc . . .
\/1+4K1/(P c w’) relationship between the gap distance and the contact pressure,
K2 written asp(h), can be modeled analytically based on various
2

4 statistical models of rough surfaces. Rudenko and Chin An Vu
pco{l+4K3/(p?cCwd)}1+K2 (p2cw?) [19], and recently Drinkwater et a[3] and Baltazar et al[5]

attempted to link the roughness topography to the contact stiffness
or the transmission/reflection coefficients measured ultrasonically.
However, it is in general difficult to take into account all detailed

) ) information of roughness features as well as deformation proper-
Itis seen clearly that both transmitted and reflected waves contgigs of real surfaces. As an alternative approach, in this section it is
a term with the angular frequencys2which is the second har- shown how the desired relation can be extracted from the relation
monic generated by the nonlinear nature of the contact stiffneggveen the linear stiffness of the contact and the applied contact
Further perturbation analysis would yield higher-order harmonicsyessure, which can be easily obtained experimentally using ultra-
although it is kept out of the present discussion. sonic methods.

Furthermore, static displacement components are contained ing their detailed investigation, Drinkwater et 8] measured
both waves. l:rhe’:s,e zero-frequency components are similar in R3s reflection coefficients of the normally incident ultrasonic wave
ture to the “DC” signal observed experimentally by Korshakyt the contact interface between two aluminum blocks, which
et al.[21] recently for polished glass-piezoceramic interface Sukere made rough by grit blasting and subjected to contact loading/
jected to surface wave incidence. The appearance of these CRMoading cycles. By using the relation in E(L8), they con-
ponents has been derived naturally as the outcome of the presgiiiied the reflection coefficients to the linear contact stiffifess
analysis. WherK,/K,>0, the DC component brings about theys 5 function of the applied contact presspge According to
displacement corresponding to gap opening, which is proportionghiy results,K, showed more or less linear dependencepgn
to the second-order stiffness, and the square of the input wave; o K,%po, at the first compressive loading up to about 250
amplitude. MPa. The relation betwedf, andp, showed some hysteresis for

3.2 ReflectioTransmission Coefficients and Nonlinearity the first loading/unloading cycle. For the unloading after the first
Parameters. When the amplitude transmission coefficidrand '0ading, and for the subsequent loading/unloading cyélesiar-
the amplitude reflection coefficiei® are defined as the ratio be-ied nearly in proportion to the square root jof, i.e., K;pg®,
tween the absolute amplitude of the fundamental-frequency cowithout significant hysteresis. The linear stiffness-pressure rela-

ponents of the transmitted/reflected waves and the incident watienship shown in the first loading is attributed to the successive

2w
X sini 2wt + T(X—X,)—251+ 52}. (170)

they read flattening of contact asperities on the rough interface, and the
following square-root behavior is attributed to the response of the
2K, 1 flattened(partially conformed surfaces.
T= , R= . (18) In our discussion, the above experimental findings are general-
4K§ 4K§ ized and it is assumed that a simple power-law relation holds
pCw 1+ 22 2 1+ 22 2 between the linear stiffness and the applied pressure, that is
pCw pCw

— m
These results coincide with those derived previously from the lin- Ki=Cpo, (1)
ear analysis[1,2]. where C and m are positive constants. Hereafter, this particular
Next, a parameter of nonlinearitg, is defined as the ratio relation is employed to model the contact interface stiffness. Com-
between the absolute amplitudes of the second harni@dmjcand bined with Eq.(10), Eq. (21) can be regarded as a differential
the fundamentalw) component in the transmitted wave, i.e.,  equation forp(h),

Journal of Applied Mechanics JULY 2004, Vol. 71 / 511



d_p: —cp™, (22) _ chgv(Pcw) R— 1
dh J1+4C%p2 (pcw)? J1+4C%p2 (pcw)?’
which can be solved with Eq4) as (26)
o(h)— {ps" "= (1=m)C(h—ho)}"*~™  (m#1), 23) be mC A %)
Po exp{—C(h—hg)} (m=1). Y 41+ 4Cp2 (pcw) i1+ C2p2™ (pew)?

Hence, the relation between the contact pressure and the gap dis- 2 om-1
tance can be extracted from the observed linear stiffness-pressure _ _ mCpy ™~ A
relation. The same procedure may be applied to the situation ! 2pc¢u\/1+4C2p§m/(pc¢u)2\/1+Cngm/(pr)z'
where the linear contact stiffne&s, is expressed as an arbitrary (27b)
function of the contact pressug . . . .
When both of the results in Eq23) are expanded nedr From these results it is found that the transmlssﬁmflgctlon
—h.. one obtains coefficient is a monotonically increasiridecreasingfunction of
0
the contact pressure.
1 _ It is also seen in Egs(27a) and (27b) that the nonlinearity
P=Ppo—Cpg(h—ho)+ Emcngm ‘(h—ho)?,  (24) parameters for the transmitted and reflected waves are decreasing
. . . with the contact pressure, when the pressure becomes sufficiently
up to second-order terms, which gives the linear and second-orighe However, the qualitative contact-pressure dependence of the
stiffness as functions of the equilibrium contact pressure, i.e., nonlinearity parameters in a low pressure range depends on the

1 power exponentn. Namely, wherC pj/(pcw)—0, three types of
Ki(po)=Cpy . Ka(po)= Emczp(z)mfl- (25) behaviors are observed, i.e.,

4.2 Contact Mechanics Considerations. Prior to proceed- mCA 0 (m>1)
ing to the discussion of nonlinear acoustic response of contact Bi~——p 1= CA4 (m=1), (288)
interface, some remarks are noted for the power-law dependence 4 - (m<1)
in Eq. (21) from a viewpoint of contact mechanics of rough sur-
faces. A great number of models have been proposed to model the 0 (m>1/2)
contact behavior of real surfaces having various roughness fea- mC2A omo1 25 _1/2
tures. Among them, for noninteracting elastic hemispherical as- "= 2pCw po" = CA(4pco)  (M=172). (28)
perities with constant curvature and an exponential height distri- 00 (m<1/2)

bution, Greenwood and Williamsdi22] showed that the relation . . L
between the nominal pressure and the gap distance takes Orha‘ﬁherg have been several experimental investigations for second
exponential form. Recently, Larsson et @3] obtained a similar armonic amplitudes generated at contact interface. Among oth-
conclusion for exponential distributions of asperity height an@'S: the second harmonics in the reflected wave measured by Sev-
constant asperity curvatures but for nonlinear stress-strain beh§(Jl @nd Solodoy6] and Ko Sel Len et al.7] for polished glass

ior of power-law type. Such exponential pressure-gap relation colerfaces show a peak value at a certain presfu@-1.5 MPa
incides with the case ah=1 in Eq.(23). For Gaussian asperity a1d t€nds to zero as the pressure becomes smaller, which is quali-
height distributions, similar results have been obtaifigd,23.  tatively akin to the nonmonotonic behavior with>1/2. Recent

On the other hand, when all hemispherical asperities have tifSults by Kawashima et 4t10] for the transmitted wave through
same height and curvature, the nominal pressure follpgly & buff-polished aluminum-aluminum interface show monotoni-

. . . cally decreasin ressure dependence for an extremely low-
oc(h._ h)l+’\.ﬂ/z for tSe mate”a.ls obeyln_g the equivalent Stress‘f)regsure range %elrt))w 0.03 MPg, which corresponds to the ¥eature
strain relationo=¢™ (M: positive material constantwhen the ¢, 1 These qualitative features do not contradict the discus-
gap distance at which the asperities first come into contact d$4 noted in 4.2, where a plausible rangerfowas given as 1/3
denoted byh, [23]. As a special case, for linear elastic asperitieso 1 from simple contact mechanics arguments. At the present,
po(h—h)3? andKlocpé’:”, i.e.,m=1/3. According to the similar- there appear to be no detailed experimental reports available on
ity principle of contact[24,25, the same dependence can be exsorrelated quantitative data linking the stiffness-pressure relation
pected not only for hemispherical asperities but also for asperiti@gd the harmonic amplitude-pressure relation. It remains as an
with local shapes described by homogeneous functions. intriguing problem if this theoretical observation can be supported

From these considerations, it may be conjectured that rouffam an experimental point of view.
surfaces with statistical asperity-height distributions tend to have

: . 5.2 Results for Particular Model Parameters. Drinkwater
m values close to 1, whilen values are lower for surfaces with

more uniform asperity heights. Coming back to the experimen Eal. [3.] used two alur_nmum blocks to measure the linear inter-
ace stiffness as function of the frequency and the contact pres-

finding by Drinkwater et al[3], it may now be reasonably inter- re. As mentioned above, a more of less linear pressure-

preted ihat the grlt-_blasted_alumlnum surfaces revealed the exég'pendence of the stiffness was observed in the first loading of
nentm=1 for the first loading, as they ought to have had somg

degrees of roughness: after the compression, many asperities &gh’é’h aluminum surfaces. For the subsequent unloading and the

likely conformed to similar heights due to plastic deformationl,e r;\évslggtgélcbes?ﬁ thae sovfa:?e”-r?)t;)ftfanIS:t-igLeswﬁtLg% ge:ﬁtlgn (VZ%S best
and resulted in lower exponent of=0.5. P 9asq : a- )

To fit to the data for the latter behavior, the parameters were

chosen asm=0.5 andC=6.0x 10*°[Pa Y?m~1]. Figure 4a)

5 Implications of Power-Law Pressure-Dependent shows the relation betweef, andp, thus determined, together

Stiffness with the experimental data by Drinkwater et &B], while Fig.
4(b) illustrates the corresponding functiggh) in Eqg. (23).

5.1 Qualitative Pressure Dependence of Contact Acoustic To simulate the measurements by Drinkwater et[a], the
Properties. Substituting Eg. (25 into Egs. (18—(20), the acoustic properties of aluminum are employed, i,
transmission/reflection coefficients as well as the nonlinearity pa-6420[m/s] and p=2700 [kg/m°]. These were the parameters
rameters are readily obtained as function of the applied presswsed to generate the results in Fig. 2 and Fig. 3. The transmission
Explicitly, and reflection coefficients are calculated for several fundamental
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Fig. 4 (a) The power-law relation between the linear interface
stiffness and the nominal contact pressure, for m=0.5and C
=6X10'[Pa~¥2m™'], with the experimental data by Drinkwa-
ter et al. [3] for Al-Al interface at unloading from initial loading
(circles ); (b) the corresponding pressure-gap relation derived
thereof, where h, is taken as the gap at 10 MPa
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Fig. 5 Variation of the transmission and reflection coefficients
with the nominal contact pressure, for different fundamental
frequencies
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Fig. 6 Variation of (&) nonlinearity parameter B, and (b) non-
linearity parameter 1y, with the nominal contact pressure, for
different fundamental frequencies

frequencies as function of the applied nominal pressure in Fig. 5.
As the contact pressure increases from zero, the transmission co-
efficient increases from zero and the reflection coefficient de-
creases from unity. For these linear-acoustic characteristics, read-
ers are referred to the experimental results by Drinkwater et al.
[3], Dwyer-Joyce and Drinkwaté#], and the discussions therein.

The dependence of the nonlinearity parameters on the nominal
contact pressure is shown in Fig. 6 for different fundamental fre-
qguencies and two different amplitudes. As mentioned before, the
nonlinearity is more profound in the case of higher amplitude.
Also, the nonlinearity parameters decrease with the applied pres-
sure, as has been clarified above ifior 1/2. The influence of the
frequency on the pressure-sensitivity of the nonlinearity param-
eters is, however, different foB; and y,. In the transmitted
wave, B, is larger for higher frequency, while in the reflected
wave, y; is more profoundly dependent on the nominal pressure
in the case of lower frequency. As an explanation for this, it is
noted that the transmitted and reflected waves contain the same
second-harmonic amplitude for any frequency, while their
fundamental-component amplitudes are separately dependent on
the frequency. This feature indicates the importance of selecting
an appropriate frequency level to carry out a sensitive nonlinear
ultrasonic measurement for contact conditions.

In the context of finite-amplitude ultrasonid4,1], an alterna-
tive measure of the nonlinearity is often used that is expressed as
the ratio between the harmonic amplitude and the square of the
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fundamental-frequency amplitude. If such parameters are denot = ¢#

by B, and vy, for transmitted and reflected waves, respectivelys' o . i’r;s'eh; 'nlmodel o
they read 5 10°h - - - Low-pressure approximation |
° ® Experimental data (loading)
B,= pCwkK, _ mCpCw g 1021 ©  Experimental data (unloading)
K% 2p0 /1+ CZpgm/(pr)Z §.. (Buck et al.)
4KI\/ 1+ 2
p2c20? =
(%) &
g
K, mC?p5™* 8
Y= - 2,.2m 2" B
K2 pcw\1+Cpg"(pcw) S
pCw 1+ @
2:2, 2 . I NS I N B
pCiw 10 5 1 )
(2%) 10 10 10

These nonlinearity parameters have a feature that they are inte- Nominal contact pressure [MPa]

pendent of the amplitude of the incident wave. For the power-la]g\ll

pressure stiffness relation, the asymptotic behavior for these pﬁ%ﬁ Variation of the nonlinearity parameter B, with the

nal contact pressure, at 5 MHz fundamental frequency.

rameters follows as Solid line: present model, broken line: low-pressure asymptotic
2 form, circles: experimental data by Buck et al. [9]. The param-
e M i Yo £ p2m*1 (30) eters are scaled with respect to the value at 10 MPa.
2 po’ pCw 0

in the limit of CpJ/(pcw)—0. It is noteworthy thap, scales as
the inverse ofp, irrespective of the value of the exponemt
while the asymptotic dependence pf on py is qualitatively the
same as that of; shown in Eq.(28b).

Buck et al.[9] measured the harmonic generation at the cont
interface between two aluminum blocks, and recorgidas a
function of the applied pressure when the fundamental frequenh
was 5 MHz. The experimental conditions of Buck et[&l] were
somewhat similar to those of Drinkwater et 8], in that alumi-
num blocks were examined for a similar range of applied contathd
pressure, although the surface roughness of their specimens a}a

not known to be similar. In spite of this ambiguity, the almosP . . S
negligible hysteresis for loading and unloading in the experime ressure relation of the contact interface. It has been indicated that
the power-law exponent may vary depending on the roughness

tal data of Buck et al[9] is indicative of the features of surfaces

that are characterized og=0.5 as above. Therefore, it is of somecharacter of the interface. It has been also shown in the present

interest to attempt interpretation of the parameggrin their ex- analysis that this power-law exponent has a direct bearing on the

periment based on the stiffness parameters employed here. pressure-dept_andence Of. the _second harmonlcs_ appearing at _the
The paramete, has a dimension of the inverse of |ength|nterface. While the nonllnear_lty parameters defined as the.ratlo

Since no unit for theg, values is recorded by Buck et 2], their between the second-harmonic and the fundamental amplitudes

data and the present theoretical predictions are both normalized¥\PW Vvarious contact-pressure sensitivities depending on  the
their values at the contact pressure of 10 MPa, say, to comp er-law exponent, an analogous parameter defined as the ratio
their qualitative features of the pressure dependence. In the thBgtween the transmitted second-harmonic and the squared funda-
retical formula in Eq(29a), the fundamental frequency is set as gn€ntal amplitudes shows an inverse proportional dependence on
MHz to simulate the measurement. Figure 7 shows the measu8g contact pressure for arbitrary power-law behavior. Such impli-

and theoretical nonlinearity parametgs as function of the ap- cations ought to be studied more closely in a coordinated theoret-

plied pressure. When normalized in the fashion explained aboyg?! and experimental study, and constitutes a subject of continu-
the theoretical result fits the measured data fairly well. Furthdhd Interest.

more, in the log-log plot, the asymptotic relation given in E2f)
for Cpg/(pcw)—0 is represented as a straight line with slopdcknowledgments
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appearance of the zero-frequency component at the interface has
been indicated as the outcome of the analysis. The analysis has
been applied to interpret some of the existing experimental results,

spd the qualitative contact-pressure dependence of the harmonic
amplitudes(nonlinearity parametersas been illustrated theoreti-

ly. The present analysis has shown that the quantitative second-
rmonic measurement can yield the second-order contact stiff-

ness, and may be used as a supplementary parameter to
racterize the state of contact.

ased on some contact-mechanics considerations, certain ex-
nation has been given to the power-law nature of the stiffness-
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Rayleigh Waves in Anisotropic
Crystals Rotating About the
sanssnocn: | Normal to a Symmetry Plane

UMR 7607, CNRS,
Université Pierre et Marie Curie,

4 place Jussieu, Tour 66, case 162, The propagation of surface acoustic waves in a rotating anisotropic crystal is studied. The
75252 Paris Cedex 05, France crystal is monoclinic and cut along a plane containing the normal to the symmetry plane;
g-mail: destrade@Imm jussieu.fr this normal is also the axis of rotation. The secular equation is obtained explicitly using

the “method of the polarization vector,” and it shows that the wave is dispersive and
decelerates with increasing rotation rate. The case of orthorhombic symmetry is also
treated. The surface wave speed is computed for 12 monoclinic and 8 rhombic crystals,
and for a large range of the rotation rate/wave frequency ratio.

[DOI: 10.1115/1.1756140

1 Introduction crystals with a single symmetry plane, up to the derivation of the

secular equation in explicit form, that is an equation giving the

Introduced more than 30 years ago, surface acoustic Waﬁ@yleigh wave speed in terms of the elastic parameters and of the
(SAW) devices have been used with great success by the telecqg{éti on rate

munication industry: nowadays, they are produced in large quan-rpq equation is reached in Sec. 3, after the governing equations
tities (several billions per yeaiand used in wireless transmission, .« heen written down in Sec. 2 'I"he secular equation turns out
and reception technology for color television sets, cell phone@ be a polynomial of degree 8 for the squared wave speed and
global positioning systems, etc. In recent years, new applicatiog, for the squared rotation rate/wave frequency ratio. In the
for SAW_devices have emerged, namely _acoustic sensors, Whﬁ%’upler case of orthorhombic symmei(§ec. 4, the polynomial
are passivéno power supply is needgdesistant, almost nonag- js of degree 6. The Rayleigh wave speed is computed numerically
ing, cheap(only one photo-lithographic process is involved in the, 20 specific anisotropic materials2 monoclinic, 8 orthorhom-
production, light (less than 1pand can be operated remotely andyic) and for a rotation rate/wave frequency ratio varying from 0 to
wirelessly. For instancfl], SAW identification tags are used for 10 of course, this range is way beyond the elastic behavior limit,
highway toll collection in Norway and for the Munich subwayang js jrrealistic for pratical purposes where the frequency of a
system; SAW temperature sensors can achieve a resolutionsgiy device is typically in the 100 kHz—10 MHz range. It is
0.02°C from—196°C up to 500°C; wide ranges and fine resolupresented to show that the method of resolution is exact and not
tions are also achieved for pressure, torque, or current sensors, gproximate, applies for any rate of rotation, and that in contrast
Also, the automotive industry is engaged in the search for gith the nonrotating case, the secular equation is dispersive. At
“intelligent tire” which could provide direct information on its small rotation rates, and for certain crystals such as PZT-5, other
current state as the car is moving; in this context SAW sensqigpers,[6,8], show that the Rayleigh wave speed may at first
have been used to measure tire presg@feor friction, [3], as the jncrease slightly with the rotation frequency/wave frequency ratio.
wheel rotates. In general, SAW devices may be used as anguyl@farge ratios, it is seen here that the wave speed decreases with
rate sensorggyroscopesto measure frequency shifts due to thencreasing ratios. These variations are crucial to the understanding
rotation,[4—6]. In the present paper, an investigation of the effecind correct design of rotating SAW sensors or SAW signal pro-
of rotation upon the speed of surfa@iRayleigh waves in an an- cessing devices. A recent artic[®], describes the manufacturing
isotropic crystal is presented. of a 1 cmx1 cm SAW gyroscope and how the rotation rate may
The crystal may possess as little as a single plane of symmetsg. measured using SAW technology. Another example that
It is cut along any plane containing the normal to the symmetgprings to mind is that of “spinning missiles]10], for which one
plane and is assumed to rotate at a constant rate about this normmight speculate that the communication is ensured via SAW gen-
The surface wave is polarized in the symmetry plane. In otheration and processing of high-frequency signals modified by the
words, it suffices to consider the propagation of a surface waverittation. Finally in Sec. 5, the merits of several methods of deri-
the x;-direction of a monoclinic crystal with symmetry plane atation for the secular equation in non-rotating crystals are dis-
x3=0, cut along thex,=0 plane, and rotating about thg-axis cussed. This paper aims to provide a theoretical and analytical
(see Fig. 1 The secular equation for rotating materials was olframework for the study of surface acoustic waves in rotating
tained by others but in simpler settings: by Clarke and Burdessarystals.
an isotropic material, first for small rotation rate/wave frequency
ratios,[4], then for any ratio[5]; by Grigor'evskij Gulyaev, and 2 Basic Equations

Kozlov [7] also for isotropic materials but neglecting the centrifu- \ye consider a half-space,=0 occupied by a homogeneous
gal force; and by Fang, Yang, and Jiaf@] for crystals having anisotropic crystal possessing one plane of symmetry,ato,
tetragonal symmetry. Here, the analysis is fully developed fgf,q rotating at a constant angular veloditabout thexs-axis. We
— _ o study the propagation of a surfad®ayleigh wave in the
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF xl-direction, with attenuation in thgz-direction. In the rotating

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- . _ C .
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where the strain componentg are defined in terms of the dis-

placement components by:e2=u; ;+u;;, and thesi’j are the

Fig. 1 Monoclinic crystal with symmetry plane at X3=0, cut reduced compliances. Alternatively, the equivalent strain-stress re-

along x,=0, and rotating about Xx; at constant angular velocity lations can be used|12], p. 39,
o o=C¢€, Cg=1, ®)
where O'o:[0'11,0'22,0'23,0'31,0'121-'—, Eo:[fll, ...,2E1i|T. The

. _ ) ) _ . C;jj are elements, in the Voigt notation, of the fourth-order elastic
ond term in the right-hand side of E€l) is due to the Coriolis stiffness tenso€;;, . Table 1 shows the relevant reduced compli-
acceleration, the third is due to the centrifugal acceleration. Noj@ces of 12 different monoclinic crystals, computed from the cor-
that Eq. (1) represents the time-dependent part of the full equgesponding stiffnesses as collected by Chadwick and W{i8h
tions of motion. The time-independent part, namely @fiv the last column gives the corresponding Rayleigh wave speed in
=pQ%k X [kx (u+x)], whereu’=u’(x) and o} = c;j U7, must  the nonrotating cas¢14].
be solved separately. The questions remaigapfvhether an ac-  In view of the form Eq.(2) for the displacement, we introduce
tual time-independent solution exists for Qlland if it does, ofb)  the functionst,, t, for the tractionss;,, o,, on the planes,
whether the boundary conditions of a traction-free rotating half= const. as
space may be satisfied without perturbating the time-dependent

" . ik _

boundary value problem. These questions do not seem to have T1dX1, %z X3, 1) =ikt (kxp) ka0,
been addressed in the literature, but some preliminary work seem —ikto(k ik(xg— 0t)
however to suggest th&) and(b) may be answered positively, at 022 X1,X2,X3,1) =ikta(kxp) € :

least within the framework of small amplitude waves superim]-hen, substituting Eq€2) and (3) into the equations of motion

posed upon a large elastic deformation. (1), we derive the following system of linear first-order differen-
Now, turning back to the time-dependent Et)), the mechani- | equations fol,, U,, t;, to,
N 4
t] (4)

cal displacement is taken in the form
whereU=[U,,U,]", t=[t;,t,]", and the prime denotes differ-
showing a sinusoidal propagation with speednd wave number entiation with respect t&x,. Note that, as in the static ca$é&5],
k in the x;-direction, and the possibility of an attenuation in théhe antiplane strain(stres$ decouples from the plane strain
Xo-direction through the unknown functidd(kxs). (stres$ and need not be considered for this problem. This decou-
We wish to describe the influence of the frame rotation upon thing would not occur if the crystal was rotating about iheaxis
speed of Rayleigh waves, and to this end, we introduce the folr the x,-axis, [6].
lowing quantities: The surfacex,=0 is free of tractions and so, the boundary
conditions are

N1 N,
No+(1+85)X1 Ny

u’} _
. y |=1
U(Xq,Xp,Xg,t) = U(kxp)elkxa—v0), ) [ t

X=pv?, 6=0/(kv)=0Qlw, t1(0)=t,(0)=0. (5)

In Eq. (4), N, andN, are the same as the<2 submatrices of
wherew is the real frequency of the wave. the 6x6 fundamental elasticity matriXl from Ingebrigsten and
For two-dimensional motions?(/ 9x3=0) such as Eq(2), the Tonning[16]. Their real matrixN;, however, has been modified
anisotropy of a crystal possessirg=0 as a symmetry plane is by the introduction of off-diagonal pure imaginary terms. Explic-
described by the following strain-stress relationshif2): itly, we have

Table 1 Values of the reduced compliances  (10™*2m?/N), density (kg/m®), and (nonrotating )
surface wave speed (m/s) for 12 monoclinic crystals

Material Si1 S22 Si2 St6 S26 Sgo p URr
diphenyl 854 1858 —366 —698 —1.44 5049 1114 1276
tin fluoride 345 228 —59.2 -197 120 922 4875 1339
tartaric acid 343 211 —164 —223 301 1650 1760 1756
oligoclase 133 227 —108 97.0 —160 483 2638 2413
microcline 94.5 165 -35.1 47.2 1.69 446 2561 2816
gypsum 243 130 —68.6 329 28.1 326 2310 3011
hornblende 63.3 103 —-32.7 —15.8 —2.72 320 3120 3049
aegirite-augite 53.6 784 —-21.0 -10.6 -33.5 237 3420 3382
epidote 53.3 49.6 -11.3 17.7 —-3.74 237 3400 3409
augite 54.5 64.4 —19.5 —19.0 —15.7 211 3320 3615
diopside 53.1 58.6 —-20.1 24.0 6.98 186 3310 3799
diallage 49.8 69.1 -11.3 —6.88 —14.5 166 3300 4000
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N _{re 1 7 2i5X} BTA+ATB=0. 8)
Y, 0 Nas Na2 —2i6X 0 Now, the eigenrelation Eq6) may be generalized for any posi-
where the quantities,, rg, Ny, Ny, Ngs, 77 are given in terms of UVE OF nNegative integen as

the elastic parameters §44,17)) Ta i a e i N(l”) N<2n) .
1 ol s, Plp|=N[p): whereN'=| i yoor (say. (9)
n=o s em o .
S11 Su St Explicitly, the elements oN" are computed by multiplication of
1sy Sis 1 sy sio 1]s), s} Norits ig\(/le)zrsq by itself. l;or instanc& " for n=1, 2, —1 is
Nge=—— v Npp=— v Nog=—~ . iven by K =Nz+X(1+ 691,
° S111St6  Ses 2 S111S12 S 2 S11S12  Soe g y V(;) ( ) , )
_ ’ _ ! ’
Thus the rotation of the crystal perturbs the equations of motion in Ki1=—2s1d 1531+ 8)X /sy,
three ways: the introduction of dispersion througha shift of ()1 et ot PNV T
magnitudes? in X=puv? for the lower left submatrix oN pro- Kig =[1= (11819 (1+ 89X = 2is360X]/s11, = K371, (10)
portional to the X2 unit matrix; and the modification dfs, k(222>:0

which is diagonal in the nonrotating cae®te that the new ma-

trix N3 is Hermitian:Ny=NJ.) Despite these modifications, the
secular equation can be obtained explicitly for the surface wave k(- 1— g/ (14 §?)—(s},s),—s]2)(1— 6%)2X]X/D,
speed, using a method proposed by CUrt® and by Tazie\y19] 5

for nonrotating anisotropic crystals with and without a plane ofK<151>=[sé6(1+ 82) + 2iS1,04 (S1,816— S11S96) (1 — 6%)2X]X/D
symmetry, respectively.

and

=KG Y, (11)

3 Secular Equation Kby V=1~ (s}yt se) (1 62X+ (s}~ S12)(1— 69)2X2)/D,

The method of the polarization vector was first presented by
Currie[18] to derive the secular equation for Rayleigh waves iWhereD is a real denominator common to the, » whose ex-
the symmetry plane of monaclinic nonrotating crystals. Then T@ression is too long to reproduce and which turns out to be irrel-
ziev[19] generalized the method to triclinioo symmetry plane evant for the derivation of the secular equation.
crystals. This method takes advantage of the Cayley-HamiltonNow we write in turn the second vector line of B§), for p;
theorem for the fundamental matry, which implies that onlyn ~ and forp,, and deduce
matrices Nk (k=1, ... n) are linearly independentn&3 for > N T
monoclinic crystalsn=>5 for triclinic crystalg. Currie used the K )A+N(1 'B=Bdiag ps,py)-
matricesN, N?, N° Taziev, the matriceN, N°, N°, N*, N°.  Multiplying this equality to the left byag =g'AT and to the right
Recently, Ting[20] placed their results within the context of thepy g, and using Eqs(7), (8), we conclude thatsee[20] for the
Stroh-Barnett-Lothe formalism and improved on them by showingonrotating case
that the choices oN~1, N, N? for monoclinic crystals and of .
N~2, N7, N, N2, NS for triclinic crystals lead to simpler and ag'KMag=0. (12)
more explicit secular equations. His approach is now adapted zp ,_ _

. . 1, 1, 2, andar=[1,a]" (say), three equations follow:
our present context of a rotating crystal with one symmetry plane. Be=[1a]" (say) q

An alternative derivation, not based on the Stroh-Barnett-Lothe KGYa+KGYat+ Ky Yaa=-KGY,
formalism, is available elsewherg1,22. -
We seek solutions to the equations of motion &.presenting KYa+KYa+KDaa= KDL,
exponential decay with distance o
U(kxp)=ae"™2,  t(kx,)=be*PX, T(p)>0, KZa+KFa=-K7.

where the constant vectossand b are related throughl2], p. We rearrange this system &syg,=h;, by introducing the fol-
139: b;=(Cysi1+ PCiskz)ax. Then the equations of motion Eg.lowing quantities:

4) give v .o .o
@9 Fui= DR(K(lzl))y Fio= DI(K(lzl))1 F13:DK(221):
a|_ ~la ' e (1) r (1)

Plp|=Np| (6) F21=0, Fao=s;7(K335),  Fag=s;Ky;

whereN is the 4x4 matrix in Eq.(4). This eigenvalue problem Fa=sR(KD), Fa=s,,7(K?), Fz3=0,

yields a quartic forp. We limit our investigation to the subsonic R . — =

range, defined as the greatest interval of valuessfovhere the gi=ata, g;=i(a—a), gz=aqa,

determinant oN—p1 possesses two roofs, p,, with positive hy=— Dk(ﬁ“ , hy= —Silk(ﬂ) , hsy= _Silkgzl) ]

imaginary parts. We caly, a,, andb,, b,, the vectorsa andb
corresponding to each root. Then the solution is of the fga#]], Note that the explicit expressions for the nondimensional quanti-
p. 149 ties Fy, and h; in terms of X=pv?, 6=Q/w, and thesi’j are

e ikp* ko Kp*y KD ikDox easily read off Egs.(10), (11). For instance,F,=2s;,6X,
U=A(e")a, t=B(e"P)q, (eP)=diage™rr? et>), Fao=—28160X, h,=1—s],(1+ 6% X, and so on.
whereA=[a;,a,], B=[by,b,], andq is a constant vector. Using The linear nonhomogeneous syst&ig=h has a unique solu-
the boundary conditions E@5), we have at the free surfacg tion for g. IntroducingA=detF andA, (k=1,2,3), the determi-
=0, nant of the matrix obtained frork by replacing itskth column
with h, we write the solution ag,=A,/A. But the components
of g are related one to another through=(g./2)%+ (g,/2).
Moreover, the matriced andB satisfy the orthogonality condi- This relation is theexplicit secular equation for Rayleigh waves
tion, [23], on an anisotropic crystal rotating in its plane of symmetry

Bg=0, and u(xy,0x3,t)=age ™17V a.=Aq. (7)
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Fig. 2 Rayleigh wave speeds for 12 monoclinic crystals rotat-

ing about x5

This equation is a polynomial of degree 8= pv?, and also
of degree 8 ins°. BecauseS=0/w appears only in even powers in

A2+ A3—4A;A=0.

(13)

4000

8
3

Rayleigh wave speed
g

1000

2 4 6 8 10

rotation rate/wave frequency ratio

Fig. 3 Rayleigh wave speeds for 8 rhombic crystals rotating
about x;

computed from the corresponding values of the stiffnesses as col-
lected by Shutilof24]. The corresponding Rayleigh wave speed
vR in the nonrotating cas@ast column is found from the exact

the secular equation, the Rayleigh speed obtained as a root of @um equation|25])
(13) does not depend on the sense of rotation. Numerically, we

find that the rotation slows the Rayleigh wave down and that the
speed is a monotone decreasing functiod.ofVe see this behav-

(1= Xspy) V1= Xsgg— XS] Shp— X(S]385,—515)]1=0.

ior on Fig. 2, where the dependence of the Rayleigh wave speedVhen the frame is rotating, the systéfg=h reduces to

upon§ is shown for the 12 monoclinic crystals from Table 1. The 0
curves are arranged in the same order as in the table, from the

slowest(diphenyl, starting at 1276 m)/do the fastesidiallage,
starting at 4000 mjs

The secular equation is valid for any crystal possessing at least

Fi Fi3 01 h,
0 Fy Fa3||02]=|hy|,
Fy 0 0]lgl LO

one plane of symmetry, as long as the half-space is cut alongvhereFs# 0 and

plane containing the normal to the plane of symmetry. In particu-
lar, it is also valid for orthorhombic crystals when the plane of cut

contains one of the crystallographic axes. When this plane con-
tains two crystallographic axes, the secular equation factorizes

and a separate treatment is required.

4 Orthorhombic Materials

When the material possesses three orthogonal planes of sym-
metry and the axe<J,i,j,k) are aligned with the crystallographic

F1o=251,6X,
F13=1—(S1;+ Sge) (1+ 6%) X+ 57;556(1— 67)2X?,
Foo=—251,6X, Faa=s],(1+8)X,
hy=[$5(1+ 6% — (51585~ 513) (1~ 6%)°X]X,
h,=1-s],(1+ &)X.

axes, some compliances vanishg=sjs=0. Table 2 lists the val- From this new system of equations, we deduce ghatA,/A and
ues of the relevant reduced compliances for 8 rhombic crystatg=A3/A, where

Table 2 Values of the reduced compliances

(1072 m?/N), den-
sity (kg/m®), and (nonrotating ) surface wave speed (m/s) for 8
orthorhombic crystals

Material sh Shy Si, Sts p VR

sulfur 65.1 76.2 —42.2 132 2070 1628
iodic acid 36.1 20.1 —7.88 57.5 4630 1678
a-uranium 4.89 529 -1.13 13,5 19000 1819
rochelle salt 49.3 33.0 -—-18.2 102 1775 2114
sodium-tartrate 32.1 27.1 -16.8 102 1818 2197
strotium formate 24.5 309 -—-7.32 58.1 2250 2451
olivine 3.26 5.34 —-0.97 12.6 3324 4599
benzophenone 13.0 139 -7.17 27.9 1219 4723

Journal of Applied Mechanics

A=FFo3—FoF13,  Ay=hiFy3—hyFyg,

Az=Fh—Foohy,

and also thaty;=a+ a=0, implying thatg,=2ia, gz=—a?
=(g,/2)? as well. This last equality is thexplicit secular equa-
tion for Rayleigh waves on an orthorhombic crystal rotating in
one plane of symmetry

A2-ak.i-o0.

This equation is a polynomial of degree 6 X=pv? and in
5= w. As in the monoclinic case above, the roots are even func-
tions of 6. Numerically, the results are similar to those of the
monoclinic case, as Fig. 3 shows for the eight orthorhombic crys-
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tals of Table 2. Again, the curves are arranged in the same order agl Clarke, N. S., and Burdess, J. S., 1994, “Rayleigh Waves on a Rotating Sur-

; ; face,” ASME J. Appl. Mech.61, pp. 724-726.
in the table, from the slowe$!;ulfur, starting at 1628 m)'SKO the [6] Fang, H., Yang, J., and Jiang, Q., 2000, “Rotation Perturbed Surface Acoustic

fastest(benzophenone, starting at 4723 jn/s Waves Propagating in Piezoelectric Crystals,” Int. J. Solids Straat..pp.
4933-4947.
5 Concluding Remarks [7] Grigor'evskil V. ., Gulyaev, Yu. V., and Kozlov, A. 1., 2000, “Acoustic Waves

. . in a Rotating Elastic Medium,” Acoust. Physif, pp. 236—-238.
Several methods have been proposed to derive explicitly thes) coliet, B., 2003, “Gyroscopic Effect on Surface Acoustic Waves in Aniso-

secular equation for surface waves in nonrotating monoclinic  tropic Solid Media,” Proceedings of the 5th World Congress on Ultrasopics
crystals with the plane of symmetry &t=0. This author[14], pp. 991-995.

; ; _ | Jose, K. A., Suh, W. D., Xavier, P. B, Varadan, V. K., and Varadan, V. V., 2002,
wrote the equations of motion as a system of two second ordef® “Surface Acoustic Wave MEMS Gyroscope.” Wave Motic6, pp. 367381,

differential equations for the tractions &ty —i Bity— ¥iktk=0,  [10] Jahangir, E., and Howe, R. M., 1993, “Time-Optimal Attitude Control Scheme
Ay n . : for a Spinning Missile,” J. Guid. Control Dyn16, pp. 346—353.

Wh_el’ec_l, B’ y are 2><2 real symmetric mamc.es' Then the methOdPl] Schoenberg, M., and Censor, D., 1973, “Elastic Waves in Rotating Media,” Q.

of first integralg 26], yields the secular equation. The equations of " app). Math., 31, pp. 115-125.

motion Eg.(4) may also be written in a similar manner for a [12] Ting, T. C. T., 1996 Anisotropic Elasticity: Theory and Application®xford

rotating crystal, bute, B, ¥ become complex and the method of University Press, New York. ) )

first integrals is no |0nger applicable as such. Next Tﬁﬂl@] [13] Chadwick, P., and Wilson, N. J., 1992, “The Behavior of Elastic Surface
d ial K d ob N d h’ | Waves Polarized in a Plane of Material Symmetry, 1. Monoclinic Media,”

assumed an exponential form ffikkx,) and obtained the secular Proc. R. Soc. London, Ser. 438 pp. 207—223.

equation through some Simpje algebraic manipulations, taking ag4] Destrade, M., 2001, “The Explicit Secular Equation for Surface Acoustic

vantage of the fact thaAtlz: B2,=0; in the rotating case, how- V\‘llaz)vzes in Monoclinic Elastic Crystals,” J. Acoust. Soc. ArhQ9, pp. 1398—
eYer' these qu_am'tles al_’e no Ionger ze_ro. F[IZTE] (uslng _the [15] Stroh, A. N., 1962, “Steady State Problems in Anisotropic Elasticity,” J. Math.
displacement fieldand this authof25] (using the traction field Phys.,41, pp. 77—103.

devised yet another method, where the secular equation is tfes] Ingebrigsten, K. A., and Tonning, A., 1969, “Elastic Surface Waves in Crys-
resultant of two polynomials; again, having real quantities for thefm tal,” Phys. Rev., 184, pp. 942-951.

. . . Ting, T. C. T., 2002, “Explicit Secular Equations for Surface Waves in Mono-
components oN is a crucial property, no longer true for rotating clinic Materials With the Symmetry Plane gi=0, x,= 0 or x;=0," Proc. R.

crystals. o _ Soc. London, Ser. AA458, pp. 1017-1031.
All in all, it seems that the method of the polarization vector is[18] Currie, P. K., 1979, “The Secular Equation for Rayleigh Waves on Elastic
the most appropriate for the case of a rotating crystal. Note that a  Crystals,” Q. J. Mech. Appl. Math32, pp. 163-173.

- - - : f [19] Taziev, R. M., 1989, “Dispersion Relation for Acoustic Waves in an Aniso-
simple derivation of its main resuli2), not relying on the Stroh tropic Elastic Half-Space.” Sov. Phys. Acouss5, pp. 535-538.

formalism, was presented recen1ﬂ2,1,22]. [20] Ting, T. C. T., 2004, “The Polarization Vector and Secular Equation for Sur-
face Waves in an Anisotropic Elastic Half-Space,” Int. J. Solids Strdd.pp.
2065-2083.

Acknowledgments

[21] Destrade, M., 2004, “Surface Waves in Rotating Rhombic Crystals,” Proc. R.
| thank T. C. T. Ting, G. Saccomandi, and A. Shuvalov for Soc. London, Ser. A460, pp. 653—665.

. . P . 2] Destrade, M., 2004, “Explicit Secular Equation for Scholte Waves Over a
being so generous with their time and for helping me addredé Monoclinic Crystal,” J. Sound Vib., to appear.

some fundamental questions related to this material. [23] Barnett, D. M., and Lothe, J., 1973, “Synthesis of the Sextic and the Integral
Formalism for Dislocations, Green’s Function, and Surface W&egyleigh
References Wave Solutions in Anisotropic Elastic Solids,” Phys. NorV, pp. 13—19.

[24] Shutilov, V., 1988 ,Fundamental Physics of UltrasounGordon and Breach,
[1] Reindl, L., Scholl, G., Ostertag, T., Scherr, H., Wolff, U., and Schmidt, F., New York.
1998, “Theory and Application of Passive SWA Radio Transponders as Ser[-25] Destrade, M., 2003, “Rayleigh Waves in Symmetry Planes of Crystals: Ex-
sors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contdd, pp. 1281-1292. plicit Secular Equations and Some Explicit Wave Speeds,” Mech. M&8r.,
[2] Pohl, A., Ostermayer, G., Reindl, L., and Seifert, F., 1997, “Monitoring the 931-939.
Tire Pressure at Cars Using Passive SWA Sensors,” IEEE Ultrasonics Symp¢26] Mozhaev, V. G., 1995, “Some New Ideas in the Theory of Surface Acoustic

sium, 1, pp. 471-474. Waves in Anisotropic Media,ITUTAM Symposium on Anisotropy, Inhomoge-
[3] Pohl, A., Steindl, R., and Reindl, L., 1999, “The ‘Intelligent Tire’ Utilizing neity and Nonlinearity in Solid®. F. Parker and A. H. England, eds., Kluwer,

Passive SWA Sensors—Measurement of Tire Friction,” IEEE Trans. Instrum. Dordrecht, The Netherlands, pp. 455-462.

Meas. 48, pp. 1041-1046. [27] Furs, A. N., 1997, “Covariant Form of the Dispersion Equation for Surface
[4] Clarke, N. S., and Burdess, J. S., 1994, “A Rotation Rate Sensor Based Upon  Acoustic Waves in Symmetry Planes of Crystals,” Crystallogr. Réppp.

a Rayleigh Resonator,” ASME J. Appl. Mecl&l, pp. 139-143. 196-201.

520 / Vol. 71, JULY 2004 Transactions of the ASME



Modeling the Rotation of

Orthotropic Axes of Sheet Metals

Subjected to Off-Axis Uniaxial
weiTong | TENSION

Hong Tao A simplified version of a newly developed anisotropic plasticity theory is presented to

) . describe the anisotropic flow behavior of orthotropic polycrystalline sheet metals under
quuan Jlang uniaxial tension. The theory is formulated in terms of the intrinsic variables of principal

stresses and a loading orientation angle and its uniaxial tension version requires a non-

Department of Mechanical Engineering, quadratic stress exponent and up to five anisotropic material functions of the loading
Yale University, orientation angle to specify a flow condition, a flow rule for plastic strain rates, a flow
219 Becton Center, rule for macroscopic plastic spin, and an evolution law of isotropic hardening. In this

New Haven, CT 06520-8284 investigation, the proper analytical form and the associated parameter identification of

the anisotropic material functions defining the flow rule of macroscopic plastic spin are
discussed for sheet metals with persistent but rotated orthotropic symmetry axes under
off-axis uniaxial tension. It is shown that the proposed flow rule of macroscopic plastic
spin can successfully model the experimental data on the rotation of orthotropic symmetry
axes in the three sheet metals reported, respectively, by Boehler et al. (Boehler and Koss,
1991, Advances in Continuum Mechanics, O. Bruller et al., eds., Springer, Heidelberg,
pp. 143-158; Losilla, Boehler, and Zheng, 2000, Acta Meth4, pp. 169-183); Kim and

Yin (1997, J. Mech. Phys. Solid$, pp. 841-851); and Bunge and Nielsen (1997 Int. J.
Plasticity 13, pp. 435-446). [DOI: 10.1115/1.1755694

1 Introduction many macroscopic anisotropic plasticity theories proposed in the
The microstructure of a polycrystalline sheet metal general"ter‘.'jlture hav_e incorporated Isotropic hardenmg_ and even k|_ne-

; - . . atic hardening models developed originally for isotropic plastic-

evolves as it undergoes some finite plastic deformation. The . 2 R
iy theories, almost all of them have explicitly or implicitly as-

ﬂi:ff-'t{ﬁ?%gg |?;§::Slt12léctg§(?lljfevﬂcgfur;iggcg; sg?;ilr?sasetmzﬁ t,:Nsumed that the initial material texture is strong and it persists upon

urther plastic straining, i.e., the evolution of crystallographic tex-

dislocation substructure texture evolution within the grains. Thefﬁre is not considered. However, both micromechanical analyses
have bgen Con_tlnued effqrts onimproving phenomenologlca}l mafid experimental investigations of rolled sheet metals have shown
roscopic plastlc!t_y_ theories bY Incorporating some CONSttUtVig o e re are noticeable and even significant changes of material
modeling capabllltl_es .Of material mlcros_tructural evolu_tlon us.'ngrthotropic symmetry when a sheet metal is subjected to a plastic
scalar and tensorial internal state variables. Isotropic strain Hain up to 20%—-309%9—12). For two rolled steel and one alu-
worl.< hardenlng_ F:haracpenzed by an effective plastic strain Minum sheet metals that were subjectedthaxis uniaxial ten-
e_quwalent specific p|§lStIC work1], is perh_aps t_he best-known sion (i.e., the axial loading direction is not aligned with the ortho-
single scalar state variable model of material microstructural evf?()pic axes of the shegtsexperimental observations have shown
lution (it basically accounts for the increase of the average dislya; the orthotropic symmetry of these sheet metals is more or less
cation density in a metal due to plastic floWhe kinematic hard- ¢t byt the symmetry axes rotate relatively with respect to the
ening _model \(\nth a backstress tensor developed for iSOtroRIfeet metal itself in the plane of the shd@0-12. A flow rule
plasticity theories[2—4], can be regarded as the phenomenologfy macroscopic plastic spifaccounting for the orientational evo-
ca! descrlptlor_1 of anisotropic hardening behavior due to the evVition of the material texture framenay thus be appropriate in an
lution of the dislocation substructure towards some preferred Spgyisotropic plasticity theory to describe these experimental obser-
tial orientations that are aligned with current plastic strainingstions.
directions. _ The concept of macroscopic plastic spin has been explicitly
On the other hand, metal products manufactured by rollingiroduced since early 1970s into the framework of polycrystalline
(sheet meta)s drawing (wires), and extrusion(plates are typi- pjasticity theories|13—15. Considerable attentions have been de-
cally anisotropic(primarily due to the resulting crystallographicygted to its role from theoretical consideratidssch as a missing
texture, i.e., grains packed with some preferred orientatiand  kinematics link to the material microstructural evolutiand the
so the use of anisotropic plasticity theories is more appropriate {acessity from the standpoint of the stability of numerical simu-
engineering design and analysis of these matefi&is8]. While |ations,[16—34. The flow rule of macroscopic plastic spin pro-
- posed in the literature are mainly motivated and derived through
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  ajther the representation theorems or some heuristic microme-
MECHANICAL ENGINEERSfor publication in the ASME OQURNAL OF APPLIED ME- . . . . . . .
CHANICS. Manuscript received by the Applied Mechanics Division, February ZBC?ham(:aI ar_guments 'nVOlVlng_ tensorial Str_u_Cture Va”abl_es' identi-
2003; final revision, September 3, 2003. Associate Editor: M.-J. Pindera. Discussi@d to be either the orthotropic or other privileged material frames
O? /}\helpa:jpeMr shr?ulc_i be deressed to fth,\j Egitc’p Plrof-fgbett M. McM?eEkin_g, Jourgal back stress tensors. Only very simple analytical forms of the
Oor Applies echanics, Department o echanical an nvironmental Engineeri H 7 H
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will %I)J Vgtr;ut:Seogur:]p%csrgsg)opslﬁyp;gfghﬁlT/orrla;\l/ﬁsgse?qr:;:éjr%%isfse:trcffr
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JOURNAL OF APPLIED MECHANICS. pic plasticity theory with tensorial backstress kinematic hardening
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or Hill's 1948 quadratic anisotropic plasticity theory with isotro- O3(Zy&7Z)
pic hardening and strong and persistent orthotropic symmetry.
Nevertheless, the existing simple flow rules of macroscopic plas-
tic spin for orthotropic sheet metals are found to be unable to
describe consistently the rotation of orthotropic axes observed in o2
experiments[11,28|.
In this investigation, a flow rule of macroscopic plastic spin Y
proposed in a newly developed anisotropic plasticity the@y;- / /Yo
40] is evaluated for modeling the rotation of orthotropic symmetry
axes in the two steel and one aluminum sheet metals subjected t O1
off-axis uniaxial tension. First, constitutive equations of the aniso-
tropic plasticity theory along with the procedure on evaluating [
anisotropic material functions in these constitutive equations are Wy, X
summarized in Section 2 for polycrystalline sheet metals under
uniaxial tension. The experimental investigations on the orienta- a
tional evolution of orthotropic symmetry axes in sheet metals are Xo
briefly reviewed and material parameters of the anisotropic mate-
rial functions defining the flow rule of macroscopic plastic spifFig. 1 Definitions of the three Cartesian coordinate systems
proposed in the theory are identified in Section 3. Results of badr a monoclinic sheet metal: (&) the principal axes of stress
the experimental measurements and the model descriptions @re,o,,03); (b) the principal axes of the current material tex-
compared for the three sheet metals in Section 3 as well. A digte frame XYZ; and (c) the sheet material coordinate system
cussion on the proper formulation and the necessity of the flot YoZo- The principal axis of o5 always coincides with ~ Zp-axis
rule of macroscopic plastic spin for modeling the anisotropic pla&td £-axis to ensure the planar plastic flow of the sheet metal.
tic flow of sheet metals is presented in Section 4. Conclusiog e in-plane axes X and Y of the texture frame are defined to

d f this i tioati deli ic plast the principal straining directions of the sheet metal under
rawn from this investugation on modeling macroscopic plas I(S:qual biaxial tension (o ;=0,, o3=0). The material coordinate
spin are given in Section 5.

system X, YyZ, undergoes the same rigid body rotation as the
sheet metal itself and it may be chosen to coincide with the
initial texture frame of the sheet metal  (the initial texture frame

. . . of an orthotropic sheet metal is defined by its rolling (RD),
2 A Model of Anisotropic Plastic Flows Under tansverse (TD), and normal (ND) directions ). The loading ori-
Uniaxial Tension entation angle @ is defined as the angle between the principal

. . . . . . axis of o, and the X-axis of the material texture frame. The
The finite elastic-plastic deformation kinematics of a shegijative rotation «,, of the texture frame with respect to the

metal may be expressed through the multiplicative decompositigfaterial coordinate system of the sheet metal is due to the
of the macroscopic deformation gradient tenBanto the elastic macroscopic plastic spin ~ @;,, [28].

and plastic part&® andF?, [31]. By neglecting the small elastic
stretching in sheet metals involving finite plastic deformation, one
has the commonly known results of rigid-viscoplastic deformation
kinematics as follows:

0 @y, 0 0 Y 0
F=FFP~R*FP, WP=| i 0 0], wr=|a% 0 0|, (@
L=FF 1~(R*FP+R*FP)FP 'R* 1 0 0 0 0 0 0
. i A
=R*R* 1+ RYFPFP R* 1, (1)  where 6 is the loading orientation angledefined as the angle
o . o between the axial loading directiom;=c,>0 and the current
L=D+W=DP+W=*+WP, in-planeX-axis of the sheet metal texture frarteee Fig. 1, and
D=(L+LT)/2=D®+DP~DP, . o o , ,
W=(L_LT)/2=W* +Wp, (2) €3= — &1 &, €21~ €12, wWo1= — W12,

Sk -k A k-
where R* is the rigid body rotation of the underlying material wn=" 0 W= ontorp, )

“texture” frame (some preferre_d orientations such as orthotropighere Wz is the in-plane material spifmacroscopically observ-
symmetry axefs DP is the plastic rate of deformation tensW,”  ap|g of the sheet metal. We propose the following rate-dependent

is the plastic spin tensor defined as the difference between {higenomenological theory to model the anisotropic plastic flow of
material spinW, and the so-called constitutive spi*, [17,28. 3 sheet metal undemiaxial tension

A complete macroscopic theory of plastic flow usually provides a )
flow condition, flow rules that define both the plastic strain rate T=19(&,y),
tensorDP and the plastic spin rate tenséf®, and isotropic and 4 a . i
even anisotropic hardening models via a set of internal state vari- 7 — 9¢®1(6) (the flow condition and flow function (5)
ables and associated kinetic equations on their evolUt&; 34. a1 a1
Using the principal axes of the applied stress tensor as the Car- 8= '),(2) D,(0), &,= '7(2) D),
tesian coordinate system of the choice in this investigatsme T T
Fig. 1, the expressions for the stress tensgrthe macroscopic a1
plastic rate of deformation tensBP, the macroscopic plastic spin £10= 7(2) ®4(0), (the flow rule forDP) (6)
tensorWP, and the material constitutive spin tensé* under ’
uniaxial tensionare

a—1
. - [0y
) =5 =L p
- 5, i O w1 y(T) Dy(0), (the flow rule forWP) (7)
o= 0 s DP= 1.'-121 éz 0 s . ) (1)5(0) a—1/a
0 0 0 & :’(dnw))
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(the evolution law of isotropic hardening (8) iulz_ Dy(0)

== . (the plastic spin rati 10c
where 7 is the effective flow stressy is the work-conjugate ef- e @y(0) ( P P B (1)
fective plastic strain rate is a certain internal state variableThe five anisotropic material function®,(6), ®,(6), ®3(6),
characterizing the isotropic hardening state of the materigls @ ,(¢), and®s(6) in the proposed anisotropic plastic flow theory
the effective flow strengtra(>1) is the stress exponent and it isynder uniaxial tension can thus be completely examined from the
a noninteger in general, arbl; (), ®,(0), ©3(6), P4(6), and  experimental measurements of,(¢;,2,), Ry, I'y, andII,,
®5(6) are five material functions characterizing the planar plastjgs_37 40. Evaluation of the proper analytical form of the aniso-
anisotropy of the sheet metal under uniaxial tension. The consfiopic material functiond,(6) that defines the flow rule of mac-
tutive equations Eqg¢5)—(8) are the simplifieduniaxial tensioh  roscopic plastic spin or the plastic spin ralig, for a given sheet

version of a planar anisotropic plastic flow theory recently deveetal is the focus of this investigation and will be discussed in
oped by Tong et all35-4( in terms of principal stresses and agetails in the next section.

loading orientation angléwhich have been called intrinsic vari-
ables of a stress field according to Hi41,42). The above con- . . A .
stitutive equations under uniaxial tension can be justified from% Macrqscop'lc Plastlc Spln in Sheet Metals Subjected
micromechanical point of viewsee Appendix When the associ- t0 Off-Axis Uniaxial Tension

ated flow rule is applied toe;,, [41,42, one has®3(0) In this section, the procedures of experimental investigations on
=d;(6)/2a. If one assumed(0)=D,(6), thené=1y, i.e., the the orientational evolution of material texture frames in three
isotropic hardening is characterized by the cumulative effectivaieet metals will be reviewed first and the reported experimental
plastic strain. On the other hand, if one assumbg(6) results will be summarized briefly. The Fourier series representa-
=d, ()@ D), then'§= v, i.e., the isotropic hardening is char-tion and the identification of its Fourier coefficients of the aniso-
acterized by the cumulative plastic work per unit volume. tropic material functiond,(6) or the plastic spin ratidl, will
Because the equivalence of the loading orientation angles ofhen_ be detailed. The model description of the rotation of OI_’th(_)-
and 6= 7 due to the symmetry of mechanical loading, each of tHgopic axes of these three sheet metals under off-axis uniaxial
five anisotropic material functions of a sheet metal can be repf€nsion due to macroscopic plastic spin will be compared with the

sented by a Fourier series, namely, experimental measurements. Although the theory presented in
. ) Section 2 can be applied to monoclinic sheet metals under
D,(0)=Ag+A;sin20+A,cos 20+ ... +Ay_q5sin2ke uniaxial tension[37,40, the sheet metals considered in the fol-

lowing are assumed to be initially orthotropic and remain so under

off-axis uniaxial tension[11,28. So only the coefficients of the

®,(6)=Bo+ B, Sin 20+ B, c0S 20+ . . . +Byy_4 Sin 2k6 sine terms in the Fourier series &,(¢) and the coefficients of
the cosine terms in the Fourier seriesdof(#) are nonzero.

+Aycosko+ ...,

+BycosXkb+ ...,
3.1 On the Experimental Measurements of the Rotation of
®3(0)=Co+Cysin20+Cycos 20+ ... +Cy 1 SiN2KE Orthotropic Axes due to Macroscopic Plastic Spin. There
have been rather limited experimental investigations on detecting

+CaCos KO+ ..., ©) the macroscopic plastic spin and its evolution in orthotropic sheet
®,(0)=Dy+D, Sin 20+ D, coS 20+ . . . + Doy, sin 2k metals so far[10-12,43,44 A direct mechanisticevaluation of
the macroscopic plastic spin in orthotropic sheet metals under
+DycosXko+ ..., uniaxial tension has been carried out using a two-step experimen-
) ) tal technique by Boehler and Kof%0] and Kim and Yin[11]. It
©5(0)=Eo+E;sin20+E;cos 20+ ... +Ey4sin k6 consists of(a) the plastic deformation stepf uniaxial straining
multiple large sheet samples up to various plastic strain levels
TEacCos KOt . .., (10%-30% without necking at different off-axis angles afia)
wherek=1,2, ..., andA,, B,, C,, D,, andE,, are the Fourier the material (texture frame) probing stefy measuring the direc-

coefficients. The stress exponenand the Fourier coefficients of tional dependence of uniaxial tension flow stréssre specifi-
the five anisotropic material functions in E@®) may evolve with cally, the yield stress with a big offset strain of 0.2% smaller
subsequent plastic deformation when anisotropic hardening duaeasile sheet samples cut off from the deformed large sheet with
material texture evolution is modeled. They are all assumed to eeery 10 deg or 15 deg offset angle increments from the original
constant in this investigation, i.e., the characteristics of the matelling direction.
rial texture remains more or less the same but the whole textureBoehler et al[10,45 tested large sheets of an aluminum killed
frame can rotate relatively with respect to the sheet metal itself.d6ft steel of size 1000360 mnt under uniaxial tension with ini-
the sheet metal has some additional symmetry characteristics stighoff-axis loading orientation angles of 30 deg, 45 deg, and 60
as orthotropic, trigonal, or cubic symmetry in the plane of thdeg for various plastic strain levels up to 20% and above. Twelve
sheet, one can reduce the number of terms in each Fourier sesiesller specimens cut off from each of the deformed large sheets
by imposing the equivalency of loading conditions betwéemd with angles of 0 deg, 15 deg, 30 deg, 45 deg, 60 deg, 75 deg, 90
—6, # and 6+27/3, and6 and 6+ w/2 respectively. Furthermore, adeg, 105 deg, 120 deg, 135 deg, 150 deg, 165 deg offset from the
truncated Fourier series may be used in practice to approximatding direction of the sheets were then tested for yield stress
each anisotropic material function and the number of terms keptrimeasurements. Kim and Y{i1] carried out very similar tests on
each truncated Fourier series depends on planar anisotropy of @heautomotive low carbon steel sheet using the same three initial
sheet metal. Besides flow stress-strain cumvg&e,,s,), plastic off-axis loading orientation angles for various strain levels up to
strain and spin ratios can be measured under uniaxial tension:10%. They used a total of 18 smaller specimens cut off from each
. ®,(6) of the deformed large sheets in the material probing step with each
_%2_ 2 : : : specimen at an offset angle of every 10 deg increment from the
Ry= g3 DPUO)+DO)’ (the plastic axial strain ratjo rolling direction of the large sheets. To enhance the degree of
(10a) anisotropy of the steel sheets that were nearly isotropic initially,
) ®4(6) Kim and Yin [11] pre-strained the steel sheets along the rolling
_f12_ 3 ; : : direction up to strains of 3% and 6%, respectively. By examining
" g Dy(0)° (the plastic shear strain rafio the directional dependence of flow stress measured from 12 and
(10b) 18 small tensile specimens, respectively, both Boehler et al.
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[10,45 and Kim and Yin[11] concluded that their sheet metals 15
remain approximately orthotropic but there exists a large in-plane
rotation of the orthotropic symmetry axes relative to the sheet
metal itself under off-axis uniaxial tension. Both positiieoun-
terclockwisg and negativéclockwise rotations as defined in Fig.

1 were observed for initial loading orientation angles of 30 deg
and 60 deg, respectively, and the orthotropic symmetry axes be- g SE zr
come completely aligned with the external axial loading direction 5 %
within 5—-10% uniaxial plastic strain. That is, the texture axis that g »
is coincided with the initial rolling direction rotates towards the £ "} \
axial loading direction with an initial loading orientation angle of & - ‘ v/ ’

@ i

=1
10 ISl NG . 2,

e 0, (degree)

N
-
>,
/
I

o 1}
Y s
-
.

30 deg but the texture axis that is coincided with the initial trans- s

verse direction rotates towards the axial loading direction with an &

initial loading orientation angle of 60 deg. A rotation of the ortho-

tropic symmetry axes with an initial loading orientation angle of

45 deg was detected in both investigations as well but a positive B

rotation was reported by Boehler and K¢4§] while a negative [

rotation was found by Kim and Yif11]. <15 i i - B oo
An experimental determination of macroscopic plastic spin of

polycrystals based on material crystallographic texture measure-

ments has been propos_ed by Bunge and Nie[4@h They di- Fig. 2 The amount of rotation  w,, of the material texture frame
vided the crystallographic texture change of a polycrystal undgjge to plastic spin at a fixed uniaxial plastic strain £, of 20% as
going plastic deformation into an average rotation of somgfunction of the initial loading orientation angle 0, with three
common texture reference axes characteristic for the whole pobiifferent k values according to Eq.  (13b) (D=1 is used for all
crystal material element and a “spreading” of the individual crysdata points )

tal orientations away from the comma@rotated reference texture

frame. When the texture “spreading” is neglected, the texture

evolution can thus be characterized approximately by the texture

rotation or texture spin. Bunge and NielsEl?] measured the To the first approximation, one may sét;(6)~1 (assuming
orientation distribution functiotODF) of an annealed polycrys- r(&,y)=0,). When only one of coefficients in the Fourier series
talline aluminum sheet of 1 mm thickness before and after being @ ,(6) is nonzero, i.e.l1,~®,(6)~D sin k0k=1,2,...),
subjected to off-axis uniaxial tension to a total plastic strain @ne can obtain an analytical expression of B®) as
20% at 11 different initial loading orientation angles. They ana-
lyzed the rotation of a characteristic reference system formed by _okDe
the symmetric elements of the texture with an accuracy-0f5 o= Earctarﬂ{tar(kﬂo)e 2Pea}], (13)
deg using an autocorrelation function of ODF and considered the
texture rotation or spin being related to the macroscopic plast@
spin in the macroscopic theories of plasticity. They found that the
amount of texture rotation at a uniaxial plastic strain of 20% de-
pends on the initial loading orientation angle and the maximum
lastic spin ratio i 20% rr round the off-axj . . .
%EZEr?gsgng': tocf) 282%)32%2?%/2,18;; Cduegigoa;;# ; ctor?s(t)an?%e rotationw,, of the material texture frame with respect to the
plastic spin is assumgdThe macroscopic plastic spin of the alu-Sheet metal itself or the current loading orientation argts a
minum sheet defined by the crystallographic texture spin accofgnction of the initial loading orientation angiy and the uniaxial
ing to Bunge and Nielseft.2] is much smaller than that of low- Plastic straire,(=0) are shown in Fig. 2 and Fig. 3, respectively,
carbon steel sheets defined by the symmetry characteristics of ffi'9 Ed-(13). The material texture frame will eventually stop
directional dependence of flow stress according to Boehler angnning at certain loading orientation ar_lgles at suff|(:|en_t|_y large
Koss[10] and Kim and Yin[11]. Measured pole figures of a steelP'aStic strains and these loading orientation angles areghiib-
sheet investigated by Boehler and K§%6] under 45 deg off-axis UM orientations of the material texture frame. Possible equilib-
uniaxial tension showed that the symmetry part of the crystall§lUm orientations of the material texture frame of a sheet metal are
graphic texture in the steel sheet did rotate completely towards IO?dlng orientation angles that satisfy the conditibhs=0
axial loading direction at a plastic strain level of about 10%. andII;=0. Loading orientation angles that satisfy the conditions
I1,=0 andIl;<0 are metastable orientations and are not true
3.2 AnAnalysis of the Rotation of Orthotropic Axes due to  equilibrium orientationgi.e., any small disturbance can cause the
Macroscopic Plastic Spin. As there is very little relative rota- material texture frame to rotate away from those orientafions
tion of the sheet metal with respect to the fixed laboratory loadinghen D>0, the possible equilibrium orientations of the material
frame under uniaxial tensiof0—12,43,44 i.e.,W,;,~0, one has texture frame ar&=0 deg fork=1, /=0 deg and 90 deg fok
(see Fig. 1 =2, and#=0 deg, 60 deg and 120 deg for= 3. When D<O0, the
) . possible equilibrium orientations of the material texture frame are
0t 0~60y, and wq,+ 6=0, (11) =90 deg fork=1, =45 deg and 135 deg fde=2, and 6=30
where 6, and 6 are, respectively, the initial and current Ioadingﬁegx 90 deg, and 150 deg for=3. In general, Eq(12) may also
orientation angles, an@, is the rotation of the sheet metal tex-0€ rewritten using the Fourier series expansion Hf,
ture frame due to plastic spin,,. One can thus rewrite Eqloc) = P4(0)/P4(0) as
as

-10

Rotation o

Initial Loading Orientation Angle 0, (degree)

1 —2kDe
w1=0p— Earctarﬁ{tar( kfy)e 1. (13p)

0 de
0 ’de alz_f d,sin20+ d,sin46+dssin6o+ ) Y
H(’:_ 8_ or g1=— H_ (12) (7'0( 1 2 3 )

! fo™ Y The relation between the current loading orientation adgiethe
The directional dependence of flow stress under uniaxial tensigstation of the texture frame,, and the uniaxial plastic straity

is usually much milder than that of plastic strain and spin ratiosan be obtained by integrating Ed.4) numerically.
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Fig. 3 The current loading orientation angle 6 and the amount
of rotation -, of the material texture frame due to plastic spin

as a function of uniaxial plastic strain £, with three different
initial loading orientation angles @, and three different k values
according to Eq. (13) (kD=10 is used for all data points )

Journal of Applied Mechanics

Rotation of the Texture Frame o, (degree)

Uniaxial Plas tic S train ¢,

Fig. 4 Comparison of the model description (solid and dashed
lines) and the experimental data (filled symbols ) of a steel
sheet reported by Boehler and Koss  [10] and Losilla et al. [45]
on the rotation w,, of the material texture frame due to plastic
spin as a function of uniaxial plastic strain £, with different
initial loading orientation angles 6,=30deg, 45 deg, and 60
deg. The solid lines are given by Eq.  (14) with d,=7, d,=10 and
ds;=—3 (all other coefficients are zero ). The dashed lines are
given by Eq. (13b) with k=2 and D=9 (the initial loading orien-
tation angles of 30 deg, 46 deg, and 60 deg were used ).

3.3 Comparison Between the Model Description and Ex-
perimental Measurements on the Rotation of Orthotropic
Axes. Unlike plastic axial and shear strain rati@g andI" , (see
Egs.(10a) and(10b)) that can be directly determined from incre-
mental plastic strain measurements in each uniaxial tension test,
the plastic spin ratio has to be determined from the measurements
of both axial plastic strain increments and rotations of the material
symmetry axesby a separate mechanical or material texture mea-
surement, see Section 3.10nly limited experimental data are
reported for a given sheet metal either in terms of the rotation of
orthotropic axes as a function of uniaxial plastic strain with se-
lected initial loading orientation anglésee Fig. 4 and Fig.)5or
in terms of the rotation of crystallographic texture symmetry axes
as a function of initial loading orientation angles at a fixed
uniaxial plastic strainsee Fig. . The plastic spin ratio can be
obtained in principle by curve-fitting and numerical differentiation
of the experimental data shown in Fig. 4 and Fig. 5, the material
parameters and coefficients in E43b) and/or Eq.(14) can then
be determined. The following trial-and-error procedure is used
instead for parameter identification:

1. Use the results shown in Fig. 2 and Figvhich are given
by Eqg. (13) using differentk values as the basis to deter-
mine the dominant terrtthe value ofk) in the Fourier series
of IT, measured in experiments.

2. Adjust the value of the coefficielt (both its sign and mag-
nitude to best describe the experimental data. If ELR)
with the selected values d&f and D can model all of the
experimental measurements reasonably well, then the plastic
spin ratio is determined dd ;=D sin Xé.

3. Add one or more sine terms for the Fourier serie$lgfif
Eq. (13) cannot describe the experimental measurements sat-
isfactorily. Estimate the sign and magnitude of the Fourier
coefficient of each new term by comparing the results shown
in Fig. 2 and Fig. 3 with the experimental measurements.
Adjust the Fourier coefficientd; in Eq. (14) iteratively until
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8,=30°

Rotation of the Texture Frame o,, (degree)

Uniaxial Plastic Strain £

Fig. 5 Comparison of the model description
lines) and the experimental data
sheet reported by Kim and Yin

(solid and dashed
(filled symbols ) of a steel
[11] on the rotation ;, of the

material texture frame due to plastic spin as a function of

uniaxial plastic strain

£, with different initial loading orienta-

tion angles 6,=30deg, 45 deg, and 60 deg. The solid lines are
given by Eq. (14) with d,=-—8, d,=17 and d;=3 (all other co-

efficients are zero ). The dashed lines are given by Eq.

(13b)

with k=2 and D=12.5 (the initial loading orientation angles of

30 deg, 46 deg, and 60 deg were used ).

I1,=9sin49, and II,=7 sin26+10sin40

—3sin660, (Boehler and Koss (15a)

I1,=125sin4, and Il,=—8sin20+17sin40
+3sin 60, (Kim and Yin) (15b)
IM1,=0.45sin4 (Bunge and Nielsen (1)

As shown in Fig. 4 and Fig. 5, the plastic spin ratio using a single
sine term withk=2 can only describe some of the experimental
data on the two steel sheets reported by Boehler and KidHs

and Kim and Yin[11] (for initial loading orientation angles of 30
deg and 60 deg Actually, no rotation of the orthotropic axes is
predicted byll ,= D sin 46 for the initial loading orientation angle

of 45 deg at all. Howeverg,=45deg is not one of the true
equilibrium orientations of the material texture frame with such a
plastic spin ratidsee Section 3)2If one assumes the initial load-
ing orientation angle to be 44 deg and 46 deg, respectively, for
each investigatiorisay, there were some experimental errors due
to some slight misalignmentsthen the rotation of orthotropic
axes occurs in both cases and matches the experimental observa-
tions at large strains. The predictions at small strains are however
inconsistent with the experimental data. Indeed, the plastic spin
ratios with three sine terms given in E¢.5a) and Eq.(15b) are
needed to adequately model the experimental data reported by
both Boehler and KosElLO] and Kim and Yin[11] for all three
different initial loading orientation angles. On the other hand, the
plastic spin ratio using a single sine term witk 2 describe rea-
sonably well the directional dependence of the rotation of texture
symmetry axes at a fixed uniaxial plastic strain of 20% as ob-
served by Bunge and Nielsdi2] for an annealed aluminum
sheet. The magnitude of the plastic spin ratio of the aluminum

the model description matches closely the experimentsieet is, however, about 1/20 to 1/30 of that of the steel sheets.
measurements. The plastic spin ratio is then giverdlgs The difference in the magnitude of plastic spin ratios between

=d; sin 26+d, sin 40+d;sin 66+ . . . .

steel and aluminum sheets may be due to the difference in the
characteristics of their initial anisotropy and a further microme-

The above procedure was applied to model the experimentglanical investigation is warranted to elucidate its physical origin.
data on the three sheet metals reported by Boehler 81@K5,  According to the plastic spin ratios given in Ed5), the equilib-
Kim and Yin [11], and Bunge and Nielsef12] and plastic Spin yijym orientation of the material texture frames in these three sheet
ratios of these three sheet metals were determined as follows: jyatals is eitheg=0 deg(the X-axis will eventually coincide with

Rotation of the Texture Frame ,, (degree)

jry . } I |

|

hitial Axial Loading Orinetation Angle 0, (degree)

Fig. 6 Comparison of the model description

(solid and dashed

lines) and the experimental data (filled symbols ) of an alumi-

num sheet reported by Bunge and Nielsen

[12] on the amount

of rotation -, of the material texture frame due to plastic spin

at a fixed uniaxial plastic strain
tial loading orientation angles
(13b) with k=2 and D=0.45.
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£, of 20% with 11 different ini-
6,. The solid line is given by Eq.

the external axial loading directipor #=90 deg(the Y-axis will
eventually coincide with the external axial loading direction

4 Discussion

A plane-stress anisotropic plasticity theory of sheet metals is
often formulated using the Cartesian stress componeptso, ,
and g, projected onto the principal axes of the material texture
(symmetry frame XY Z as shown in Fig. 1. Hil[41,42 has re-
cently advocated the use of the so-called intrinsic variables of
principal stressesdf;,05) and a loading orientation angl for
developing anisotropic plasticity theories. He has argued that the
resulting plasticity theories should be more appealing to both
theoreticians and experimentalists. A new anisotropic plasticity
theory has indeed been proposed using these intrinsic variables by
Tong et al[35—-4(0 and the uniaxial tension version of the theory
is presented in this investigation. In both theoretical analyses and
experimental evaluations of an anisotropic plasticity theory using
either formulation, one needs to know the initial orientation of the
material texture frame and its subsequent evolution with respect to
the sheet metal itself during a plastic deformation process. In
other words, an explicit mechanistic definitiGire., an experimen-
tal procedure for its determination by a mechanical)testthe
material texture frame at a given plastic deformation stage is re-
quired by such an anisotropic plasticity theory. For orthotropic
sheets, the orthotropic axes can be identified with the symmetry
axes detected in the orientational dependence of mechanical prop-
erties such as flow stress under uniaxial tendib@,11]. If plastic
anisotropy of the sheet metal is solely due to the crystallographic
texture, then the crystallographic texture symmetry axes may be
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used as well to measure the orientation of the material textusmheres, andz, are plastic spin coefficients and can be in general
frame in the sheet metal12]. While such a definition of the a function of the isotropic invariants of a given loading stress
material texture frame works well for sheet metals with orthotraensor and the material symmetry orientatioRs, I',, and o,

pic or other higher-order symmetries, it cannot however be eare, respectively, the plastic axial strain ratio, the plastic shear
tended to monoclinic sheets. A different and more general defigitrain ratio, and the flow stress under uniaxial tengg@e Section
tion of the in-plane axeX and Y of the sheet material texture 2). The flow rule Eq.(16b) is the uniaxial tension version of the
frame coordinate system has been given in the anisotropic plastignstitutive equation for plastic spi'P= 7(aDP— DPo) that has

ity theory presented here, that is, theand Y-axes are defined to peen adapted widely in the literatuf®6—28. In many actual

be the principal axes of in-plane plastic strain rates of the shegiplications of the above two flow rules reported in the literature,
metal under equal biaxial tensiowr{= o). In practice, an out- 4 constantplastic spin coefficient is usually assumgbg,28. The
of-plane uniaxial compression test may be used to experimentajlyy rule given by Eq(16a) has been used extensively for inves-
determine the material texture ax@sand Y if plastic flow is  tigating the plastic spin effect but they were mostly illustrative
unaffected by hydrostatic loading. This definition of the materigliihout experimental corroboratiofl5,18. The flow rule given
texture axes is equivalent to the one bgsed on the symmetry crw-Eq' (16b) has been employed by Kurodia6] to simulate the
acteristics of flow stress under uniaxial tension for orthotroplﬁ:lverse Swift effect in free-end torsion experiments assuming that
sheets with isotropic hardening but requires much less experimetls material is orthotropic prior to torsion. Kim and Yjial] and

tal efforts, [35]. Dafalias[28] have used the same expression for the plastic spin

Most of the existing anisotropic plasticity theories assume th f‘ong with Hill's 1948 quadratic anisotropic plasticity thedi§],
a polycrystalline sheet metal is orthotropic initially and the initial, gimate the orientational evolution of orthotropic symmetry
orthqtropy symmetry Is strong and persists during subsequ_edn s in steel sheets upon off-axis uniaxial tensile deformation.
plastic deformatlo_n[6,28]_. When t_h_e s_heet meta_l d_eforms pIaStIWhile qualitative agreements were found in their analyses, the
cally under on-axis loading conditiorie., the principal axes of orientational evolution of the orthotropic axes with increasing

stress coincide with the orthotropic axes of the shekere is no lastic deformation is not described with great accuracy and sig-

ambiguit_y on the orientation of the current orthotropic textur ificantly different values of the plastic spin coefficiepf (which
frame with respect to the sheet metal itself as there is no plas&@o has to be opposite in sign when comparing with the one used
Spin Qf t_he m_atgrlal texture frame. However, whe_n the loading Kuroda[26]) were needed for the best description of each of
off-axis in uniaxial tension or shear tests, the original RD and T e off-axis tensile tests with the initial loading orientation angles

directions of the sheet metal are no longer orthogonal and t - : :
current orientation of the material texture axéandY cannot be F30 deg, 45 deg, and 60 deg. In the light of the anisotropic

clearly identified without additional theoretical hypotheses or ef;-:
perimental characterization. Few existing anisotropic plastici%(I
theories offer a flow rule for macroscopic plastic spin at all s

most of them assume explicitly or implicitly that the macroscopi
plastic spin is always zero and the material texture frame rota L . . .
along with the sheet metal itself. The experimental measureme yserly simplistic(no dependence on the loading orientation angle

on the current orientation of the material texture frame after §'S 9IVeN for the plastic spin coefficients, andz, at all in their
C\ﬁﬁtual application examplesThe micromechanical analysis of the

sheet metal is subjected to off-axis uniaxial tension have sho e fi £ sinal tals with larized Schmid | d
that there exist detectable and even significant relative rotati gstic low ot singie crystals with a regularized schmid law under

between the material texture frame and the sheet njé@12. uni_a>_<ia| tension giv_en in_the Appgndix_ also Sho‘.NS that the general
A robust and flexible flow rule of macroscopic plastic spin aalidity of the plastic spin equation given by either Eg6a) or
proposed in this investigation should be incorporated into an and: (160) is indeed questionable. . .
isotropic plasticity theory to improve its modeling capabilities. A As ”_‘e”“"“ed n the Introduction, the other major area (?f inter-
comparative evaluation of the proposed flow rule of macroscofiSt ©f incorporating a flow rule of macroscopic plastic spin is in
plastic spin with some of the specific analytical forms of the flodpOtrOPIC plasticity theories with kinematic hardenii$,46. One

rule of macroscopic plastic spin appeared in the literature is figh define the material texture frame as the principal axes of the
order. As pointed out in the Section 1, the explicit forms of thBackstress tensor, then a flow rule of macroscopic plastic spin
flow rule of macroscopic plastic spin have been motivated largeRFCOMes basically a part of the evolution law of kinematic hard-
by invoking the representation theorems for isotropic functions ffing that describes the orientational evolution of the principal
conjunction with the concept of tensorial structure variable®€s oOf the backstress tenstte other part covers the evolution
mostly for quadratic plastic flow theorig,3—30. Only two ana- of the strength of the backstress in terms of its principal compo-
lytical expressions of the flow rule of macroscopic plastic spiﬂems)- However, direct measurements of the backstress tensor
have often been cited in the literature and they have the followignd hence its principal axessing tension-compression or simi-

forms for an orthotropic sheet metal under off-axis uniaxial ted@r tests at different loading orientation angles are required to
sion, [28], properly evaluate any specific form of the flow rule of plastic spin

for kinematic hardening. Experimental inference of the form of
the flow rule of plastic spin for isotropic plasticity theories with
kinematic hardening by simulating finite deformation simple shear
tests is problematif46] as the crystallographic aspect of the ma-
w1p terial texture evolution may become significant and even domi-
P nant. As observed early in Section 3, the magnitude of the plastic
o ) spin ratio of the aluminum shedt 2], is only about 1/20 to 1/30
(g1~ &p)sindcosf+e;,c08 20 of that of the steel sheet$10,11. Such a difference may be
= 7a I attributed to the two different plastic spin detection methods used:
the plastic spin determined by Bunge and Nielf&?)] is mainly
related to the material crystallographic texture evolution while the
plastic spin determined by Boehler and Kg4€] and Kim and
Yin [11] may be related primarily to the evolution of dislocation
o1 substructures in steel sheet metéspecially at small plastic
W015= PpT e 12, OF I1,= é_lz R (16p) straing. In this investigation, it was assumed that all three sheet
1 metals have a pre-existing orthotropic symmetry and the orienta-

astic flow theory proposed hetsee Section 2 and Section, 3

e two widely used analytical expressions for the flow rule of
acroscopic plastic spin as given in Eq&6a) and (16b) for
niaxial tension are indeed both overly restrictilieking directly

¢ plastic spinay, with the plastic shear rate,, or £;,) and

W12~ Ma€xy

Ry
1+R,

=174 | 1+

) sinfcosf+1,cos 29|, (16a)
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tional dependence of flow stress and plastic strain ratio of tlalyze problems under more general loading conditions. Our an-
sheet metals under off-axis uniaxial tension remains orthotrop&otropic plasticity theory formulated in terms of the intrinsic vari-
with the samesymmetry axes|28]. Consequently, a single mac-ables of principal stresses and a loading orientation angle intends
roscopic flow rule of macroscopic plastic spin was used to chdp strike a proper balance between the mathematical compactness
acterize satisfactorily the relative rotation of the material symmend the descriptive robustness through the truncated Fourier series
try axes regardless of its origin. The validity of the persisterigpresentation of each of anisotropic material functions character-
orthotropic symmetry assumption cannot be examined directly fging plastic anisotropy of a sheet metal. Depending on the extent
these three sheet metals due to lack of experimental data. If @fethe experimental data made available, the degree of plastic
experimental data on the orientational dependence of plastic strafiisotropy, and the accuracy required for an analysis, a flexible
ratio of the two steel sheets upon off-axis uniaxial tension wefd adaptive anisotropic plasticity theory can thus be established
also made available and they would show indeed that the symnfiet practical engineering application5—40. There have been
try axes of plastic strain ratio do not coincide with the symmetr§ome debates in recent years on the role and necessity of macro-
axes of flow stress, the sheet metals should then be treatedS@@PiC plastic spin within the framework of a macroscopic poly-
monoclinic instead of orthotropic. Incorporations of both a back&rystalline plasticity theory24,46,48. We suggest that a flow rule
stress kinematic hardening model and a flow rule of macroscofit Macroscopic plastic spin should be considered if it improves
plastic spin in an anisotropic plastic flow theory may be a possibigé mathematical formulatiofsay, the compactnessand the con-
modeling approact23,43,44. Direct experimental evaluation of stitutive mo_dellng q_uallty ofa phen_omenolqgmal theory of a _sheet
the backstress tensor is however very challenging if not impd@etal and if there is a clear physical bagssich as the relative
sible for sheet metal@s in-plane uniaxial compression tests ar&tation of the material texture frame against the material jtself
rather difficult to carry out for thin shegtand flow rules of two gnd an as_somated experimental procedure for its evaluation. Th's
plastic spins are required to describe the orientation evolution lgéstigation showed that the proposed flow rule of macroscopic
the principal axes of both the backstrégsated primarily to the Plastic spin can be used to describe effectively the orientational
dislocation substructuyeand the crystallographic texture frame,evoIUtlon Of the material texture frgme in 'three orthotroplq sheet
respectively[23]. When only one plastic spin is used, its experi-r.m.Etals TQ‘UbJECted to off-_aX|s l.m'ax'al tension and thus the'f plas-
mental evaluation becomes ambiguous unless further clarificatipf|y anisotropy W'thO.Ut |nvol_<|ng the use of other mathematically
re complicated anisotropic hardening modgi§—45. When

on the definition of the material texture frame that is associat er aspects of material texture evolution such as texture spread-
with the plastic spin is provided and extensive experimental dat P P

are made available. For example, Truong Qui and Lippma g or texture sharpening have significant effects on the aniso-

; ) ) - ropic plastic flow behavior of a sheet metal, constitutive aniso-
43,44 have proposed a quadratic anisotropic plastici theo%}( . . - : o .
Ehat g]eneralizrzespHill’s ortﬂotropic theorys] pforpmonoginic opic hardening equations in addition to the flow rule of plastic

sheets with combined isotropic and kinematic hardening andiﬁm may have to be added to characterize the evolution of texture
. : . ; : . intensity.
plastic spin. Their theory is formulated using the Cartesian stress

componentsr,, oy, andao,, on the axes of the material textures  ~onclusions

coordinate system which is associated with their plastic spin.

However, as no experimental data on in-plane uniaxial compres-A new flow rule of macroscopic plastic spin has been proposed
sion flow stress are available for the steel and aluminum she&g modeling the orientational evolution of the material texture
investigated, respectively, by Boehler and Kdd®] and by frame of a sheet metal subjected to off-axis uniaxial tension.
Truong Qui and Lippmanti43,44], the evaluation oboth the When a sheet metal has a pre-existing and persisting orthotropic
backstress and the rotation of the material texture frame duesynmetry, the anisotropic material function in the flow rule can be
plastic spin in their theory is impossible using solely the expergPproximated by a truncated Fourier sine series of the loading
mental data on the directional dependence of uniaxial tensile fl@ientation angle and its Fourier coefficients can be identified us-
stress. Truong Qui and Lippmaria3,44 used a least-square fit- iNg the exp_erlmental data on the rotation of the material texture
ting parameter identification procedure that lumps together all m@me relative to the sheet metal itself. The flow rule of macro-
terial parameters plus a rotation anglg, due to plastic spin. SCOpIc plastic spin is found to provide a consistent description of
Such an indirect approach in evaluating the effect of plastic sp‘ihe experimental data on the orientational evolution of the mate-
and other aspects of a highly nonlinear anisotropic plastic flolial texture frame of three shee_t metal§ rep_orted in the I|_terature.
behavior is very questionable as noted by McDowell ef4@]. Such a flow rule of macroscopic plastic spin should be incorpo-
Alternatively, one may invoke an anisotropic plasticity theory@ted into an anisotropic plasticity theory for finite plastic defor-
with a nonassociated flow rulg47], and uses a yield surface tomation applications when it can improve both the mathematical
model the anisotropy of flow stress and a separate flow surfacd@mulation (the compactnegsand the descriptive quality of the
model the anisotropy of plastic strain ratios. Two plastic spif§€ory and when it can be unambiguously evaluated experimen-
associated with the evolution of symmetry axes of yield and flof@!ly based on an explicit mechanistic definition of the material
surfaces can thus be in principle evaluated independently based®Hure frame. Additional theoretical and experimental investiga-

the experimental data on the orientational dependence of fldigns aré needed to clarify the definition of macroscopic plastic
stress and plastic strain ratio respectively following the methoddiPin @nd its evaluation for a monoclinic sheet metal.

ogy give in this investigation. Under this context, the plastic spin

ratio obtained here for the two steel sheets should perhaps Adeknowledgments

limited to t.he evolution of the yield surface and its applicqbility 0 The work reported here was supported in part by a CAREER
the evolution of the flow surface cannot be assessed without aaq(/‘

o . . . ard to WT from the National Science Foundati@rant No.
ditional experimental data on the orientational dependence &Ms-973397 Program Director: Dr. K. ChongVT would like
plastic strain ratio. : i e '
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A T i . - - aNIgGpjversity for their comments that helped to clarify our definition
tropic plasticity theo.ry is malnly to provide a .mathematlcal%f the material texture frame in a monoclinic sheet.

more compact but still physically sound description of the plastic

flow behavior of a sheet metal so that engineering analyses g pendix

designs of sheet metal forming processes can be carried out in an

efficient way with accepted accuracy. One basically calibrates theOn the Micromechanical Basis of the Proposed Anisotropic
material parameters in the theory through a set of mechanical teBlastic Flow Theory. At ambient conditions, the plastic flow of
under simple loading conditions and then applies the theory #osingle crystal is primarily due torystallographicslips on se-
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lected slip systems. The plastic rate of deformation teBfoand where \* =y* from the plastic work-equivalency requirement
the plastic spin tensalP of a single crystal can be represented bysee EQ(A4)), o = (75/7)° 1, and7fy=7/y(gf ,¥*) is the slip

slip rates associated with slip mod@49,50;: strength on each slip system. Evolution laws of isotropic harden-
N* ing of the single crystal witiN* +1 scalar state variables are
. _ . iven as
DP=symR*FPFP 'R* “1)=> y*P,, g
i=1 . L . . e .
. E =8 O =0T (VY )
N (A7)

WP=skewR* FPFP 'R* 1)=> 3 Q;, (A1)
i=1 When one assuméds=1+m (with m>0) and

whereR* is the lattice rigid body rotation tensd# is the plastic -\ Um

deformation gradient tensoy? is the absolute value of the rate of _« g% = xy_ yx gy 2 and (a* Y

change of integrated shear strain for tkh crystallographic slip 7o (£5,77)=07(€7) vy Tio(G7 ")

system, and\* is the total number of the activated crystallo- o tm )

graphic slip modes. Each slip mode is composed of a slip direc- A7 . |7 Yol g*

tion and a slip plane. The tensdPs and Q; for theith slip mode =0l o SO =) Tl g_* ,
1

- *

are defined by Yio 7io Yo
1 (A8)

Pi:symTizf(S@)mieri@S)‘ one can show that

1 1\ M-1 4 w1\ M-1

=skewT;==(s®@m,—m;®S), A2 . kA 7 . |75 7
Q; i 2(3 i i®s) (A2) ,},;k:‘y*(—l*> —;:%*o(—l* _L (A9)

Tio Tio gi gi

where the Schmid tensdr_ri is_ defined byT,=s@m;, and_ unit
vectorss andm; are the slip direction and normal to the slip planerhis is exactly the rate-dependent slip rule that has been proposed
associated with théth slip mode in the deformed configuration,py Hutchinsor{51], Asaro[49], and Asaro and Needlem§52]. A

respectively. Activation of the selected slip systems can be pigmbined self-hardening and latent hardening model can be

scribed by a certain slip condition. The driving force to aCtivatSdapted here witkf* = y*

thei-th slip system is the resolved shear stre§salong the slip T

direction on the crystallographic slip plane of the slip system in N*

the current configuration, which can be obtained #y=P; : o, O = h* (%) 3 Sk hx 3% AL0
where o is the Cauchy stress tensor. g SRR ,2‘1 IR (AL0)

We assume the existence afrate-dependent slip potentiat
(the effective resolved shear streder plastic deformation of where the Taylor strain® and the hardening moduli matrlx-’}
single crystal grains in a polycrystalline aggregate with a stregge defined by
exponentb(>1)

* *’*’”.’**: **b+**b+”. . N* .
Pz ) =lad | adl g 7¥=21|7i*|, hi=qh*+(1-q)h*s;,  (All)
=

N* 1b

+am*|rm*|b11’b—{2 aflor P

whereq is a parameter characterizing the latent hardening. When
the latent hardening is equal to the self-hardenipg L), one has
(A3)  the Taylor isotropic hardening model of single crystals with

where7" are resolved shear stresses on the available slip systdij§y7) =h*(77), ' =1, & =7, andg{"=g*. On the other

of the crystal ande are the weight coefficients related to thehand, the current crystal plasticity model is a rate-dependent ex-
relative strength of the slip systems. A work-conjugate effectii€nsion of the rate-independent models proposed by GafbBin

shear ratey* and the slip surface can be defined as and Darrieulat and Pid64]. The stress exponehthas been iden-
tified by them respectively as either the interaction exponent of
N slip systems in a single crystal or the texture dispersion exponent
B ER R AR RV I AT 2 7y, (A4) inapolycrystal. This crystal plasticity model with an associated
i=1 rate-dependent slip potential is more flexible as in general

. +m or m#«~ (wherem is a parameter in a simple power-law
* * * * _x * *\ —
(T T ) T T (€5,77) =0, (AS) rate-dependence model, see Eg)).
where& is a scalar characterizing the overall isotropic hardenin]gl Under uniaxial tension, the resolved shear stresses in terms of

of the crystal andr% (£*,7*) is the effective slip strength of the the uniaxial tensile stress,>0 and the slip system vectofslip

crystal. The associated flow ruleesults the slip rate on the eachfjlrectlon and the slip plane normal in terms of the in-plane load-

slip system as ing orientation angl&) are given as

r o IT*(TL T3 oo The) =simio,=LY0o,=[sS m% cog 6+ (s md
I * * * * *
ITi +s% m’, )sing cosf+s%, mS, sir? 0lo,,  (Al2)
* % |T;k| b2 7 o* 0* _0* o* o* 0* .
=\ -~ = where &7 ,S;, ,S3) and (M ,my ,mj3) are the Cartesian
components of the slip system vectors defined in the material
_ |7\ 2 7 . [|7F] b-2 ™ texture coordinate systeXlY Z The slip potential Eq(A3) can be
=y* a|*< = ) — =7 " — (AB) expressed in terms of the uniaxial tensile stress and the in-plane
T T o o loading orientation angle as
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N*
[r*(ag,e>]b=oz_21 Ly

N*
_ b *[O% OF 0% 0% , 0%, O
—‘Tozl af|sh my cos 6+ (s mp, +s, mfy )
&

. * LA
X sin 6 cosf+s% m sir? 6|°

=0y®(0). (A13)

obtained approximately via simple volume averaging. The result-
ing mathematical formulation of these constitutive equations is
identical to the one presented in Section 2ifb.

The plastic spin appeared in thmicromechanicaltheory of
single crystal plasticity(see Eq.(Al) in general and Eq(14d)
under uniaxial tensions the natural consequence of the kinemat-
ics of crystallographic slips. When one does not directly measure
the crystal orientations using either X-ray or electron diffraction
techniques, one does not know explicitly the slip system vegfors
andm; . One has to rely on the mechanical tests instead to evalu-
ate the material anisotropic functiods; (9), ®3(6), and®} (6)

Tr;e in-plane components of th% plastic rate of deformation tensgf the single crystal under uniaxial tension. In other words, this
DP and the plastic spin tensa¥” of a single crystal can be ob- results in amacroscopictheory of single crystal plasticity using

tained using EqsiAl), (A2), (A6), (A12), and(A13)
N* o b—l N*
. . . 6
31:21 Si*lmi*17i*:7’*(7_o) 2 af|Ly°
“

b-1
x| 0 *
=y (—) o3(0), (AL4a)
7o
N* ble*
. . . 0 —
b= sttt =5 |23 el
i=1 7o i=1
P b-1
s'y*(—) ©3(0), (AL4b)
7o

L b1 N*
. Si Mz +SHmyy . 0 _
b3, SIS e TS v
i=1 70 i=1
S\
E'V*(—) ®3(6), (Al4c)
7o
N* * ok * ok p—1 N*
. STULPRS PULERS 0 _
wlzzz 2 'Yi*:?’*(_) ) ai*||—r1|b 2Li*l 2
i=1 7o i=1
S\t
E'y*(f—) ®3(0),  (Al4d)
0

where
* =simi=s% m cof 0+ (s m% +s% mS )sin 6 cosd
+s%mS sir? 0,
= slymiy=sfy mfy sif? 6— (siy Y, +sf MY} )sin ¢ cos

* *
+s%mY cog 6,

* ok K ook o* 0% o* 0%
L SiiMTSHMy  Si; M — S My sin 26
il 2 2
0% 0% | 0% 0%
Si1 M3 TS Myy
————————C0S 2,
2
* ook * ok 0* _0* o* _ 0%
»  SiiMiz—SipMyy i My — S My and
2 2 2 ’
L1 ddi(6) .
P3(0)= 25 do (the associated flow rule

The material anisotropic functior? (), ®3 (), andd (6)

of the single crystal under uniaxial tension are related only to it§1
slip system vectors; andm; , the slip system weight coefficient

these material anisotropic functions for uniaxial tensile loading.
One can show that in general the material anisotropic function

7 (8) cannot be deduced from the knowledge of other two an-
isotropic material anisotropic function®} () and ®3(6) for
single crystals: that is, the knowledge of the orientational depen-
dence of flow stress and plastic strain ratio under uniaxial tension
will not provide any prediction on the orientational dependence of
plastic spin ratio at all. Indeed, this result directly contradicts one
of the commonly cited expressions for macroscopic plastic spin,
[26-28:

sz T](O'Dp_DpO'), or (.1)12

=no4e1, (under uniaxial tension (A15)

where 7 is the plastic spin coefficierftvhich has been assumed to
be a constant in its application examplei§urroda[26] and Da-
falias [28] found that the plastic spin coefficient have to be a
negative constant for modeling certain experimental data while it
is required to be non-negative according to Lev[zg. One can
show that the relatioriv,,= o 4e,, (Uniaxial tension does not

hold for single crystals in general according to the micromechani-
cal crystal plasticity model presented aboymimerical simula-
tions of single crystals have revealed that there exist cases that
@1, iS nonzero where;,=0!) and the general validity of the
constitutive equation for macroscopic plastic spin E4L5) is

thus questionable. A similar conclusion can also be reached about
another proposed simple expression for the macroscopic plastic
spin, [28], @1,= ney= n[(e1—£,)siNOCosSH+s1,C08 Y] as it
holds only strictly for single slips for single crystals.
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K. .nguchl A comparative study of two representative wrinkling theories, a bifurcation theory and a
Associate Professor, . 3 . . o . . )
Mem. ASME tension field theory, is carried out for quantitative evaluation of the tension field theory

regarding wrinkling analysis. Results obtained from the bifurcation theory show the limi-
tations of tension field theory on the wrinkling analysis. Existence of compressive stresses
caused by wrinkling phenomena, which is not accounted for tension field theory, is quan-
titatively presented. Considering strain energy due to these compressive stresses and
geometrical boundary constraints, it is clarified that there are regions, in which the
tension field theory is not properly applieDOI: 10.1115/1.1767171
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Introduction wrinkling of a stretched circular membrane with a center rotation

Large membrane structures are proposed for future space n%] ub is investigated. The effect of the structural scatio of

. gl 3 b th i htp 'pht dh F;I i Ié%gth to thicknesson the wrinkled membrane and the limitations
sions, [ N , because ney are igntweight and have excelient eps.,sq of the tension field theory in wrinkling analysis are inves-
capsulation characteristics. Solar sails, sunshields, and sq

; f th f hted with respect to the post-buckling study. The regions in
power arrays are representative of these future space SUUCIW@Sey tension field theory is not applicable are discussed consid-

However, since a membrane has negligible bending stiffnesging the actual stress state of the wrinkled membrane.
wrinkling occurs easily once the membrane is subjected to com-

pressive stresses. These phenomena deteriorate the operating

abilities of membrane space structures. For that reason, magdmerical Approach

studies on wrinkling phenomena for these structures have been

reported,[4—18|. Analytical Model. Figure 1 shows an analytical model used
Currently, conventional studies on wrinkling phenomena udB this paper. Wrinkling phenomena, which appear after rotating a

tension field theory, in which it is assumed that the membrane He@hter hub attached to the stretched circular membrane with some

no bending stiffness and can carry no compressive stress. Frisffiue force, are investigated. In this analysis the torque on the

these assumptions, wrinkling of initially flat membranes aréotation hub is applied after the circular membrane is stretched by

treated as in-plane problems through the special definition @ initial uniform tensile stress. This analytical modeling proce-

which one principal stress must be zero and the other nonzercZiff® iS typical of other wrinkling studie§11-18. In this paper,

wrinkled regions. Therefore, in tension field theory, only wrinkled!® ratio of the radius of the circular membrane to that of the hub

regions and directions of wrinkles are obtained, which are indicg- set FO constantb/a=6), although the defqrmatlon modes of

tors of the overall behaviors of wrinkled membranes. e wrinkled membranes are affected by this rafit9,20. We
However, in actual situations, wrinkling phenomena are due Y§Anted (o investigate the effects of the structural sdalegth of

bifurcation and are intensely affected by small bending stiffne réad'al cross section/membrane thicknesa the wrinkled mem-

For that reason, if wrinkling phenomena are to be investigated panes focusing on the membrane thickness. They are the same for

detail, a geometrically nonlinear analysis based on the bifur(:atithe different values ob/a. |t is assumed that the membrane is
theor)’/ must be carried out. In bifurcation theory, detailed wri %‘ade from a polyester film, a}nd 'S Ilnearly_elastlc. Table 1 lists the
Klina_behavi h . d b ,d i r]wmencal parameters used in the analysis.

g behaviors, whose indices are number and amplitude o
wrinkles, can be clarified, while in tension field theory this kind of Tension Field Theory. The tension field theory treated in this
quantitative evaluation cannot be obtained. This is because theper is based on Stein-Hedgepeth thdady, in which the sur-
effects of structural scaléatio of length to thicknegson wrin-  face of a wrinkled membrane is divided into three states indicated
kling phenomena cannot be treated in tension field theory. Theksr
fore, clarifying limitations for the use of tension field theory for

D . . : 0,>0, o0,>0---taut region 1)
wrinkling analysis becomes important in order to accurately un-
derstand the meaning of conventional solutions calculated using o,>0, 0,=<0---wrinkle region 2)
the tension field theory. ]

In this research, a comparative study on wrinkling analysis us- 01<0, 0,=<0--slack region (3)

ing bifurcation theory and tension field theory is carried out. Thgheres, ande, are the principal stresses. From these equations,

- the following equation is always satisfied in the wrinkled regions.
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- Oy Oy= T)Z(y 4)

CHANICS. Manuscript received by the Applied Mechanics Division, May 1, 2003;

final revision, Jan. 30, 2004. Associate Editor: Z. Suo. Discussion on the paperOn the other hand, the equilibrium equations in taut regions are

should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Applighe same as those on treated in conventional p|ane stress prob_

Mechanics, Department of Mechanical and Environmental Engineering, Universj : ; ]
of California-Santa Barbara, Santa Barbara, CA 93106-5070, and will be acceplg.dms' Therefore, the solutions based on tension field theory are

until four months after final publication in the paper itself in the ASMBianaL oF  JIVEN by solving two equations, which are E4) in the wrinkled
APPLIED MECHANICS. regions and the conventional equilibrium equation in taut regions.
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Membrane Table 2 Initial uniform tensile stress and rotation angle

Initial uniform tensile stress 2.938 MpQ.108 mm
Rotating angle 1.145 ded..0 mm

a=50mm tortion of shell elements associated with finite deformation in non-
1 b=300mm linear analysis. We consider that this element is most efficient for
wrinkling analysis when displacements become very large com-
pared to the thickness.

The geometrically nonlinear analysis in this study is performed
using the freely available finite element analysis program FEAPpv
(finite element analysis program personal verkif26]. However,
since FEAPpv does not include MITC shell elements, the authors
have incorporated MITC shell elements into FEAPpv through the
Fig. 1 Analytical model user-defined element function of the program. In the formulation
of this element, in order to improve the accuracy of numerical
results, a finite rotation increment of directors is considered in the

At the same time, an appropriate material parameter, which G&lculation of tangent stiffness matric¢g/]. o
Young's modulus or Poisson's ratio, is defined to be variable i In the case of a geometrically nonlinear analysis using shell
the wrinkled regions. elements for the pos_t-buckllng study in wrinkling phenomen_a, nu-
For analysis based on Stein-Hedgepeth theory, a variable PRgrical results are intensely affected by mesh aspect ratio, step
son’s ratio is used in wrinkled regions, and partial wrinkles on tH&ti© of numerical analysis, and shape functions of the shell ele-
stretched circular membrane are investigaféd]. The validity of ment. Therefore, we have |nvest|gated these effects.on wrinkling
this wrinkling theory is confirmed by Mikulas’ experimentala”alys's focusing on the defo_rmatlon modes of a wrinkled mem-
study,[12]. As a result, analytical solutions based on tension fieffane.[16]. From the study, it turned out that the deformation
theory presented in this paper are referred to “Mikulas’ solution10des converged if a radial mesh aspect ratdial mesh width/
membrane thickne$s50, the circumferential mesh aspect ratio
Geometrically Nonlinear Analysis (circumf_erential mesh Width/membrane_thi_ckr)eszo, ar_ld the
step ratio of a numerical analysigangential increment displace-
To investigate wrinkling behavior in detail, a geometricallynent of the center rotation hub/circumferential mesh width
nonlinear analysis for studying on post-buckling phenomena isp.001 were satisfied. And the effect of the shape function of
carried out. Figure 2 shows a finite element mesh model treatedsife|l elements, which are those of 4-nodes and 9-nodes MITC
this analysis. This mesh model has equivalent radial and circughell elements, on wrinkling analysis is inconsequential. In this
ferential divisions. In order to include the effect of small bendingaper, all results are given through numerical calculations, which
stiffness in membranes, MIT@nixed interpolation tensorial com- yse the appropriate mesh aspect ratio and a step ratio.
ponent$ shell elements[21-25, are used. This element has a For the post-buckling study regarding wrinkling phenomena,
proven predictive capability for numerical results related to disnitial imperfections with normal random numbers in the out-of-
plane direction are installed at all nodal points on the circular
membrane, with magnitude ranging from 0.1 to 0.01 of the mem-
Table 1 Numerical parameters brane thickness. Using these initial imperfections we did the post-
buckling analysis without doing any complicated perfect bifurca-

Material unit Polyester Film tion analysis. Since wrinkling phenomena are affected by the
Young's modulus [MPa] 5723 initial imperfections, the effects of the initial imperfections on
Radius of 2 membrane [mm] 300 wrinkling behavior have been investigated by the authfis].
Radius of a hub [mm]

75100, 175, 3%%' 500, 1000, 2500FrOM the_ invest_igation, it is confirmed that the gffe_cts of initi_al
imperfections with normal random number on wrinkling behavior
do not appear when these magnitude are within 0.1 of the mem-
brane thickness.

The initial uniform tensile stress is provided by a given radial
displacement, which is applied at all nodal points on the outer
circumference of the circular membrane. A given tangential dis-
placement is applied at all nodal points on the inner circumfer-
ence. Table 2 shows the initial uniform tensile stress and the ro-

5 e N tation angle of the hub. Values in parentheses indicate the
" s SR displacements used in this analysis. These are the same values

Membrane thickness  [um]

Y
A
e

S s used in previous studie$1l4-18. And also linear stress-strain
i relations are considered, since the rotation angle used in the analy-
sis is assumed to be small.

Results and Discussion

Effect of Structural Scale on Wrinkling Phenomena. Fig-

ures 3 and 4 show bird-eye views of wrinkled membranes magni-
fied by ten times in the out-of-plane direction. These figures show
the effects of structural scaldength of radial cross section/
membrane thicknegson the deformation modes of wrinkled
membranes. Figure 5 shows dependency of the number of
wrinkles on the structural scale. From this figure, the number of
Fig. 2 Finite element mesh winkles gradually increases as the structural scale becomes large.
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Fig. 3
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Bird-eye view of a wrinkled membrane
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Fig. 6 Nondimensional M- ¢ curves

tion angle of 1.145 deg. In this figure, the solution obtained from
tension field theoryMikulas’ solution is also presented. From

these results, it is seen that torsional rigidity of the membrane
decreases as the structural scale increases. This occurs because
these results are nondimensionalized with respect to membrane
thickness, but not with respect to bending stiffness. When the

This tendency occurs because the bending stiffness becomes satgiictural scale becomes large, bifurcation points approach the
with increasing structural scale. In the membrane with initial tergolution obtained from tension field theory. On the other hand, the
sile stresses, the deformation mode is intensely affected by @@dient of the curvestorsional rigidity do not coincide with
bending stiffness, although this tendency do not appear in the c#lsese of tension field theory. The reason for this is clarified later in
of a plate problem, which does not include the effects of initidhe subsection titled “Note on the Actual Mechanism of Wrinkling

tensile stresse$19,2Q.

Behavior.” Distribution of the out-of-plane displacement ratio

Figure 6 shows nondimensional loading curves up to the rot@ut-of-plane displacement/membrane thickpésshown in Fig.

Fig. 4 Bird-eye view of a wrinkled membrane
2500)

(structural scale:

20 T ! ; T
15

10

Number of Wrinkies

0 S N

0 500

Fig. 5 Number of wrinkles
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7. In this figure, the abscissa indicates the dimensionless radial
location, and the ordinate indicates the out-of-plane displacement
ratio, which is the average value of the absolute out-of-plane dis-
placementaverage amplitude of wrinklgsit the same circumfer-
ential locations divided by the membrane thickness. This figure
shows that the out-of-plane displacement ratio becomes large and
the location having maximum out-of-plane displacement ap-
proaches the center hub with increasing structural scale. Figures 8
and 9 indicate these behaviors, quantitatively. Figure 8 shows the
maximum amplitude ratio of wrinkles. In this research, maximum
amplitude ratio of wrinkles is defined as the maximum value of
the displacements shown in Fig. 7. From Fig. 8, it also turns out
that the maximum amplitude ratio of wrinkles is increased when
the structural scale becomes large. Figure 9 shows the radial lo-
cation at which maximum out-of-plane displacement occurs. It
approaches the rotation hub as structural scale becomes large.
The distribution of minor principal stress ratios in the wrinkled
membrane is shown in Fig. 10. Here, the minor principal stress
ratio indicates the average value of the minor principal stress at
the same circumferential locations divided by the initial tensile
stress. This figure shows that the compressive stress decreases as
structural scale becomes large. Figure 11 shows the wrinkled re-

10 i ) 1 1 ¥ 1 i
- : : Scale:3333 ——
S 1 Scale2500 -----o
2 B e T Sealen1d28 <o )
2 M Scale:833 -
£ 6 Scale:500 - -~ |
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Fig. 7 Out-of-plane displacement ratio of wrinkles
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Structural Scale [7] Fig. 11 Wrinkled region, 0 <r<r,,
Fig. 8 Maximum amplitude ratio of wrinkles

Existence of Wrinkles in Wrinkled Membrane With No
gion of the membrane, which is indicated by locations in th€ompressive Stress
radial direction having compressive stresses to the radius of MeMathough the location of the wrinkled region calculated based
brane. In this study, we assume the wrinkled region to be that wih, tensijon field theory is 0.58, Fig. 7 shows that wrinkles also
negative minor principal stresses. In tension field theory, this raligr, gutside of this region from 0.58 to 1.0 as shown in the
is a constant value because it does not depend on membrane thigiscissa of Fig. 7. This is especially true when the structural scale

ness. As can be seen from this figure, numerical results from €3333 and the out-of-plane displacement for &:58<1.0 is
geometrically nonlinear analysis are comparable to solutions %ﬁout three times larger than the membrane thickness. This im-

tained based on tension field theory, when the structural scalgs that the geometrical nonlinearities in the membrane distor-
becomes large, or when the converged wrinkled region ratjp

n appear in the unwrinkled region, although linearity is as-
reaches the constant value of 0.58. bp g 9 y

- - e sumed for this region in tension field theory. For example, Fig. 12
In the wrinkled region shown in Fig. 10{b<0.58), there are g a5 the wave of wrinkles along the circumferential cross sec-
two wrinkled regions, one with large compressive stress and gy, 1/p—0.83. Clearly, the wave of wrinkles exists in the sup-
other with small compressive stress. We can assume that the[l-géed unwrinkled region assumed in tension field theory. These
cation and stress, which divide these two regions, are 0.33 afdyes of wrinkles occur in compliance with the wrinkling phe-
—0.5 MPa, respectively, when the structural scale is larger thdBmena in the wrinkled regions, which are related to bifurcation
500. Under these values, minor principal stress ratio begins §Renomena. Tension field theory cannot predict these wrinkling
decrease very much. behavior, because it treats wrinkling phenomena only as problems
of in-plane states of stress.

1.0 T T T T T T Applicability of Tension Field Theory
- : : ‘ : : 5 Figure 13 shows dependency of a nondimensionalized moment
s 08 o [ : ] within the wrinkled membrane on the structural scale. The values
g : f ; : ; ; for this nondimensionalized moment in this figure correspond to
= 061 ; ; S ‘; 7] those at the final statep=1.145 deg, Table )2shown in Fig. 6.
8 : i ; : The solution based on tension field theory is also presented in this
% 04 PR, [ figure. These numerical results of the geometrically nonlinear
B '\;\\%f : : analysis are gradually decreased simultaneously with an increase
€ 02 F i T — e in structural scale. When the structural scale is larger than 1500,
; ‘ they converge to a constant value different from the solution ob-
0.0 1 ] ! L i i tained based on tension field theory. This tendency is also shown
0 500 1000 1500 2000 2500 3000 3500 in comparisons of the angle of wrinkl¢Bigs. 14 and 1band of

the strain energy ratio within the wrinkled membraifég. 16).

Structural Scale [r/1} r 0\ ; | -
The strain energy ratio is obtained by the following equation:

Fig. 9 Location of maximum amplitude of wrinkles
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Fig. 13 Comparison of nondimensional moment Fig. 16 Comparison of strain energy ratio

sU  U,—U, relative bending stiffness in the membrane. In general, in plate

U'=—= ' (5) theory membranes are treated as structural materials if their struc-

Ui Ui tural scale is larger than 100. However, when we consider the

where wrinkling phenomena of a membrane using conventional tension

U, : strain energy stored in the stretched membrane before fiRld theory, it is better to deal with a membrane as a structural
torque force is applied material with structural scale larger than 1000. If the structural

Uy : strain energy stored in the wrinkled membrane after thgcale is smaller than 1000, the effect of the relative bending stiff-
torque force is applied ness on the strain energy increases and cannot be ignored.

andU; ¢ is given by
11 1 Existence of Compressive Stresses Within Wrinkled Re-
U= > f E (0'§+ 0'5— 2uoyoy)+ G ( T§y+ T§Z+ T§Z)I~ 2ardr. gion
(6) As can be seen in Figs. 13—16, not all numerical results asymp-
totically approach to the solution obtained based on tension field

and final state of the circular membrane. Figure 16 shows thtgpory, and differences between the numerical results of this study

strain energy in the wrinkled membrane gradually increases whf Post-buckling phenomena and the solution from tension field
the structural scale is smaller than 1500 due to effects of tH&FOTY are clearly shown. These differences remain even if the
structural scale becomes large, and imply limitations potentially
included in solutions based on tension field theory for actual wrin-
kling phenomena. Since the wrinkling phenomena are kinds of
T Mikulas’ SOITOn —mnv out-of-plane problems, it should be considered that the geometri-
YT Y p— cally nonlinear analysis simulates the wrinkling phenomena pre-
R cisely. From the viewpoint of the total strain energy ratio stored in
the wrinkled membrane, differences between two solutions are
- investigated.
: Figures 17 and 18 show the strain energy ratio stored only in
s the wrinkled region (0.166r/b<0.58) and the unwrinkled re-
gion (0.58<r/b<1.0) of the membrane, respectively. The value
of 0.58 indicates the boundary of the wrinkled region obtained
from tension field theory. The summation of results shown in Figs.
17 and 18 gives the result shown in Fig. 16. Therefore, a follow-

_50 L 1 L i i 1 _ - d . )
0 500 1000 1500 2000 2500 3000 3500 Ing equation Is given:
Structural Scale [R/] U’ =6U!+8U!, @)

Here, Eq.(6) omits the notation of andf, which indicate initial

Angle of Wrinkles {deg.]

Fig. 14 Angle of wrinkles (radial location: 0.4 )
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Fig. 15 Angle of wrinkles (radial location: 0.8 ) Fig. 17 Strain energy ratio in wrinkled region
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Fig. 20 Strain energy in wrinkled region with small compres-
sive stress

Fig. 18 Strain energy ratio in unwrinkled region

From these figures, it is clear that the difference between the two

representative wrinkling theories appears in the wrinkled regiogyei g of tension field theory, in which the material parameter is
but does not appear in the unwrinkled region when the StrUCt_‘;?(fjusted in the wrinkled region, simulates the nonlinear character-
scale becomes large. Therefore these results imply that the diff@kies” o the wrinkles adequately in the wrinkled regions with
ence of these theories shown in Fig. 16 occurs in the wrinkl all compressive stressds 4| < 0.5 MPa).
region (0.166:r/b<0.58). . The difference, which appears in the wrinkled region, depends
In the po_st-buckllng stuc_iy, as can be seen from Fig. 10, th_eéﬁ the tension field theory definition for the membrane as a struc-
are two wrinkled regions in the wrinkled membrane, One with, o material, which can carry no compressive stress. However, in
large compressive stress and another with small compressiyg o sjtyations, as can be seen in Fig. 10, the membrane must
stress, as stated before. Therefore, the effect of these compres, some compressive stress, which becomes larger than the
stresses on the differences of ‘wo wrinkling theories is inves{linimym buckling stress of the membrane. The threshold value
gated. The strain energy rati#l),, (|o,|: Large in Fig. 19 cor-  gtated above should correspond to the minimum buckling stress.
responds to that in the part of the wrinkled region whose mingthese phenomena occur because the wave of wrinkles is con-
principal stresses correspond to large compressive stressggined by our given geometrical condition. Figure 21 shows the
(wrinkled region with large compressive stressefr;|  wave of wrinkles along the line of the minor principal stresses in
>0.5MPa). The strain energy ratitJ, ¢ (|o|: Small in Fig. 20  the circular membrane. Points A, B, C, and D indicate the bound-
corresponds to that in another part of the wrinkled region whosgy of the hub, location having maximum out-of-plane displace-
minor principal stresses correspond to small compressive stressest, boundary of the wrinkled region and outer circumference of
(wrinkled region with small compressive stressefg,| the circular membrane, respectively. If tension field theory can be
<0.5MPa). Therefore, the summation of the strain energy ratioifue, it is considered that inextensional theory is applied along the
Figs. 19 and 20 is equal ®U,, in Fig. 17. Therefore, the follow- line of the minor principal stresses in wrinkled regions. In the case
ing equation is given: of the circular membrane, the compressive strain, which corre-
, , , sponds to the wrinkling strain in tension field theory, becomes
80Uy, = 6Uy,+ 6Uys- ®) large toward the center hub, because the moment along the radial
From the Comparison regarding to the strain energy in the tvwection is a constant. At that time,. Out-Of-plane di_Splacement§
wrinkled regiongFigs. 19 and 20 it turns out that the differences increase toward the center hub, and it becomes maximum at Point
of these theories appear in the wrinkled region with large corw if inextensional theory is applied. However, as can be seen
pressive stresse$d,|>0.5 MPa), while in the region with small from Fig. 22, which is the same figure shown in Fig. 21, the
compressive stress the solutions based on tension field theory &ifplitude of the out-of-plane displacement in the region from Ato
in good agreement with the results of this study on post-buckiifg 9radually decreases toward the hub. This means wave of
phenomena. From these results, we conclude that the differencaVénkles within the regions from A to B has some geometrical
these theories is caused by the existence of the large compres§Ristraints by the hub, and is not in agreement with wave of
stress in the wrinkled region. And it turns out that the analytica¥rinkles obtained from the conditions of inextentional theory.

60 : ! ' M'it04 re'sult _l,__ Cross—Section of wrinkles
BO oo Mikulag’ solution ------- @, Wrikled region

D : : : : S

2 40 .
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é 30 . - : . .
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Wrinkled Region

Unwrinkled Region

Fig. 19 Strain energy in wrinkled region with large compres-

sive stress Fig. 21 Wave of wrinkles
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In general, it is considered that the membrane releases compres- Wrinkled Region nwrinkee egm'l
sive stresses by forming wrinkles. However, in the case of the bo

stretched circular membrane, the wave of wrinkles around the
center rotation hub is constrained by the existence of the hub
itself. For that reason, the wave of wrinkles, which is initially
necessary to release compressive stresses in the wrinkled region,
cannot occur, and the membrane must carry some compressive
stresses. For the deformation mode subjected to the geometrical
constraint, these compressive stresses become larger than the
minimum buckling stress of the membrane, which is because tflees not converge to a flat plane state, some geometrical con-
deformation mode with respect to the minimum buckling stress géraint caused by the hub exists in the wrinkled region, and the
not equal to the actual one. Considering this, it turns out that tRgembrane absolutely has some compressive stresses. In the fol-
membrane is a structural material that can carry compressi@aving section, using inextensional theory stated above, it is in-
stresses larger than the minimum buckling stress. The region h¥@stigated whether the wave of wrinkles can exist or not when the
ing larger compressive stresses than some threshold value, assésctural scale becomes infinite.
plained before, nearly represents the region subjected to the geo-
metrical constraint. In addition, Figs. 7, 10, and 22 show that the
region having compressive stress is roughly equal to the regi : T .
be%ween thegboundpary of the hub and thge r)l/adigl location hagiﬁgﬁe on the Actual Mechanism of Wrinkling Behavior
the maximum out-of-plane displacement. These three regions deFigure 24 shows the mechanism of wrinkling behavior based on
fined above coincide with one another almost perfectly. inextensional theory. This figure corresponds to Fig. 21. There-
Figure 23 shows that the radial location having the maximuifere, it is assumed that inextensional theory describes the behavior
out-of-plane displacement changes when the structural scale bk-wrinkles along the line of minor principal stresses in the
comes large. In this figure, the change of the wrinkled region amdinkled region. In this subsection, focusing on whether wrinkles
the boundary of the hub are also presented. Also, this figure shogwést or not when the structural scale becomes infinite, a simple
that the change of the radial location having the maximum out-ofave shape, sine wave, is considered for wrinkles. Then, a shape
plane displacement roughly indicates the same tendency cditAction of the cross section of wrinklgsom A to C in Fig. 24
pared with that of the strain energy ratio shown in Fig. 19. Sinde expressed by
the strain energy ratio shown in Fig. 19 is calculated in the region
having some compressive stresses, it is also confirmed that the
three regions stated before coincide with one another with respect
to strain energy.
In general, tension field theory treats the ideal membra
which has no bending stiffness and can carry no compressig
stress. In the situation, it is considered that the amplitude 0O

(b) After Appearance of Wrinkles

Fig. 24 Mechanism of wrinkling behavior

. nw
W)= 6 smmx 9)
where,é,, n, andl,, indicate the amplitude, number, and length of
rinkles, respectively. From inextensional theory, the following
uation is given:

wrinkles is nearly zero and the number of wrinkles is infinite, Iy w2
[28]. Therefore, for detailed quantitative evaluation of the differ- I=J 1+ a_) dx. (20)
ences between the two representative theories, the discrepancy in 0 X
strain energy ratio for the case where the structural scale is infinégstitution of Eq(9) into Eq. (10) yields
must be explained. From this viewpoint, it must be clarifie '
whether the wrinkles exist when the structural scale becomes in- lw n no \2
finite. From the previous considerations, if the wave of wrinkles |:f 14| opq—cosy—x dx. (11)
0 w w
Using the following nondimensional parameter
1
C Wrinkled region —+— X . &
T 08 o Max. Amplitude of Wrinkles ---x--- | X= i 5n=|— (12)
RS Rotation hub -+ w w
g - : ; ; ini
% 0.6 _\\ ) o and defininge as
§ ] ly=a-1, (23)
g e we can get the following equation:
g 0.2 SR USSR I (SIS Ot ol 1
o . ' ; . ' [ |=alwf V1+(n7és))? cog(nmX)dX. (14)
0
0 500 1000 1500 2000 2500 3000 3500 _ _
Structural Scale [R/] Now, we assume the following relations
(nwés))? cog(nmX)<1 (15)

Fig. 23 Location of maximum amplitude of wrinkles and
wrinkled region
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Then Eq.(14) becomes
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1 However, since the region around the hub has a geometrical con-
1+ E(nﬂ-ér’])z cog(nmX)|dX straint, effects of the constraint become large with increasing ro-
tation angle of the hub. This implies that as the wrinkling phe-

1
I=al,
0

1 nomena progress, the behavior increasingly differs from the
=al,|1+ —(nwér’,)z}. (16) solutions of tension field theory. This implication appears in the
4 difference of the values for torsional rigidity after bifurcation,
Here, Eq.(15) indicates the following relation: shown in Fig. 6, in which the torsional rigidity based on our
post-buckling study is apparently larger than that of tension field
0.8<a<1. (17)  theory. This is confirmed by the results shown in Fig. 13, in which
From Eq.(16), the nondimensional amplitude of wrinkles is ex-th? difference of the nondimensional moment at the final states
d b exists when the structural scale becomes large.
pressed by
5z 2 1-a (18) Conclusions
" nw a A comparative study of two representative theories, bifurcation

theory and tension field theory is carried out quantitatively. The
effect of the structural scale on the wrinkling behavior of a
2l stretched circular membrane with the center rotation hub is inves-
Va(l-a). (19) tigated, and the limitation of conventional tension field theory is
quantitatively clarified. The detailed conclusions obtained in this
From this equation, the shape function of wrinkles is finally obstudy are summarized below.
tained by 1. Effect of the structural scale on the wrinkling behavior
nar ol nar The number and_amplitu_de rati_o of Wrinkles gradual_ly in-
W= 8, sin—x=— \a(1— ) sin-—x (20) creases, and the radial location having the maximum amplitude of
L ™ lw wrinkles approaches the edge of the rotation hub when the struc-
; fant i tural scale becomes large.
and this gradient is expressed by 2. Existence of wrinkles in the wrinkled membrane with no
IWx) noT  nw compressive stress
X =6nvcosmx It turns out that the wrinkles do exist in the supposed un-
wrinkled region provided by the tension field theory. These wrin-
2 n kling phenomena are linked to the wrinkling phenomena in
T, a(l-a) COSWX wrinkled regions, which are related to the bifurcation. The tension
field theory cannot predict this wrinkling behavior, since it treats
(1-a) nm wrinkling phenomena only as problems of in-plane states of
\/—¢c

and the amplitude of wrinkles is given by

%n

T na

0S—X stress.
W 3. Applicability of tension field theory

— na We conclude that it is better to deal with the membrane as a

=0, COS|—X (21)  structural material with a structural scale larger than 1000, when

" tension field theory is applied to wrinkling analysis, although it is
where considered in plate theory that the membrane is treated as a struc-

o o) tural material with a structural scale larger than 100. If the struc-

81=21 / .- gradient factor. (22) tu_ral scale is smalle_r than 1000, the_ef‘fect of'relatlve bending

a stiffness on the strain energy stored in the wrinkled membrane

increases and cannot be ignored.

As can be seen from Eq6l9) and (20), if the structural scale 4. Exist f . t ithin th inkled redi
becomes largdthe relative bending stiffness is decregsetie h xistence o Iflor;pres.sweire.ssesl within the wrinkie retglon
amplitude of the wrinkles approaches zero because the number ofhere are wrinkled regions having larger compressive stress

wrinkles becomes infinite. However, E@2) shows that the gra- han a given threshold value with respect to strain energy stored in

dient factor is constant, even if the structural scale becomes i e wrinkled membrane. These regions represent the transition

nite. This implies that the gradient factor of wrinkles does n ctween the bounqlary of the_ hub and the radlal Iocatlo_n ha_wmg
depend on the number of wrinkles, and remains non-zero excep maximum amplitude of _vvrlnkles. Conve_ntlonally, tension field
a=1. Whena=1, no wrinkling behavior will occur. Therefore, theory Is not properly applled_ to these regions. The wrinkled re-
the wave of wrinkles also exists absolutely when the structur pns having some compressive stresses appear because the wave

scale becomes infinite, because the gradient factor of wrink(8 ;"”'letes IS E[:r?nstr?mtlad by;he_georr;etn_c?(ll_conglt;]on._
does not depend on the number of wrink{esich is affected by - NOte on e actual mechanism of wrinkiing benhavior

the structural scaje The existence of the wave of wrinkles im- I.t IS Clar'f'.Ed using |_nexten3|_onal_the0ry that_ there are the
r[mkled regions, in which tension field theory is not properly

plies the existence of the region having the geometrical constrafit"™ o
shown in Fig. 22. This also represents the existence of the reg l'ed! even as the_ structural scale becomes |nf|_n|t_e. Act_ual tor-
59nal rigidity of a wrinkled membrane does not coincide with the

having some compressive stress, which is larger than the miniona LS . .
mum buckling stress of the membrane. For these results, l@(@utlon of tension field theory, and the difference of the solutions

wrinkled regions, in which tension field theory is not applied _ased on two wrinkling theories, bif_urc_ation theory and tension
exist absolutely in the membrane even if the structural scale ﬂbe-ld theory, becomes large when wrinkling progresses.

comes infinite. This implies that the rigidity of the wrinkled mem-

brane calculated based on tension field theory does not approkeknowledgments

mate the exact solution ds-0.

Furthermore, in the case of the circular membrane, the com-
pressive strain within the wrinkled regions, which corresponds to
the wrinkling strain in tension field theory, becomes large wh
the rotationgangle of the hub increases. As stated beforg, if inil&pmenclature
tentional theory is applied, out-of plane displacements around the a = radius of hub
rotation hub become large with increasing compressive strain. b = radius of circular membrane

We thank Prof. H. Noguchi for providing support with respect
incorporating the MITC shell element into FEAPpv.
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On Some Peculiar Aspects of
e onaner | AXIAI Motions of Closed Loops of
e | String in the Presence of a
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Peter C. Varadi We consider the dynamics of a closed loop of inextensible string which is undergoing an
axial motion. At each instant, one material point of the string is in contact with a singular
supply of linear momentum (also known as an external constraint). Several peculiar
features of this problem which have not been previously discussed are presented. These
include the possible presence of an arbitrary number of kinks, the vanishing nature of the
singular supply of momentum, and the critical nature of the tension in the string. When
the linear momentum is supplied by a mass-spring-dashpot system, we are also able to
establish an exact expression for the frequency of the resulting vibrations, prove that
dissipation cannot be present, show that these vibrations only occur for discrete speeds of
axial motion, and establish that Coulomb friction is absdi@Ol: 10.1115/1.1756139
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1 Introduction In Refs.[1-6], the equations of motion of the string are linear-

Th biect of axiall . dia h ttracted id ized about a steady axial motion. During this motion, the string
€ subject ot axially moving media has atlracted consideralyg s 5 closed circular loop of radils The tension in the string

attention. Earlier works on this subject considered the linear \iiuring the steady motion is assumed to be a consignas is the
bration about a steady axial motion of a segment of string whesgjal speedv=R(). One of the assumptions employed in the
no body forces or surface tractions were present. A recent trendvipration analyses ifil—6] is thatn, is independent o¥/ (or Q).

this research area has been to examine the influence of disctatehis paper, we use a classical res{dee, e.g., Lamij9]) to
mechanical systems which contact the moving string at a singlbow that if there are no surface tractions or body forces on the
point. The present paper contributes to this topic by examining tB&ing, then this is not the case. Indeed, we showas always
effects of a point sourcér singular supplyof linear momentum, equal to its critical value)ovz.l Thi.s (esult has seyeral interesting
denoted byF, on the linear vibrations of a closed loop of axiallyconsequences when the string is in contact with a mass-spring-
moving string. We point out several interesting degeneracies §gSPOt system. However, only in Yang and Hutfdhhas this

) ritical case been analyzed. In this paper, we supplement their
this problem and the consequences that they have on the dyna e&tlts by showing thatyvibrations of Ft)hg string Whﬁ:ﬁ)] were dis-

of the gtring. Among our (_)bservations are the possible presence,giqe g in[4] are indeed possible. In fact, the frequency of these
an arbitrary number of kinks, the vanishing natureFofand the \jprations is the natural frequencf/m of the mass-spring sys-
critical nature of the tensiom in the string. When the linear tem. In the closing section of the paper we show how an external
momentum is supplied by a mass-spring-dashpot system, we ®fce can be introduced to achieve the steady motions discussed in
tablish, among other results, an exact expression for the discrgte 6].
frequency of the resulting vibrations. We note that for the moving threadline problem, discussed in,
Our work is a contribution to understanding the dynamics of @g.,[7,10,11, no can be varied independently pfV? and the
system described in a 1984 paper by Schijér He considered degeneracies we report here don’t apply for this problem. Simi-
the effects of a contacbr external constraiptat a single point of larly, for the axially moving string in a gravitational field dis-
a closed circular loop of inextensible striigee Fig. 1 This cussed by O'Reilly[12], ng#poV2. Finally, no=peV? for a
system, albeit idealized, was regarded as a prototype systentidy motion of a circular loop of string in the absence of body
improve understanding of the more difficult problems associat&irceS and smgular ;upplles O.f momentum, and Hepl®} has
with vibrations induced by contact in spinning flexible disks. suProven that this motion is nonlinearly stable.

: : An outline of this paper is as follows: We first formulate the
sequent papers by Perkins and M2 and Hutton and his co- , hiem of a closed loop of inextensible string that is in motion

workers,[3—6] generalized Schajer's work. Other authors, such §th one point in contact with a supply of linear momentum. This
Chen([7] and Cheng and Perkii8], considered the related prob-sypply exerts a forc€& on the string at the material poiigt=y.

lem where the steady motion of the string described a straight lir@e presence of the supply serves to model the effect of a mass-
(the so-called moving threadline problemand one point of the spring-dashpot in contact with the string. It also introduces several

string was in contact with a mass-spring-dashpot system. algebraic jump conditions into the equations of motion. We then
turn to solving for the steady motion of the string, and first show
To whom correspondence should be addressed. that ny=p,V? even in the presence of the source of linear mo-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  mentum. This result implies that during a steady mofer0 and

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . R .
CHANICS. Manuscript received by the Applied Mechanics Division, May 12, ZOOSWOI’EOVQI’ that the string can have an arbltrary finite number of

final revision, October 23, 2003. Editor: R. M. McMeeking. Discussion on the pap§0iNts where the tangent vectey is not continuous(i.e., the

should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Appligglosed loop of steadily moving string can have an arbitrary finite
Mechanics, Department of Mechanical and Environmental Engineering, Universj mber of kinks. We then discuss the equations governing the
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accep@% I litud $|. ibrati f th qt . b 9 t th ? d

until four months after final publication in the paper itself in the ASMEJENAL OF small-amplitude linear vibrations o € string abou e steady

APPLIED MECHANICS. motion. Becaus@,=pyV?, these equations also exhibit several
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«— and the local balance law and jump condition for linear
momentun?

an . L
o =5 Pory [nl+{porly+F=0. 2)
string /' In these equations, the superposed dot denotes the material time
=y derivative and[f]=f(y*,t)—f(y",t) denotes the jump ifi(£,t)
across the material poit= y(t).

mass-spring-dashpot /

system
3 The Steady Motion
Fig. 1 Schematic of a closed loop of inextensible string which The steady motion of the string of interest is an axial motion
is in contact with a mass-spring-dashpot system. The contact where the string moves at a constant spéealong its length and
of the system and the string occurs at the material point ¢ describes a fixed curve=r, in space:

= y(t) of the string. The system shown in this figure is similar
to those discussed in  [1-6]. L . arg . ) €
Y=%9, I=V—=Vgqy, r=V-——,

s s 3)

N=No&o, F=Fo,

degeneracies. Among the degeneracies we find are the existemuee, = Jry/ds is the unit tangent vector to the string. Here, and

of vibrations at a fixed frequency which only occur for certaifenceforth, the subscript O denotes quantities associated with the

discrete speedg. The closing section of the paper gives a physisteady motion.

cal interpretation of the necessary conditions we found for theseFrom the compatibility condition Eq1),2 we find that

vibrations. There, we also explicitly calculate the external force Ry 4

field needed to achieve the steady motions discussgtH#). Yo= : Q)
Substituting Eq(3) and y=—V into Eq.(2), we find that

J
—((ng— poV?) &) =0,
2 The Governing Equations gs (Mo poV)&0) ©)
For an inextensible string, we denote the position vector of each [[(Nng—poV)eol]+Fo=0.
material point by the vectar. This vector can be described as
function of an arc length parametéiin an undeformed configu-
ration and the timeé. The arc length parameter of the string in itﬁ(n
present configuration is denoted Isy and the(uniform) mass
density of the string is denoted hy.
The contact forcen in the string has the representatios ne, No=poV?, (6)
wheree = dr/ds is the unit tangent vector to the string, ands
the tension in the string. We assume that at the [®irg,,, which

corresponds to the material poi y(t), the string experiences a ; . . 2 -
singular supply of linear momentui (see Fig. 2 This force |00P Of string can take any spatial form provideg=poV*. This

represents the force exerted on the string by the mass-sprifgsult IS cIaSS|ca§see, e.g., Section 502°f Lanﬁ@]).é In addition,
dashpot systems discussed[In-6]. It is assumed that no other because,=poV*, we find from Eq.(5)" that the singular supply
body forces or surface tractions act on the string. of linear momentum is

The nontrivial equations governing the motion of the string are Fo=0. 7
the inextensibility constraint and compatibility conditions,

8he other two equations, Eqd),>? are trivially satisfied.
Equation (5) provide six equations to solve for the six un-
ownsng, &g andF=F,. First, because,, changes along the
length of the closed loop of string, E(p) implies that

throughout the entire length of string. With this solution figr, it
is easy to see that amgy, satisfies Eq(5); . As a result, the closed

In other words, in order for the string to execute a steady axial
motion, the singular supply of momentum must vanish. We also
. observe thatg, is not necessarily continuous gt+y. Indeed,
r+7(9_§ =0, 1) becausen,=p,V? we have the unusual feature that the steady
motion of the string can have an arbitrary finite number of points
where g is not continuous. This situation is analogous to the
possibility of an arbitrary number of kinks in a slack string dis-
cussed by Reekdr 7]. It is also similar to the discontinuities with
a discontinuous tangent vector discussed by Purohit and Bhatta-
— charya[18].4
For the circular loop of string of radiuR considered ii1—6] it
is convenient to define the rotational spé&e- V/R. Our analysis
implies that an assumption used in these papers, which dates to
closed loop / F/ Schajer’s papefl], namely that the tension, is independent of

ar or

a—g'a?:l, [r1=0,

of inextensible Q, is, as noted 4], artificial®

string .
’These equations can be obtained from the thermomechanical theory for a string
=y discussed in O'Reilly and VaradlL4] (see alsd15]).
%ln 1990, it was extended to closed loops of nonlinearly elastic strings by Healey
. . . . . . and Papadopould46].
Fig. 2, Schemqtlc of a closed loop of inextensible 5”'“9 which “We are grateful to an anonymous reviewer for bringing this paper to our atten-
experiences a singular supply of momentum F at the point &Y. tion.
The system shown in this figure can be considered a generali- 5Schajer’s paper has an error in the jump condition at the contact (ssatEq.
zation of that shown in Fig. 1. (7) of [1]). However, this error was corrected in the papers by Hutton €Bal6].
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4 Linearized Equations of Motion n,=0. (12)

It is interesting to establish the equations governing the smathe method of solution parallels the argument we used earlier to
amplitude vibrations of the string about the steady motion. T@stermine no. This result implies thatn=ngee+O(€?). In
assist with these equations, we follow standard practice and defipg,ds n is equal to its critical value to second order.

the coordinate: Before solving the partial differential equation E@.1),> we
=&+ VimodL), g8) first tum to the jump conditions. There, we find from E¢0)**

. . thatu anddu/ dt are continuous a§= . As no= poV?, the remain-
wherelL is the length of the closed loop of string. Next, we CONing jump conditions simplify to

sider asymptotic expansions of the displacement and force vari- )
ables: [v180]=0,

r=ro+eu+0(€?), [ni&o] +F1=0.

(13)

Y=o+ €y1+0(€), However, we already showed that{=0, so we can conclude

) ) from Eq. (132 that
n=ngy+en;+O(€%),

F,=0. 14
F=Fo+ eF,+0(€?). ' a4

L ) ) Turning to Eq.(13),* we find that if the tangent vecta, to the
Substituting Eq.(9) |n2to Eq. (1) and Eq.(2), using Eq.(5) and  gteady motion of the string is continuousét y, then this jump
ignoring terms ofO(e7), we find that condition is trivially satisfied and the speed is indeterminate.

arg du On the othgr hand, i&g isznot .contintljoys af=v, thgn ylzo. .
—._—_=0, The solution of Eq(11)* which satisfies the continuity condi-
90 90 tion [u]=0 is easily found:

d ar au J2u Ju  du )= —2Vi) + E. 1
_(nl_o+n0_)_po< 27 oy +_2>, U(0,0)=(g3(0—2V1) + Gy(6) (15)
96\ ~ a6 6 a0 do ot Here,g, andg, are functions, determined from the initial condi-
tions on the string’s motion, which satisfy the periodicity condi-

[ul=0, (10) tion

au .
_ 2= u(e,t)y=u(o+L,t). (16)
at+71a6H o

The displacement at=vy can be found from Eq.15) after noting
that this point corresponds = y+ Vt:

u,=u(y+Vt)=(gi(y=V)+go(y+V)HE.  (17)
Notice that we have not yet imposed the conditiofF poV? in gqf completeness, we also note that
Eq. (10). ’

Equation (10) constitutes a system of equations for the un- L, 5
knownsu, ny, andy,. For closure in the present circumstances, YD) =7(t) = V(t=to)+e€ | 71(2)dz+O(€%), (18)
we require thafF, is prescribed as a function of the kinematics of o
the string. It is also prudent to note the well known result that theheret, and y(t,) are constants. It is not possible to conclude
first of Eq.(10) implies that the displacementis perpendicular to from Eq. (17) thatu, is zero.
the steady motiom. Thus far we have shown th&=0+0(€?) and n=pyV2e,

+0(€?). In addition, ¥, may be indeterminat®To obtain con-
5 Solutions of the Linearized Equations crete results o we need to conside_r a specif_ic supply of linear
momentum. We choose the prototypical situation wheis sup-

We henceforth restrict our attention to the case whgréies plied by a mass-spring-dashpot system. Our results for this system
entirely on a plane and is perpendicular to this planet=uE have an overlap with the critical case discussed in Section 3.2 of
where E is a constant unit vectérAfter first presenting some Yang and Huttorj4]. However, these authors did not consider the
general results for a supply of momentum, we shall turn to thsbssibility for the vibrations that we find below. Further, our re-
specific case of a mass-spring-dashpot system. sults apply when the steady motion of the string lies on a plane—

To start, we note that a consequence of our planarity assuniiiis motion does not have to be circular. We also note that because
tion, the linearized constraint Eq10)! is identically satisfied. F=0 to second order ir, the mass-spring-dashpot system does

Vi) o vy v ik =0
(n1+po 71)% (No—po )@ poV 5 1=0.

Using Eq.(6), Eq. (10)? can be divided into two equations: not exert a normal force on the string. Consequently, when assum-
J ing a friction force which is proportional to a normal load, there is
_e(nleto)zol no friction force acting on the string.
Jd

(11) 5.1 A Mass-Spring-Dashpot System. We now restrict our
#u % attention to the case wheFeis supplied by a mass-spring-dashpot
er o= system aligned in th& direction. For the mass-spring-dashpot
at . . - :

system, the mass is denotediiythe linear spring has a stiffness
It is interesting to note that Eq11) implies that a(continuou$ k and the dashpot has a viscous coefficiéntVe denote byexE
function of # can be added tar and Eq.(11)? will still be the displacement of the mass particle and assume that the system
satisfied” We can split each of the jump conditions Egs0)*> only moves in theE direction. It is not too difficult to see that
into two equations in a similar manner with the goal of solving .
Eq. (10). It is to this task that we now turn. F=0-e(mx+dx+kx)E. (19)

First, we notice that Eq.11), is easily solved to determine the——— ) o )
8A similar indeterminacy arises in studies on phase transformatises, e.g.,

po| 2V

xE:uy,

tensionn, : [19,20) and folded string¢see, e.g[14,17,18). There, it is removed by prescribing

- a singular supply of energy and then using the jump condition from the energy
5This encompasses the situations discussdd+6]. equation(see, for instance, E@5.5) of [14]). However, for the problem at hand, such
"This function is the functiory, discussed below. an approach does not resolve the indeterminacy.
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However, our previous results showed tkat=0. Consequently, whereV is a solution of Eq.27) for some integen. It is also
interesting to note that the frequency of these vibrations is the

mx+dx+kx=0. (20)  natural frequency of the mass-spring system. _
Substituting Eq.(17) and Eq.(18) into Eq. (20) and dropping When the steady motion is C|rgular of radiBswith an axial
terms ofO(e), we find that speedV= R, then Eq.(27) simplifies to
4v2md,|(7)—2Vdd;(7) + kg (1) +kgo(7+2VH) =0, (21) 0= % \ﬁ (29)
m
where . . . .
From this relation we conclude that, given the appropriate initial
7=17,(t)—Vt=7y(0)—2Vt+O(e), (22) conditions foru, a nontrivial vibration of the string is possible

provided the natural frequency of the mass-spring system is an

and the prime denotes the derivative of a functipag(7) with  5an integer multiple of the spedl

respect tor.

21After noting thatr+2Vt=y(0)+O(e), it is easy to solve Eg. g Closing Comments and Interpretations

(2: For the vibrations of the string in contact with the mass-spring
g,=0,(7)=e’(a, sin(xy7)+a,cod x7))—g,(y(0)). (23) system, itis easy to give interpretations of the conditions(Eg.

. . . and Eq.(29). If we imagine the mass-spring system vibrating with

In this equationa, , are real-valued constants which are detet; frequency,krm, this will induce a vibration in the string which

mined by the initial conditions, and

is carried by the axial motion. For the vibration to continue to

exist, it must, after traversing the length of the string with a speed
s d _ _ 4km V, have the same magnitude as the vibration of the mass spring at
N=05+iy 1+1/1 . (24) ¢ . . "
amV 2 the instant it returns to the contact po#ity. The conditions Eq.

) ) ~ (27) and Eq.(29) ensure that this is the case.
In Eq. (24), x and  are the imaginary and real parts, respectively, Uitimately, becausé=0, the mass-spring system oscillates at

of \. ) o . i its resonant frequency and the axial sp¥emhust be synchronized
Returning to the vibration of the string, we now find from Eqwith this frequency. By extension, and by virtue of linear super-
(15 that position, if the spring is replaced with any elastic structure with a

A discrete number of natural frequencieg then a relation similar
u(6,)=(02(6=2V)+g2(0))E to Eq.(27) would hold with w, Eeplacingm.
=2, MO~V g 4 ((0) — 2Vt) ) E+ a,e? "0 ~2V) Throughout this paper we have argued that, and explored the
consequences ofjg=pyV?. We also commented thfl—6] as-
X cog x(¥(0) —2VH)E+(92(6) —92(¥(0)))E. (25) sume that for closed loops of stringy# p,V2 in general. To
As mentioned earlier, this solution must satisfy the periodici§ChieVe @ tensiong in the string which satisfies this assumption,
conditions Eq(16), anda,, a,, andg, are determined from the dlstrl_buted fprce;of n'eeds to b_e applied to the lateral s_urface of
initial conditions. Choosing, anda, to be zero, we find that it is 1€ String. This force is determined by the balance of linear mo-
necessary that,(6)=g,(6+L). Settingg,=0, it is not too dif- Mentum for the stringcf. Eq. (5)):

ficult to see from Eq(23) and Eq.(25) that the following restric- 9
tions are necessary: pof=— &—S((“o—Pon)Qo)- (30)
sin(yL)=0, e’ cogxL)=1. (26) we interpret this equation as one where prescribing the steady

The parameterg and in this equation are specified by E@4). State motion's parametens— pV? andey, we can find the force

We noted earlier that the solution afwas determined from Eq. Pof needed to achieve this motion. For the circular loops of string

(11)? to an arbitrary added function of. Consequently, in Eq. considered if1—6], no—poV? is assumed to be @onzero con-

(25) we can, without loss in generality, sgi=0. As a result, the Stant andey is the unit tangent vector to the circular motion.

restrictions Eq(26) become both necessary and sufficient. Consequently it is easy to calculate the fopgé needed to sustain
Clearly Eq.(26) can only be satisfied iB=Re(\)=0. In other the steady motions discussed [it—6]. Indeed, a mechanism to

words, if the dashpot is absent agd-1/2V k/m. Even in this achieve this force is discussed|il.

case, Eq(26) requires the parameters of the mass-spring system

to be related to the length of the string in order for a time varyingcknowledgments

vibration to be present: The work of Oliver M. O'Reilly on this paper was supported by

ON#w 1 K the National Science Foundation under Grant No. CMS0084808.
—_= \ﬁ (27) Any opinions, findings, and conclusions or recommendations ex-
L 2V .¥m pressed in this material are those of the authors and do not nec-
We can interpret this relation to be an equation for the Spyedsessarily reflect the views of the National Sci_ence Foundation.
such that for a giverk, m, andL, a time-dependent vibration The authors are al_so grateful to Prof. Eric Mockensturm and
exists in the string. The resulting vibration, which can also b@ree anonymous reviewers for their helpful comments on an ear-
interpreted as a forward travelling wa\@iperposed on a standinglier draft of this paper.
wave @,(6) —g,(v(0)))E. The explicit form ofu is found from

Eq. (23, Eq.(25), and Eq.(27): References
[1] Schajer, G. S., 1984, “The Vibration of a Rotating Circular String Subject to a
00)=a i 1 Jk 0—2vi |E 1 /K ) Fixed Elastic Restraint,” J. Sound Vito2(1), pp. 11-19.
u(e,t)=a, sin oV E( - ) |E+a,co oV E( [2] Perkins, N. C., and Mote, Jr., C. D., 1986, “Comments on Curve Veering in

Eigenvalue Problems,” J. Sound ViLQ6(3), pp. 451-463.
[3] Xiong, Y., and Hutton, S. G., 1994, “Vibration and Stability Analysis of a
Multi-Guided Rotating String,” J. Sound Vib1695), pp. 669—-683.
E+ (92( 0)— 92( 7(0)))E' (28) [4] Yang, L., and Hutton, S. G., 1995, “Interaction Between an Idealized Rotating
String and Stationary Constraints,” J. Sound Vib851), pp. 139-154.
9Becaused= £+ Vi, this is a forward travelling wave both for an observer who is  [5] Tian, J., and Hutton, S. G., 1998, “Lateral Vibration Instability Mechanisms in
moving with the steady axial motion of the string and a fixed observer. a Constrained Rotating String,” ASME J. Appl. Mecb5(3), pp. 774-776.

—2Vt)

544 | Vol. 71, JULY 2004 Transactions of the ASME



[6] Tian, J., and Hutton, S. G., 1999, “On the Mechanisms of Vibrational Insta- Dimensional Thermomechanical Media,” Continuum Mech. Thermodyn.,

bility in a Constrained Rotating String,” J. Sound Vil2251), pp. 111-126. 11(6), pp. 339-352.

[7] Chen, J.-S., 1997, “Natural Frequencies and Stability of an Axially-Travelling[15] O’Reilly, O. M., and Varadi, P. C., 2003, “On Energetics and Conservations
String in Contact With a Stationary Load System,” ASME J. Vibr. Acoust., for Strings in the Presence of Singular Sources of Momentum and Energy,”
1192), pp. 152-157. Acta Mech.,126, pp. 27-45.

[8] Cheng, S.-P., and Perkins, N. C., 1991, “The Vibration and Stability of a[16] Healey, T. J., and Papadopoulos, J. N., 1990, “Steady Axial Motions of
Friction-Guided, Translating String,” J. Sound Vili44(2), pp. 281-292. Strings,” ASME J. Appl. Mech.57(3), pp. 785-787.

[9] Lamb, H., 1929 Pynamics 2nd Reprinted Ed., Cambridge University Press, [17] Reeken, M., 1977, “On the Equation of Motion of a Chain,” Math. Z553),
Cambridge, UK. pp. 219-237.

[10] Miranker, W. L., 1960, “The Wave Equation in a Medium in Motion,” IBM J. [18] Purohit, P. K., and Bhattacharya, K., 2003, “Dynamics of Strings Made of
Res. Dev.4(1), pp. 36—42. Phase-Transforming Materials,” J. Mech. Phys. Solfls,pp. 393—-424.

[11] Wickert, J. A., and Mote, Jr., C. D., 1990, “Classical Vibration Analysis of [19] Abeyaratne, R., and Knowles, J. K., 1993, “Nucleation, Kinetics and Admis-
Axially Moving Continua,” ASME J. Appl. Mech.57(3), pp. 738-744. sibility Criteria for Propagating Phase BoundarieSHock Induced Transitions

[12] O'Reilly, O. M., 1996, “On Steady Motions of a Drawn Cable,” ASME J. and Phase Structures in Generalized MedlaE. Dunn, R. Fosdick, and M.
Appl. Mech.,63(1), pp. 180-189. Slemrod, eds., Springer-Verlag, Berlin, pp. 1-33.

[13] Healey, T. J., 1990, “Stability and Bifurcation of Rotating Nonlinearly Elastic [20] Truskinovsky, L. M., 1993, “Shocks and Kinks3hock Induced Transitions
Loops,” Q. Appl. Math.,48(4), pp. 679-698. and Phase Structures in Generalized MedlaE. Dunn, R. Fosdick, and M.

[14] O'Reilly, O. M., and Varadi, P. C., 1999, “A Treatment of Shocks in One- Slemrod, eds., Springer-Verlag, Berlin, pp. 185-229.

Journal of Applied Mechanics JULY 2004, Vol. 71 | 545



M. Ravi Shankar

srinivasan Chandrasekar | [nteraction Between Dislocations
sromesseers | in @ Couple Stress Medium

315 N. Grant Street,

West Lafayette, IN 47907-2023 Taylor's theory of crystal plasticity is reformulated for dislocations in a couple stress

medium. The divergence between Taylor's approach and an approach that includes the
Thomas N. Farris e_ffects _of couple stresses on c_iislocation in@eractions is demonstrated. It_is_shown 'ghat
Sehool of Aeronautics and /;stronautics dislocations separated by.a dlstqnce that is comparable to a charaqtenstlc mater!al

' length scale, have mutual interaction somewhat weaker than that predicted by classical

Purdue University, - .
315 N, Grant Street. elasticity. [DOI: 10.1115/1.1767172

West Lafayette, IN 47907-2023

1 Introduction distances and whose principal effect is to depress the stress field
. - i, round the dislocation. On the basis of this observation, it is in-
Classical elasticity has been traditionally used to model t rred that the stress required to operate a Frank-Read source in a

stress field in the vicinity of a dislocation. This stress field ha; ; . -
provided a basic understanding of the interaction between dis oQL”OIe stress medium is generally smaller than that required oth-

cations. Taylof1], starting from the classical elasticity theor 0ferwise. This is not to mean that there is a softening of the material
- 1ay ’ g Y Y Ol large dislocation densities. What is suggested is that as the

dislocations, showed that the flow stress of a material is IC)ro'C)Olc’jlzri"slocation density increases, strain gradient effects appear to re-

tional to the square root of the dislocation density. A finite disloduce the ability of dislocations to pin each other vis-a-vis the
cation density may result either from a random trapping of dislg; Y P

cations(statistically stored dislocationsr due to an accumulation Classical solution.

of dislocations for ensuring geometrical compatibiligeometri- 2 Couple Stress Theory
cally necessary dislocationg2]. The latter phenomenon is im-
portant when large strain-gradients occur in a matefial, In
problems involving a large strain gradient and/or large dislocati

densities, the effect of couple stresses on elastic properties of 2aning. For this two-dimensional formulation, these stresses can

locations may be significant. : : i .
Mindlin [4,5] showed that the inclusion of couple stresses cathe derived from stress functiods and W satisfying[5}:

introduce significant changes in the elastic stress state of a prob- Vid=0 (1)

lem, especially at length scales on the same order as a character- 19

istic “material length scale.” For instance, the elastic stress con- — (W= 12V20) = —2(1— )12 — V2 @)

centration factor of a circular hole in an infinite sheet under ar rade

uniaxial tension is somewhat lower in a couple stress mediun than 19 19

that predicted otherwise. This divergence becomes particularly S (W—12V2) =2(1— )12 — V2 3)

conspicuous when the size of the hole is comparable to the char- rao rado

acteristic length scale of the mediuf®). Dislocations, being an V2W — 12V4p =0 4)

atomic scale phenomenon should, hence, be expected to be af-

fected by the presence of couple stresses. where,v is the Poisson’s ratio, arlds a length scale characteristic
Mindlin [4,5] suggested a number of possible sources of thd the material defined d$]:

characteristic material length scale depending on the type of the M

problem, with values of the length scale ranging any where from 2= — . (5)

the lattice spacing in a perfect crystalline lattice to the grain size G

in a polycrystalline material. In this study, the length sddlés G andM, respectively, are the shear modulus and bending modu-

assumed to be equal to 500 riifable 1, which is typical of the |ys of the material.

cell size in a highly work hardened material. While the character- The stresses corresponding¥and ® are

istic length scale enters the calculations as a parameter that de-

The stresses and couple stresses on an element in equilibrium
are shown in Fig. 1. Couple stresses or couple per unit area are
noted byu, and w,. The remaining stresses have the usual

cides the range and strength of the couple stress terms, its specific 190 170 172¥ 1%
value is not likely to affect the general conclusions that are arrived =T 2 502 T arae * 230 (6)
at in the ensuing analysis.
Here, couple stresses are included in the formulation of the Rd 12V 1 9¥
problem of an edge dislocation. It is shown that the presence of op=——+ — - @)
cou | H d _ ” d “ k_' : ” _ arz r (‘7"30 r2 80
ple stresses Introduces a so-called “weak-interaction param
eter in the elastic stress field that is operative only at very small
P yavery 1R0 140 10V 15°% -
—_— Tep=—— — + — — R
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Table 1 Material parameters assumed for copper Ay
Shear modulugG) 44 GPa
Poisson’s ratiqv) 0.34
Length of the dislocatiorin) 0.256 nm
Material length scalél) 500 nm
10¥ 11
Mo~ r 90 (11)
Mindlin [4,5] has provided a detailed derivation of E¢E—(11). x

3 Stress Functions for a Dislocation in a Couple Stress
Medium

Consider the problem of a dislocation similar to the one con
sidered by Taylorf1], i.e., an elastic isotropic cylinder with a
dislocation as shown in Fig. 2.

If the radius R of the cylinder is large, then the Airy stress
function (®) is

¥
1 1
] !
1 1
1
t [}
' 1
1 ]
1 H
1 t
! 1
) t
]
[} !
]
I i
1 1
1 !

Bsing > -
®=—Dr logr sinf— . (12) ' 7‘.
Couple stress effects can be included by introducihg Fig. 2 Elastic cylinder with dislocation
¥ E r
- Tcose+ FKy 1 cosd (13) Equations(2) and(3) lead to a 4th relationship that is intrinsic to

where,D, B, E, andF are constants that can be calculated subjethe ensemble:
to the boundary condition&,(x) is a modified Bessel function of E=—4(1-v)I°D. (14)
the second kind and thath order.

The stress function in Eq13) is similar, if not the same as that
postulated by Mindlin[5] for the problem of a circular hole in
an infinite sheet subjected to uniaxial tension in a couple stress G\
medium. D= Za(l=2)"

At r=a, the following boundary conditions hold:
) The coefficientdD, E, andF were calculated for material pa-
1. pelr—a=0: It may be shown using Eqél3), (12, and(10)  rameters typical of coppéfable 1 and are given in Table 2. Note
that in the limit a-0, F——E/I. that the coefficient® andF are positive whileE is negative.
2. 7,¢lr=a=0: It may be shown using Eq§l3), (12), and(8)

that this boundary condition and the fO"OWing bOUndary‘_ Taylor’s Theory in a Couple_stress Medium
condition lead to the same criterion.

3. ,|,_,=0: It may be shown using Eq&L3), (12), and (6) C_:or_ls_lder two edge dlslocatlons of opposite S|gn©_a!ndA in
that in the limit a-0, B—0. an infinite medium devoid of couple stress, whose glide-planes are
spaced a distande apart as shown in Fig. 3. Let us assume the
dislocations are kept apart under the action of a remote shear
stressS acting along the glide plane. It was suggested by Taylor
that this shear stress would pull the two dislocations apart a dis-
tancex (Fig. 3) such that

Tor & Dx

D may be evaluated from the fact that &t 2w, the relative dis-
placement in the-direction,u;| y—»,— U] y—o=\ (Fig. 2. Hence,

(15)

=—. 1
i s (x?+h?) (16)

It was further argued that the maximuior critical) value of S
is D/(2h) and if Swere less than this critical value, then the two
centers of dislocation cannot escape their mutual attradtign,

A similar definition of the critical shear stress needed to pull
apart two dislocations of opposite signs may be attempted for a
couple stress medium as follows. Singg and 7, , are not equal
G T in a couple-stress medium, we define two stress parametard

Ta S

7= (7o + 71 9)/2

Table 2 Coefficients for copper

0 X 2.7162 N/m
—1.79x10 2 Nm

3.58x10° ¢ N

mmo

Fig. 1 Stress and couple stress in polar coordinates
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S We can rewriters (Eq. (20)) in Cartesian coordinates as

Dx N 2EX
Te= .
S X2+y2 (X2+y2)2

The equivalent of Eq(16) for Fig. 3 in a couple stress medium
can be obtained by setting=h in Eq. (21):

(21)

A
_JL s ~ Dx N 2Ex 22)
h ; couple-stress 2+ h2 (X2+ h2)2 .
(8]
IR I A 5 Weak Interaction Between Dislocations
Equation(22) can be broken into two parts, namely the Taylor
x interaction and the weak interaction. That is
Scouple—stress= T(X)+R(x) (23)
whereT(x)=Dx/(x?>+h?), is the Taylor interactiofisame as Eq.
(16)), and R(x) =2Ex/(x?>+h?)?, is the repulsive weak interac-
S tion.

S and S{ypesress the nondimensional interaction shear
stresses, are defined as the nondimensionalized counterp&ts of
and Scouple-stres§UCh that

Fig. 3 Positive and negative dislocations in the presence of a
remote shear stress

h

and S'= aS (24)
Ta=(Tor— Tro)/2.

Then, using the stress functions in E¢k2) and (13), we get COUP'e-StfeSS:aSCOUP'e-S“eSS (25)
1(2(2E+Dr?)  FKy(r/l) 2FK,(r/l) If the distanceh, between the glide planes is very large com-

s=5 3 + 2 i cosf (17) pared to the material length scale paramétdre., sayh> 10,

' thenR(x) is negligible and the solution fdB,je.sresdPractically

FK,(r/l)cos@ coincides with that obtained from Taylor’s theorg']. This is
Tafm=———————. (18) apparent from Fig. 4 where the variation of the nondimensional

217 interaction shear stresse8’ (andS;ype-sress With (x/h) is plotted
The Bessel function contribution to the shear stresses if{I&. for h=10. However, when the distande, between the glide
is negligible compared to the contribution from the other tw@lanes becomes comparablelta.e., sayh=3l, then the contri-
terms involvingD and E even at a distance af~3l from the bution of the repulsive weak interaction terR(x), in Eq.(23) is
dislocation. Hence, we will not consider the contribution frongeen to be significar(Fig. 5.
terms involving the Bessel functiod,(r/1). The effect of theR(x) term, hence, appears to be one of reduc-
We taker, to be the analog o in Fig. 3. This analogy arises ing the interaction stress between dislocations. liFeB| this ef-
directly as a result of Mindlin’s formulatiori4]. In this formula- fect is seen to be~25% based on the maximum value of the
tion, the symmetric part of the shear stresg (produces the usual nondimensional interaction streffsig. 5).
shear strain ¥, ,), that in classical elasticity is produced by, The variation of the maximum value & and Si,pje-sresVith
(of course, in classical elasticity, ;= o). (h/l) is plotted in Fig. 6. Since Taylor’s theory does not involve a
That is characteristic material length scale, the maximum valu®’dias
no dependence on the valuelot, and hence, is a constant equal
(19) to ~0.12. However, in the presence of couple stresses it can be
seen(Fig. 6) that the maximum value db, pe.sresd€CrEases as
Thus, to a first approximation, if a comparison is to be mad¥! decreases.
between the classical result of Taylor and one involving couple
stresses, it has to be betwe®@and 75. In this approximation we
have, of course, neglected the terms arising from the interaction®f Consequences of Weak Interaction for Strain-
the curvatures in the vicinity of th_e dlslpcatl_on Atwnh _the Gradient Plasticity
couple stresses produced by the dislocatio®@an Fig. 3, since

Ts

Yro= yﬁrza-

both of them are rapidly decaying quantities. Classically, the line tension of a dislocation line is proportional
By discarding the terms involving the Bessel functions in EO the elastic self energy of the dislocation line. The stronger the
(17) we get elastic stress field around a dislocation, the stronger it interacts
with other dislocations and the larger is the stress required to bend
D cosf 2E cosé a dislocation line to the critical extent. Cottr¢] has calculated
[ + r—3 (20)  the elastic self energy of an edge dislocation by treating it as the

work done in displacing the faces of a datade as in Fig. Rby

It can be immediately seen using E@O) and Table 2 that, be- \ against the resistance of the shear stress field of the dislocation.
tween two dislocations of opposite signs, the term involMihip ~ While such an approach yields the correct result in classical elas-
Eq. (20) is a repulsive interaction. This term leads to a “wealicity, similar simplistic calculations in the presence of couple
interaction” that gains significance at large dislocation densitietresses will lead to grossly misleading results. Since exact solu-
when the distances between dislocations are small. The term tions for the self energy and line tension are extremely compli-
volving D in Eq. (20) is the “Taylor interaction” which causes cated, we will only attempt to qualitatively gauge the effect of
two dislocations of opposite signs to always attract each other.couple stresses on dislocation interactions.
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—a— S =T(hGA
—0—— Siuupie-sress = [T(X)+RNVG A

x/h

Fig. 4 Variation of nondimensional interaction shear stress with x/h for h

=10/. The material parameters used are those for copper given in Tables 1
and 2.

The maximum value of the interaction shear stress is represelislocations become comparable to the characteristic length scale
tative of the stress required to disentangle a pair of dissimilaf the material, the presence of couple stresses would tend to
dislocations. As illustrated in Fig. 6, the maximum value ofeduce the interaction between dislocations and reduce the ability

couple-stress0€COMes smaller als/l decreases. Hence, the stressf dislocations to pin each other. However, it is not likely that this
required to disentangle a pair of dissimilar dislocations is genesoftening” produced by the reduced dislocation interactions will
ally smaller than that predicted by classical elasticity when tHee comparable in magnitude to the hardening produced by the
spacing between the dislocations becomes comparable to the chage dislocation density.
acteristic material length sca(®. While there have been attempts at understanding the effect of

This would imply that in the case of a large dislocation densitgouple stresses close to the dislocation core by ErifigerGut-
as is typical of highly strained materials or of many problemkin and Aifantis[8], and others, the importance of the corrections
involving a significant strain gradient, when the distances betwesgsulting from strain gradient effects vis-a-vis anharmonic effects

)

—a—— S=T(xh/G A
—_—— S’oouple-stress = [T(x)+R(x)]h/G A

Py
N

couple-stress
o o
——
-

© @ 9o
o o o °
SN o © -

shear stress (S, $

Non-dimensional interact

x/h

Fig. 5 \Variation of nondimensional interaction shear stress with x/h for h
=3/. The material parameters used are those for copper in Tables 1 and 2.
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0.115
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0.105

(=
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Maximum of the non-dimensional interaction shear stress
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Fig. 6 Variation of the maximum nondimensional interaction shear stress
with h//. The material properties used are those for copper given in Tables 1
and 2.

close to the core remain questionable. Hence, we have confined by classical elasticity. This by no means predicts any signifi-
ourselves here to trying to understand the effect of couple stresses cant softening of materials at large dislocation densities. But,
on dislocation interactions occuring in regions far from the dislo-  materials will behave somewhat softer than expected at large
cation core where simplifying assumptions can be made to make dislocation densities.
the problem tractable.

Due to the mathematical complexity involved, it is not at-
tempted in this study to explicitly derive the expression for liné\cknowledgment

tension in a couple stress medium. However, the results derivedye would like to thank the reviewers for their very constructive
are sufficient to predict the nature of the change in interactiopgmments and suggestions. The support of the National Science
between dislocations in a couple stress medium at large disloga;,ndation through grants CMS 0200509 and DMI 0115467 is
tion densities. gratefully acknowledged.

7 Conclusions

Taylor’s theory of plasticity has been reformulated for a coupldleferences
stress medium with a characteristic material length scale. The1] Taylor, G. I, 1934, “The Mechanism of Plastic Deformation of Crystals,”

analysis has revealed the following: Proc. R. Soc. London, Ser. A4S, pp. 362-404.
[2] Ashby, M. F., 1970, “The Deformation of Plastically Non-Homogeneous Al-
1. The shear stress required to disentangle a pair of dissimilar] :glysv; PSIIOA& l\:\lﬂag”.,ZLé)p-M399A—ﬁE4- W E. and Hutchi W 1994
; ; ; ; eck, N. A., Muller, G. M., Ashby, M. F., and Hutchinson, J. W., ,
dlsmcatlc.ms IS estlmated tO_ be.sma”.er when couple stress “Strain Gradient Plasticity: Theory and Experiment,” Acta Metall. Mater.,
are considered. This reduction is attributed to the presence of 42), pp. 475-487.
a repulsive elemerR(x) (Eg. (20)) in the interaction shear [4] Mindlin, R. D., and Tiersten, H. F., 1962, “Effects of Couple Stresses in Linear
stress. Elasticity,” Arch. Ration. Mech. Anal.11, pp. 415-448.

2 R(X) becomes significant onIy at |arge dislocation densities[5] Mindlin, R. D., 1963, “Influence of Couple-Stresses on Stress Concentra-
' tions,” Exp. Mech.,3, pp. 1-7.

(h<10 wherel is a material length scale [6] Cottrell, A. H., 1956 Dislocations and Plastic Flow in Crystal©xford Uni-
3. The proposed model degenerates to the Taylor model at low versity Press, Oxford, UK.

dislocation densities where the average distance betweelY] Eringen, A. C., 1983, "On Differential Equations of Nonlocal Elasticity and
dislocations is much greater than the material length scale SOéuStionsoner Dislocations and Surface Waves," J. Appl. PB#€9), pp.
. . " o . ; * 4703-4710.
4. A_t large d|5|OC§t|0n _den5|t|es, the ability of d'SIO(:atlons_ tO [g] Gutkin, M. Y., and Aifantis, E. C., 1999, “Dislocations in the Theory of Gra-
pin each other is estimated to be smaller than that predicted dient Elasticity,” Scr. Mater.40, pp. 559-566.
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The subject of this paper is nonlinear vibrations of beams, strings (defined as beams with
very thin uniform cross sections), plates and membranes (defined as very thin plates)
without initial tension. Such problems are of great current interest in minute structures
with some dimensions in the range of nanometers (nm) to micrometars A general
discussion of these problems is followed by finite element method (FEM) analyses of
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practice of neglecting the bending stiffness of strings and membranes, while permissible
in the presence of significant initial tension, is not appropriate in the case of nonlinear
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em.
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shown in the present paper that neglecting of the bending stiff-
Dess. while permissible in the presence of significant initial ten-

Vibrations of structures with some dimensions in the range sion, is not appropriate when nonlinear vibrations of a thin beam
nanometergnm) to micrometergum), is of great current interest > " > 7" ppropr . . ’
éth no initial tension, and with moderately large amplitud#

in applications in nano and micro-electro-mechanical syste i ) S - oS .
(NEMS and MEMS. Examples are vibrations of carbon nanorﬁ:e order of its radius of gyratignis considered. Similarly, a thin

tubes,[1], and nanowires; and vibrations of very thinsually plate is called a mem_brane_ in the literature ar_1d the bending stiff-
silicon or polysilicon membranes|2]. Applications of the latter "€SS Of @ membrane is typically neglected. It is also shown in the
include microspeaker§3], and synthetic microjetée.g., for mix- Present paper that neglecting of the bending stiffness is not appro-
ing, cooling of electronic components, micropropulsion, and floRfiaté when nonlinear vibrations of a thin plate, with no initial
contro). tension, and with moderately large amplitu@é the order of its
Figure 1(from McEuen[4]) shows(a) a schematic andb) a thickness, is considered ) _
scanning electron microscopSEM) image of a carbon nanotube ~ The primary objective of the present paper is to obtain natural
suspended over a pre-existing trench in the substrate. Typically@duencies of such vibrating strings and membranes, with no ini-
single-walled carbon nanotud€WNT) is a hollow tube that is tial tension, as functions of its amplitude of vibration. Continuum
about 2 nm in diameter and .335 nm in thickness. AlSO, it genéflechanics modeling is used throughout and it is understood that
ally has very smallif any) initial tension. The typical thickness of the results presented here are only valid within this assumption.
a 3mmx 3 mm square polysilicon plate, in an electrostaticallyypically, results from continuum mechanics compare well with
actuated synthetic microjet, is of the order ofutn, [2]. There- €xperiments for objects with some dimensions of the order of
fore, this object is really a thin membrane. Also, it generally ha®icrons(um) or larger, and start deviating from experiments for
no initial tension. Finally, vibrations of such strings and memlower values. Under some circumstances, however, continuum
branes without initial tension, in MEMS and NEMS applicationstheory (surprisingly performs well even for objects with diam-
are generally nonlineamoderately large amplitudesince the eters in the order of 1-2 nifsuch as carbon nanotubggl].
amplitudes are of the order of the diametfar strings or of the Nonlinear vibrations of standard beams and plates is of course,
thickness(for membranes a well-studied subject, and numerous papers and books exist in
Consider a macroscale beam made of a linearly elastic materthis area in the literaturésee, e.g., Nayfeh and Mo¢k]). Only a
with uniform cross section, and let its radius of gyration be verfew representative samples are cited here. A very nice critical
small relative to its length. Typically, such an object is called seview of studies of large amplitude free vibrations of beams is
string in the literature, and its bending stiffness is neglected. It jgesented by Singh et 46]. Researchers have employed various
models such as inclusion or exclusion of axial displacement, and
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  |inear or nonlinear kinematic(strain-disp|aceme)‘|t relations.
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- ; ; ; K At
CHANICS. Manuscript received by the Applied Mechanics Division, August 12, ZOOS;Stamng with the work of Woinosky Kr.IEQQI?] who used elliptic
final revision, January 21, 2004. Editor: R. M. McMeeking. Discussion on the papHitégrals, researchers have used various methods such as pertur-
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Applidgsation, Ritz-Galerkin and the finite element methdEM, see,
Mechanics, Department of Mechanical and Environmental Engineering, Universj H H
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accept%rg" [8]) to Stl:‘dy this prOblem' The reladefr 1S refefrred}%@ for i
until four months after final publication in the paper itself in the ASMEJBNAL OF approlprlate reterences. A good general reference for the nonlinear
APPLIED MECHANICS. vibration of plates is Chid9], while a nice study of nonlinear
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source lus, density, length, and radius of gyration for beams; the Young’s
gate  {rain modulus, density, length of side and thickness for square plates.
The Poisson’s ratio appears explicitly in the plate formula. It is
expected that these results will prove to be useful for the design of
macro as well as micro and nano structures.

2 Beams and Strings

Nonlinear vibration of beams, without initial tension, are dis-
cussed in this section. The beams are linearly elastic, have im-
movable ends and are of uniform cross section. The cross section
is symmetric such that there is no twisting of the beam under
applied bending moments.

2.1 The Model. Following [6], the kinematic equations
adopted here, for a beam with immovable ends, are

Exx=Ux+ (1/2)(W,x)2 1)
Kyx= 7W,xx (2)

where u(x,t) and w(x,t) are the axial and transverse displace-
ments of the beam, respectively,, is the midplane axial strain
and k, is the curvature. Herex denotes a derivative with respect
to the axial coordinate.

The strain energy® and the kinetic energg® of an uniform
beam of length. are

ES [t
55)=7f LU0+ U (W )2+ (1/4) (w ) *]dx
0

El [t
+—f (W x) 2dx ®
2 Jo'

Fig. 1 Asuspended nanotube between two electrical contacts. pS (L
(a) Schematic (b) SEM image. gk):7f [(U)2+(W)2]dx %)
0

whereE, p, L, S andl are the Young’s modulus, densifyass per

vibrations of plates with the FEM is Han and Pdty@]. The FEM unit volume, length, area of cross section, and area moment of
is the primary tool that is employed in order to carry out théertia of the cross section of the beam, respectively, and a super-
numerical analyses in the present paper. posed dot denotes differentiation with respect to time

Section 2 of the present paper discusses nonlinear vibrations 0b > Analytical Solution for Simply-Supported Beam. A
beams and strings. A brief description of the adopted model, gy important result relevant to this work is the analytical solu-

well-known analytical solution for a beam that is simply+ion for a beam of uniform cross section, thasimply-supported
supported at both ends, and a FEM formulation for a beam with poth ends[11,6]:

general boundary conditions follow. It is shown that the corre-

sponding eigenvalue problem leads to an unique variation of ) A\

wlwg, as a function oA/ ¢, that is independent of system param- wo =\ 1ta € ©)
eters, for various boundary conditions. Heegjs the nonlinear

(amplitude dependenfundamental natural frequency, is the Wwherea=3/16, andé= \1/Sis the radius of gyration of the beam
corresponding natural frequency from the linear theérys the cross-section.

vibration amplitude(at the center of the beam for a beam with Also, in this case|[12],
symmetric boundary conditionand ¢ is the radius of gyration of ny \F
ry

the beam. FEM results are presented and discussed for beams with
immovable end-points that are either simply-supported at both
ends or clamped at both ends.

Section 3 presents nonlinear vibrations of square plates a
membranes of rectangular cross sections. The outline here is g

similar to the previous section on beams and strings. The variati Rall ¢ (e.g., a nanotube or a nanowingrovided, of course, that

of w/wg as a function ofA/h is considered this timgHereh is : ; ; ;
) . 2 . the assumptions used to construct this theoretical model remain
the plate thickness andl is the vibration amplitude at the center. b

; . " lid. It is sh later in thi that the f , with
for a plate with symmetric boundary conditionBEM results are val Is shown later in this paper that the formufg, with an

) . . appropriate value of, remains validwithin a very good approxi-
presented and discussed for three kinds of immovable bound?r&')ciort for clamped-clamped beams as well. A similar discussion
conditions—clamped on all edgd€), simply-supported on all

edgeqS), or simply-supported on two opposite parallel edges ar{8r plates follows in Section 3.

clamped on the other tw(SC). 2.3 FEM Model for Beams With Immovable Ends. The
Approximate, but accurate analytical expressions are presenggdcedure followed in this section, for FEM discretization of vi-

in this paper forow/wg as a function ofA/¢ (for beam$ or A/h  brating beams, is standar@ee, e.g., Zienkiewicz and Taylor

(for square platesfor various boundary conditions. These expred-13]). Some details are necessary, however, for the discussion of

sions are independent of system parameters—the Young’s modigenvalue problems that follows.

wo=

I ©
t is important to note, for what follows, that E(p) provides a

aster curve” that is valid for all simply-supported beams with
ffameter<E, L, p, and & Thus, it is applicable even for very
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FEM Discretization. Each beam element has two end nodes  [K(ND]=(3/4)([KNV]—2[K(OTTTKM]7K(9)]). (16)
with three degrees-of-freedom at each node. Thesel,are and
6=w . For each element, one has The next task is to investigate the dependence of the fundamen-
' tal eigenvalue of15) on system parameters. To this end, the sys-

tem of Egs.(15) is modified such that each element of a given
@) global matrix has the same physical dimension. This is done as
follows.
The vector[ (@ ]=[w, 6;,W,,6,]T is not dimensionally ho-

0 _ (0) _ mogeneous. It can, however, be written in homogeneous form as
[NTOOI=INLNGL - INTIOOT=[P1,P2,Ps.Pal  (8) [wy,L6;,w,,L0,] and the appropriate columns of
[aV(D]=Tug,u]", [99)]=[wWy,0,,Wp,60,]".  (9) [KO],[KNY] M7, suitably divided byL. Also, certain rows
of the entire systen{15) are divided byL. One now has, for

NO 0
0 NO

q(l)
q(O)

u
wli=

with

HereN, and P, are the usual linear and cubiklermite poly-

S ) . ! example,
nomia) interpolation functions, anpg(’] and[q(®’] contain the P
appropriate nodal degrees-of-freedom. ~(0) 12E1 ~(0)_ () 6EI
Define Kii A K2 =K31 L2 (17)

D=wx, [G]=[N], [BV]=[N}], [B©]=-[N]. Next, each element of these matrices are further sqafedti-
(10) plied, appropriately, by suitable powerslofL), so that one gets,
Substituting the interpolation&) into the energy expressionsfor example,
(3), (4), and applying Hamilton’s principle, results in the element

e . 12E1 L\ . 6EI[L\?
level equations: K(l?):? (?) . K= K(Z?):Tf(?) ) (18)
0] (1 0] I (10)
M 0 |[g" K 0 |[q® 0 K

0o MO g© + 0 KO|q© + SK(I0)T KN Itis assumed that the ratiq /L (where{y is the length of the
ki, beam elementis kept fixed, even if the length of the beam

q" 0 is changedisotropic expansion or contractiprNext, the global

X q© =lol- (11) matrices are formed and appropriate boundary conditisinsply-

supported or clamped are considered in this work, together with
The various submatrices ifL1) are (here ¢ the length of an u=0 at both ends of the bearare imposed. One now has
element:

2 ES EAS
: G 0)1(G
[M“)]_p—sjf[N“)]T[N“)]dx [RO)@ee 2=, [ROO) @l ==
=5 ). '
2 2
[K(©]©)e #ELSf , [R(Nuye)ocTEf S, [K1(0]©)e pSL.

S €
[M©]= 2 J [N©JT[N(©]dx (12) 19)
0
¢ Multiply the new global eigenvalue equation hy'/(ESE?),
[K<'>]=ESJ [BOTBM]dx, note the forms of the matricdK (?](®) [K(ND(@) M (©)](G),
0 and that 1bZe=(pL*)/(E&?) for beams with many different

¢ boundary conditiong,12]. Also, letA/é= vy, a fixed number. Now
[K(O]= EIJ [B@7TB@]dx (13) one gets the equation
0
ES (¢ (IM1]—(0?wp)[M2])[v]=[0] (20)
[KI9]= > fo [BV]DG]dx, in which the matrice§M;],[M,] areindependenbf the system

(beam parameterg, p, L, & the dependence on these parameters
ES (¢ being wholly captured inug (provided, of course, thad/¢ re-
[K(ND]= TJ [DG]'[DG]dx. (14) mains fixed) Therefore, for any values of the system parameters
0 (within the limits of validity of the beam model employed in this

Note that the in-planéaxial) and out-of-plandbending matri- work), and with a fixed value of\/¢, the eigenvalue probleit20)

ces[K(] and[K(©)] are =S and S£2, respectively, the matrix Yields asingle unique fundamental eigenvaliere called?/ w3

[K(9)]cAS represents coupling between the axial and bendir@ic’ther words, a point on a plot @/ w, versusA/¢, for a fixed
displacements, and the matfi (\)]» A2S arises purely from the lue of A/¢, is invariant with respect to variations of the system
nonlinear axial strains. parameters. Equivalently, a plot 6f wy, as a function oA/¢, is

It is well known that for the linear theofK (?]<[K()] as & invariant with respect to the system parametéisp, L, & for
_,0. It is very interesting, however, to note thatAf£ remains many different boundary conditions, including beams that are

. . o . . i simply-supported at both endsf course, this is a known fact—
0O(1), the bending matri{ K(?], which arises from the linear see(5)), or clamped at both ends

theory, and the matrikK "] from the nonlinear theory, remain Please note th4tM,] is a function of{ v] with maxJv, /=1, so

of the same order ag— 0. This fact has important consequenceghat iterations are needed to sok29).

for the modeling of nanotubes and nanowires, as can be seen i is now conjectured that the form of E¢5) remains valid, of
the following section. course with a different value af, for clamped-clamped beams as
well. This conjecture is numerically investigated in the next sec-
tion. (Such an equation possibly remains valid for other boundary
conditions as well—but this has not been investigated in the
present work

Eigenvalue Problem. Following the procedure detailed ifi0]
(this approach neglects axial inertia, see the Appendhe fol-
lowing eigenvalue equations are obtained:

(0) (NDT— 2T MO [ (@)=
(KT KT = o IMTED L] =[0] (15) 2.4 Numerical Results. The eigenvalue problent20) is
where solved by employing the iterative algorithm proposedllifi]. The
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1.5 ‘ . .

> (802
k=1

1.45 1
1.4 &= = (21)
1.35 whereg is the difference between the FEM value and the value
1.3 from Eq.(5), at a point on Fig. @), andn is the number of points.
125 With w/wy~O(1), the RMSerrors in Table 1 are of the order of
s ) 0.1%. (Of course, the simply-supported case basically serves to
§ 1.2 verify the computer code
3, s Results for a practical example, vibration of a clamped single-

walled carbon nanotubg SWNT), from Eg. (5), with «
. =0.04406, are presented in Fig(b2 The SWNT is a hollow
tube. Its parametersshown in the caption of Fig.)2have been
obtained from[14]. For this tube, the radius of gyratiod
1 =0.6nm and w,=22.3WE/p&/L? [12], fo=wo/2w
=136.6 MHz. Note that the bending stiffne&d «<ES¢? while

0 6 woJE/p&lL?, so that even though the bending stiffness of the
(@ nanotube is small, the fundamental natural frequenagy ob-
tained here from the standard linear beam theory, is a large num-
210 ber.
200 1
3 Plates and Membranes
190 ’ Nonlinear vibration of plates, without initial in-plane forces, are
1801 | discu_ssed in this_section. The plates are square fdidelinearly
~ elastic, are of uniform rectangular cross secfitivicknessh), and
< 170 | have immovable edges. The three boundary conditions considered
g here are all edges clampéd), all edges simply-supporté®) and
w 160 | two opposite edges simply-supported and the other two clamped
(SO). Also, the edges are immovable, i.es v =0 on all edges of
150! | the plate.
3.1 The Model. Following [6], the kinematic equations
140+ 1 adopted here, for a plate with immovable edges, [dré],
. . ‘ . . 1
% 1 2 3 1 5 6 Ut 5 (W02
(b) A/E €xx Kxx W oxx
_ o Eyy | = 1 2 | | Ky | =] Wy | (22)
Fig. 2 Vibration of a clamped-clamped beam—fundamentgl Yxy vyt E(W,y) Ky — 2w Xy
mode. (a) Master curve—FEM 50 elements; xx Eq. (5) with a '
=0.04406; (b) SWNT: Eq. (5) with a=0.04406, E=705 GPa, p Uyt v FW,w

= 3 = = =
1330 Kg/m®, L =600 nm, d,=2nm, 7=0.335 nm. where u(x,y,t),v(x,y,t) are the in-plane andav(x,y,t) out-of-

plane displacements, respective{lyjz[exx,Eyy,)/xy]T is the in-
plane strain (measured at the mid-plane and [k]

. , o _ _  =[Kux.Kyy . Kxy] " are the curvatures.
FEM calculations are first verified against the analytical solution The constitutive equations are

(5) for a simply-supported beam with circular cross secfioere
£=d/4, whered is the diameter of the beam cross secticfhe [N]=H"[C][e], [M]=H[C][«] (23)
match between the analytical solution and the FEM solution wi
50 elements is excellent. It is next verified that the plobdh, as

a function of A/¢, obtained from the FEM, is invariant with re-
spect to the system parameté&sp, L, &.

Where[N]z[NXX,Nyy,NXy]T: h[oyx,0yy.0xy]" are the in-plane
forces per unit lengthg;; are the components of stress gid ]
:[MXX,Myy,MXy]T are the bending and twisting moments. Also

Results for a clamped beam appear in Fig)2The FEM re- 1 v 0
sults, obtained here for a beam of solid circular cross section, 1 0 Enh Ene
match very well with Eq.(5) with £=d/4 and a=0.04406(as C= v H = H(O =
obtained from a least-squares) fifable 1 shows the data for 1 ' 1-v*’ 12(1-v7)
simply-supported and clamped beams. The root mean square 00 5(1—'/)
(RMS) error is defined here as (24)

with » the Poisson’s ratio of the plate material.
The membrane strain energ", the bending strain energy

0) et k)
Table 1 The parameter « and the RMS error in the fit of Eq.  (5) £©, and the kinetic energy( are,[15],

for vibrations of a beam under different boundary conditions 1
EV==| [Nye+Nye,y+N dxd 25
Boundary Condition @ e 2 A[ xExct Nyeyyt Ny vy ldxdy (25)
Simply-supported 0.1876 6.379<10°* 1
Clamped 0.04406 1.3257 103 9°>=§ f [Mykxt Myryy+ My iy Jdxdy (26)
A
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NE%J [U%+ 02+ Ww?]dxdy (27) [K(O)]:H(O’f ( )[B(O)]T[C][B@)]dxdy (35)
A Ale

whereA is the area of the plate surface. HO
Using Eqs.(22)—(24), the energy expressiolig5)—(26) can be [KI9]= TJ (e)[B(')]T[C][D][G]dXdM
written in terms of the plate parametdfs v, h and the displace- A
ment derivatives. These expressions are availabl&5hon pages H®
313 and 95, respectively. [KND]= Tf ( )([D][G])T[C][D][G]dxdy (36)
A €

3.2 FEM Model for Plates With Immovable Edges. The © -
procedure followed in this section is quite analogous to that f§fhereA™ is the area of a finite element. For the purpose of the
beams described before in Section 2.3. discussion to follow, only an uniform mesh of identical square
elements, of sidé€, is considered here. Of course, the FEM code
FEM Discretization. Each plate element has four cornemllows elements of very general shape.
nodes with six degrees-of-freedom at each node. These, are Note that the in-plane and out-of-plarieending matrices

W, W, Wy, W,,. For each element, one has [KM] and [K] are «<h and h3, respectively, the matrix

u N 0 0 [K(9)]ec Ah represents coupling between the in-plane and out-of-
o= q 28) plane displacements, and the matfi«""]<A’h arises purely
W 0 NOIq© from the nonlinear axial strains.
It is well known that for the linear theofyk (9]<[K{)] ash
with —0. It is very interesting, however, to note thatAfh remains
N, 0 N, O N, 0 N, 0 O(1), the bending matri{ K(®], which arises from the linear
[N(”(x,y)]:[ } theory, and the matrigk N"] from the nonlinear theory, remain
0 Np O N 0 Nz 0O Ny of the same order ds— 0. This fact has important consequences

for the modeling of very thin plates, as can be seen in the follow-
[N(O)(va)]:[Pl‘PZI e :Plﬁ] (29) |ng section.

[aV(D)]=[us,vy, ... Ug,0a]", Eigenvalue Problem. Following the procedure detailed 0]
(this approach neglects in-plane inertia, see the Appentiie

(0)(t)]=
(A (D)= W1, (W1, (W) 1, (W1, - o Wa (W )a, following eigenvalue equations are obtained:
(Wy)a,(Wxy)al ™ (30) ([K©@7+[KNV]— 0 MO))[q@]=[0] 37)
Here N, and P, are bilinear interpolation function$16], and where
[qM] and [q®] contain the appropriate nodal degrees-of-
freedom. [KND]=(3/4)([KND]—=2[KIOTTTK ]~ [K19)]). (38)

Define
The next task is to investigate the dependence of the fundamen-
wy O ) tal eigenvalue 0f37) on system parameters. The procedure fol-
[D]=| 0 w [G]= (31) lowed now is analogous to that for beams outlined in Section 2.3.
Yo (0)7 i fi . . . .
The vectof g'~’] is first written in dimensionally homogeneous

X
(0)
va

Wy Wi form as
Nix 0 Ny 0O Nz 0 Ny O (W, LW 1, L(W )1, LW )1, - . Wa, (W),
[B(U]: 0 vay 0 N2’y 0 N3,y 0 N4,y , L(W,y)AvLZ(W,xy)4]T (39)

N N N N N N N N
by e Ty e Ty Tk Ty e and the appropriate columns g£(@], [K(ND], [M(©)] are suit-

N'S) ably divided byL or L2. Also, as for beams, certain rows of the
[BO)]=— N(?y) . (32) entire systenm(37) are divided by suitable powers &f
Zl\i(o) Each element of these matrices are now further scatadti-
Xy plied, appropriately, by suitable powerslofL). As in the case of

Substituting the interpolation@8) into the energy expressionsbeams, it is assumed thétL (wheref is the length of the side of
(25—(27), and applying Hamilton’s principle, results in the elea plate elementis kept fixed, even ifL is changed(isotropic
ment level equations: expansion or contractionNext, the global matrices are formed
and appropriate immovable boundary conditi¢8sC, or SQ are

M 0 [g" " K 0 |[q" n 0 K(©) imposed. One now has
0 M (©) 'q(O) 0 K(© q<0) 2K(I0)T k(NI ERe EAh
q(” 0 [k<0)]<G)u R [k(NL)](G)O( [M(O)](G)o{pLzh_
X q(o) = ol (33) (40)
The various submatrices i33) are Note that the first two matrices abov_e also de_pend on the Pois-
son’s ratiov but that this dependency is complicated in view of
M7= ﬂ NOTTNDTdxd the form of the constitutive matrixC] in Eq. (24a). It is, of
[ 1= 2 A(g)[ JINT]dxdy, course, well known thab is obtained by solving the linearized
o problem ((37) with [K(NY]=[0]). It is interesting to point out
p that for a square S plate, one has the exact solution for the funda-
(M= = f [N TN Jdxdy (34) .
2 Ja@ mental mode[17]:
[KD)=H® f [BVT[CI(B" Jdxdy PCLAL \/E (41)
A® o 3L (1-v%) Vop
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for which the dependence onis the same as that afH© (see 135
(24c)). However,wq can, for certain boundary conditions, have a
more complicated dependence on the Poisson’s (tid, p 250. 13 ¢
Multiply the new global eigenvalue equation by/(Eh®), note
the forms of the matricepK(](®), [KINU(©) [M©@](®) and 1.25
that L3 (pL*)/(Eh?) for many different boundary conditions &
that include S and SC but not proved for C plafiels/], pp 249—
250—this fact can be deduced from the discussion on plan 31

waves in([17], p. 245. 15 7
One now gets the equation u
([M1]=(0*0§)[M,])[v]=[0] (42)
1.05} 1
in which, for a fixed value ofA/h, the matrice§M,], [M,] are
independenbf the system(plate parameterE, p, L, h; the de- 1 i

pendence on these parameters being wholly captureff) ipro-
vided, of course, tha#/h remains fixed. Therefore, for any val-
ues of the system parametdusithin the limits of validity of the
plate model employed in this workand with a fixed value of (@ Alh
A/h, the eigenvalue problert¥2) yields asingle unique funda- 42
mental eigenvaluehere called»?/w3. In other words, a point on
a plot of w/wg versusA/h, for a fixed value ofA/h, is invariant
with respect to variations of these system parameters. Equiv 4
lently, a plot of w/wq, as a function ofA/h, for a square plate

with many different boundary conditions, including S and SC, is 39t
invariant with respect to the system paramet&sp, L, h. Note 13l
that the Poisson’s ratiom is not included in this list of system ~
parameters, i.e. that this “master curve” is not, in general, inde T 3.7}
pendent of the Poisson’s ratio. M

Please note that, as for bearfis],] is a function of[v] with — 3.6
maxv,J=1, so that iterations are needed to sol¥). 35

k

3.3 Numerical Results. The eigenvalue problent42) is 34
solved by employing the iterative algorithm proposedllifi]. The 3.3 .
FEM calculations are verified against the FEM solution ddew,
as a function ofA/h, for a fully clamped(C) square plate, as 32 02 04 06 08 1 12 14
presented in Fig. 3 in10]. The agreement between the two nu- (p) A/h

merical solutions, with an 8 8 array of finite elements, is excel-

lent. It is next observed numerically that the plot@fw, as a Fig. 3 Vibration of a square plate clamped on all sides—

function of A/h, for a square C plate, obtained from the FEM, isundamental mode. (a) Master curve—FEM 8 X8 elements, »

invariant with respect to the system parametgrsp, L, h. As =0.22; xx Eq. (44) with aq=0.3670; (b) MEMS plate: Eq. (44)

stated before, proof of existence of this master curve is only posith a,=0.3670, E=169 GPa, »=0.22, p=2300Kg/m? L

sible for square S and SC plates, but this fact appears to be t@mMm, h=2 pm.

for C plates as well.

Based on the existence of this master cufe¢ the form

wlwo=g(Alh,v) for a specified boundary condition—S or SC describe the FEM results in excellent fashion-the maximum RMS

and inspired by the form of E(5) for beams, it is conjectured error (see Eq(21)) being less than 1% in all cases.

that the variation ofw/wy, as a function ofA/h, for nonlinear ~ Finally, a practical situation, that of a vibrating thin MEMS

vibrations of square S, SC, as well as C plates, has the form plate (really a membrane made of polysilicon, appears in Fig.
3(b). Here,f;=3.2194 KHz, is obtained from the FEM, and then

) A\? the full curve is obtained front44). (A FEM calculation is veri-
w_oz 1+f(ao,v) h (43)  fied to yield the same results within plotting accuracihe ma-
terial properties of polysilicon are obtained frdi8,19 and the

where the parametet, depends only on the imposed boundarynembrane dimensions frof].
conditions(and not on any of the system parametérs, p, h, or

L). Next, the choice (ag,v)=aq//1— 12 leads to 4 Conclusions
NE The primary contributions of the present paper are as follows.
@p
= \/ + —2(5) : (44) Inclusion or Exclusion of Bending Stiffness in the Vibration
0 (1=v9) of Strings and Membranes. Start with a beam with immovable

Equation(44) is an intuitive conjecture, inspired by the depenSUPPOrts and e, (Newtons be the initial tenS|oLn n t?e beam.
dence of the flexural rigidityd on the Poisson’s ratio, that is The contribution ofTo to £ in Eq. (3) is (To/2)/5(W,)*dx, s0
tested a posteriori. First, as seen in Fia)3the FEM results for that, in this case the eigenvalue equati@b) is modified to read
a clamped square plate compare very well with E) for v (0) (F) (NL)7_, 27 (0) (07—
=0.22 with @;=0.3670.(The value of«a, is obtained from a ([KIHIKEIH KT = o TMEDIaTI=[0] - (49)
least-squares jit Next, FEM calculations are carried out for vari-where the new element matrix due to the initial tension is
ous boundary conditions and for various values of Poisson’s ratio, ¢
and the results are compared to those from &d). Table 2 [K(F>]:TOJ [G][G]dx (46)
shows the data for S,C and SC square plates.(&4).is seen to 0
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Table 2 The parameter ay and the RMS error in the fit of Eq.  (44) for vibrations of a square
plate under different boundary conditions

Boundary Condition ag v e
All edges simply-supported 0.9621 0.12 7.766x10°3
0.22 1.104x10°°
0.32 2.690< 103
All edges clamped 0.3670 0.12 9.707x 1074
0.22 2.302x 104
0.32 9.707x10°*
0.12 4.410¢10°®
Two opposite edges clamped 0.6369 0.22 25241073
and the other two 0.32 2.524x 1073

simply-supported

with [G] defined in Eq(10b). 2. linear vibrations of beams or plates with< ¢ or A<h,
It can be shown thatk (F)1(®« T, /L. Therefore, with a suffi- 3. nonlinear vibrations of strings or membranes WAtk £ or
ciently large value ofT, (To>T=EI/L?), [K®]© and A~h, and

S

[R(NL)](G) become very smallsee(19)) relative to[k(F)](G), as . linear vibrations of strings or membranes wihk<¢ or A
&—0 with A/§~0O(1); and can beneglected, as is commonly <h.
done for strings. The remaining linear equation yields the usualpjease refer to Eqg19), (40), and (45) for the following dis-

result,[12]: cussion and consider the interesting cases 3 and 4. For case 3 with
1 T sufficiently high initial tension, one can perhaps argue &Y
fozz B (47) and K™Y are both<K™ and one can negledt(® but keep

_ _ _ _ K(NY without having significant impact on the numerical results.
where p is the mass per unit length of the string. It is clearThis is not allowed, however, whef, is small. Also, case 4
however, that withT,—0, and withA/é~O(1), [K(?](® and clearly cannot be modeled T,=0.

K (NL)1(G) i
[K*]™ remain of the same order #s-0 (see(19)), and the Proof of the Existence of Certain “Master Curves”. It is

bending stifiness matrixK (@] cannot be neglected in this proved that for beams that are clamped at both ends, the variation
case. . . . L . of w/wg, as a function ofA/¢, is invariant with respect to the
_T_he above discussion applies to vibrations of strings. A Ve@ﬁ/stem parametefs p, L, £ Itis also proved for square S and SC

5|m|I_ar_argum¢nt can be made for membranes as weI_I. ._plates, and conjectured for C plates, that the variation/ef,, as

It is interesting to compare the above discussion with that iNAs nction ofA/h. is invariant with respect to the system param-
recently published nice paper by Sapmaz ef24l]. These authors etersE, p, L, h. 'Examples of these “master curves” appear in
correctly include both the bending and nonlinear effe@iat not Figs. Z’a) and 3a).
the axial displacementn their analysis. They compare ttie- It is important to note here that the above proof for square
duced tension(called T n '[hEII’ZWOI’k and given by their E42)  )ates has been carried out for a uniform FEM mesh with identical
which is T=(ES/(2L))[5(w x)?dx) with EI/L2. (Note thatT®  gquare finite elements. The FEM solution for this problem, how-
is defined asE1/L? in the present work It should also be ob- ever, is expected to converge to the exact solution in the limit of
served that their induced tensionTscEA’S/L2=EIA%/(£2L?).  mesh refinement, for any reasonable starting mesh. Therefore, the
Therefore (case oneT< T for A<¢ (i.e., in the linear vibration master curves are a feature of the exact solution of the problem,
limit) and of the same orddicase twg for A/é~O(1). Also, and the proof given in this paper is not limited by the particular
(case threeT>T( for A>¢. The present authors feel that thechoice of mesh, but should be valid in general.
last regime is inappropriate if20] since their modeli.e., their
Eq. (1)) is only good for small or moderately large vibration am- Approximate Formulas for w/w, as a Function of A/& or
plitude, i.e., for cases one and two only. A/h.  Certain approximate Eqé5) and(44), have been proposed

Sapmaz et al[20] also conclude(see their Eq.(19)) that a oy the variation ofw/ wg, as a function oA/ £, for beams; and for
carbon nanotube vibrates like a “loose string” ioduced tension wlwg, as a function ofA/h, for plates, respectively. These equa-
T<T(. This statement, however, is somewhat misleading, in thgéns are shown to be very accurate for the cases considered—
a “loose string” conjures up images of a low natural frequency aflamped beamsEq. (5) is well known for simply-supported
vibration. In fact, Eq(19) of [20] without the correction terrtthis  peams, and S, C, and SC plates. These equations should prove to
equation, as expected, being the same as the standard formulaiseful for the design and analysis of macro as well as micro

wo for a clamped beam[12], p. 223, yields a value off,  and nano structures that include beams or plates.
=136.6 MHz for the carbon nanotube examifég. 2(b)) in the

present paper. This is, indeed, a large number, and calling this
object a “wire” rather than a “loose string” is more appropriate.

It should be mentioned again that the present authors feel that Table 3 Summary of various cases
[20] presents a nice analytical study of this problem. The above
two paragraphs are meant to clarify some issues in Sapmaz etc@se

Initial Tension  Bending  Nonlinearity ~ Usual Model OK?

[20], not to criticize their work. 1 high yes yes yes
2 high yes no yes

Summary of Various Cases of Vibrations of Beams, Strings, 3 high no yes ?

. ; 4 high no no yes

Plates, and Membranes. Table 3 summarizes various cases { low yes yes ves
which are defined as: 2 low yes no yes
. . . . 3 low no yes no

1. nonlinear vibrations of beams or plates wit=¢ or A 4 0 no no no

%h,
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SE L
EIW yxxx— oL W,XXJ (W,x)de+PSV\’,tt:0- (AB)
0

tively. can be obtained with the Berger assumptiq&eyy—(lm)yfy
=0 (with the strain components defined in terms of displacements
Appendix in Eq. (22)). The Berger simplification, together with neglecting

Beams. One of the reviewers of this paper has kindly pointe

out an interesting alternative approach to proving the existence of
master curves. This is based on appropriate nondimensionalization
of the governing differential equations of the problem. For the

beam problem, the analysias provided by this revieweipro-
ceeds as follows.

The governing equations for a vibrating bedfor the model
adopted in the present papeare:

axial motion: Eu 4= pu 4
transverse motion: EIW yyx— (NW,) «+pSwy=0
constitutive and kinematic laws: N=ESe,,=EJu ,+(1/2)

X (W07
(A1)
where the only new symbol i, the axial force.
The following nondimensionalization is used:

x=L&, w=AW, u=(A%L)a, N=ESAZLI)N, t=t/w
(A2)
with o= (¢/L2)J(Elp).
Applying Egs.(A2) to (Al) results in
. N [\
axial motion: —=|—| —
% \L/) 522
AW (Ao aw) W
transverse motion: ——| —| — | N—|+—=0
ax* N &) ox\ ox ) g2
o _ , o0 1[aw\?
constitutive and kinematic laws:N=—+ —| —
ax 2\ X

(A3)

It can be seen fromA3), that for £&/L<1 (in this caseu
~O(w?)), axial inertia, i.e.uy, can be neglected. Therefore,
N=N(t). Now integrating A3); from =0 to k=1 and using
the fact that the ends of the beam are immovakbke, 0(0,)

1

=0(11)=0), yields
2
[
0

Finally, use of A4) in (A3), leads to a single partial differen-
tial equation governingv:
1 2
— f ( ) dx+ —_= 0.
& 0 at?

It can be seen thad/¢ is the only relevant parameter in Eq.
(AB). It is clear at this stage that master curves existdbo, as
functions of A/ ¢ for clamped and simply supported beams.

ot
"2

MW

X (Ad)

2 22 W

x>

W1

ot 2

A W

X @)
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in-plane inertia, leads to a single governing partial differential
gquation for the transverse displacemenfk,y,t) ([5], p. 50%:

4 hEe )
DV*w— 1_V2V w-+phw =0 (A7)
with
t)= ! V2wdA A8
e( )—ﬂ R wdA (A8)

Rand[21], using the nondimensionalizatioA2) in (A7), has
shown that the Berger model, without in-plane inertia, leads to
existence of master curves fef wy as functions ofA/h. Further-
more, these curves aiadependenbf Poisson’s ratio for plates
with boundary conditions that do not involve As pointed out in
[5], however, the Berger assumption sometimes produces errone-
ous results and the von Karman model is more relialiesrest-
ingly, the von Karman model without in-plane inertia, employed
in the present work, leads to dependencebb, on v, as seen in
Eqg. (44)!
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Effect of Residual Stress on
Cavitation Instabilities in
Viggo Tvergaard COHStrained Metal WII‘BS

Department of Mechanical Engineering,

~ Solid Mechanics, Numerical calculations are carried out for a test specimen geometry used by Ashby et al.
Technical University of Denmark, to study effects of ductile reinforcements in brittle materials. A lead wire well bonded to
DK-2800 Kgs. Lyngby, Denmark an outer glass cylinder was used to investigate crack bridging by ductile particles. The

main focus here is on a single void growing very large in the metal wire, in the crack
plane, perhaps involving a cavitation instability. Therefore, full finite strain elastic-plastic
theory is used for the analyses, and remeshing procedures are applied to avoid unaccept-
able mesh distortion. Residual stresses induced by thermal contraction mismatch during
cooling from the processing temperature can have a noticeable influence on the results,
and this is quantified by the analys¢®OI: 10.1115/1.1767845

1 Introduction tension normal to the layer is high enough to make cavitation a

. - A . . . ... likely failure mechanism, and analyses by Tvergagtd—13
For a single void in an infinite elastic-plastic solid cavitatio ve confirmed this mechanism in thin ductile bond layers.

instabilities have been predicted in cases where the stress levidl .
are sufficiently high such that the work released in the field suk i photographs;9] of the final fracture surface for well bonded

dina th di idi hto dri tinued etal wires show that the diameter of the single void in the wire
rounding the expanding void IS enough 1o drive continued Expaflaq reached values up to 0.53 times the diameter of the wire. To
sion. At this critical stress level the void grows without boun

. ; A . . tter understand these results a full numerical analysis of the
while the remote strain remains stationary. The existence of s

. S ] ) ; sile tests is carried out here, accounting for the interaction of
instabilities has been recognized by Bishop e{&).for spheri- o g|astic-plastic metal wire with the surrounding elastic glass. In

cally symmetric conditions, and analyses by Huang ef2dland 44y cing the test specimens slow cooling from the melting tem-
Tvergaard et al.3] have shown similar cavitation instabilities for heraryre of lead was applied to minimize thermal stresses, result-
spherical voids subject to axisymmetric stress conditions, as lopg from the contraction mismatch. However, as the observed final
as the ratio of the transverse stress and the axial tensile stresgyig| size seems large, the effect of residual stresses in the test
near unity. There has also been a number of related sphericafecimen is investigated. Furthermore, to be able to rather accu-
symmetric studies in the context of nonlinear elasti¢éyg., Ball  rately evaluate the final void size predicted by the computations,
[4], Horgan and Abeyaratr{6], and Chou-Wang and Horg4l), remeshing procedures are usé@ederser(14] and Tvergaard
where the occurrence of a cavitation instability has been inte%2)) to be able to resolve the huge strains developing around the
preted either as a bifurcation from a homogeneously stressed sqlifld without unacceptable mesh distortion.
to a solid containing a void, or as the growth of a preexisting void.

In experiments by Flinn et a[7] for Al,O5 reinforced by Al .
particles scanning electron microscopy 2hass been used to obl%in Problem Formulation
quantitative information about the plastic stretch of particles Some of the earlier analyses of unstable cavity growth have
bridging a crack in the brittle matrix, and the extent of debondinfpcussed on a single void in an infinite elastic-plastic solid, but the
from the matrix during bridging. It was observed that the failureresent analyses consider directly the specimen geometry used by
of axisymmetric reinforcement zones often involves the nucléshby et al.[9], as shown in Fig. 1. The purpose of these experi-
ation of a single hole at the center of the neck, which rapidijents was to get some understanding of the toughening effect of
expands to final failure. This type of behavior has been analyzddctile reinforcements in brittle materials such as ceramics, by a
in some detail by Tvergaar®]. A set of experiments by Ashby crack bridging mechanism. Lead wires were well bonded to a
et al. [9] were designed to obtain insight in the toughening dhick outer glass cylinder, then the glass was cracked circumfer-
brittle matrix materials obtained by ductile reinforcements bridgentially so that all load at the crack plane would be carried by the
ing a crack. In these experiments lead wires were well bondedhtdging metal wire, and the specimen was pulled in tension to
a thick outer glass cylinder and the glass was cracked circumféilure. In many of the tests the bond strength was high enough so
entially, so that during a tensile test all load in the crack plane wéat no debonding occurred, leading to highly constrained plastic
carried in the highly constrained metal wire. Several of thed®w in the wire near the crack plane, and for several specimens
specimens failed by the enlargement of a single void in the witbe fracture surface showed large growth of a single void. In the
near the crack plane, and this failure mechanism will be analyzetesent analyses the glass is modeled as linearly elastic, while the
in the present paper. Experiments by Dalgleish ef#0] for a metal wire is described as elastic-plastic.
thin ductile metal layer used to bond two ceramic blocks togetherA Lagrangian convected coordinate formulation of the field
have indicated that also here the constraint on plastic flow durigguations is used for the finite strain analyses. A material point is

identified by cylindrical coordinates in the reference frame, and

Contributed by the Applied Mechanics Division of AMERICAN SOCIETY oF  the corresponding displacement componentsiar@he Lagrang-
MECHANICAL ENGINEERqur publication in t.he ASME OURNAL OFAPPLIEDME-  jan strain tensor is given by
CHANICS. Manuscript received by the Applied Mechanics Division, November 24,
2003; final revision, March 8, 2004. Editor: R. M. McMeeking. Discussion on the 1
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of 7ij :E(ui’j + Uj i + Uhuk,j) (2.2)

Applied Mechanics, Department of Mechanical and Environmental Engineering,

University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be . . . .
accepted until four months after final publication in the paper itself in the Asmivhere (); denotes covariant differentiation in the reference

JOURNAL OF APPLIED MECHANICS. frame, Latin indices range from 1 to 3, and the summation con-
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Fig. 2 Axisymmetric model of the half test specimen analyzed,

) ] ] showing the initial dimensions, the coordinate system and a

Fig. 1 Sketch of the tensile test specimen used by Ashby et al. finite element mesh. The ductile wire occupies the region 0
[9] <=x2=A,.

vention is used for repeated indices. The metric tensors in thedrical coordinate system used as reference KEig 2), X, is
current configuration and the reference configuration are denotké axial coordinatex, is the radius and; is the circumferential
by Gj; andg;; , respectively, with determinant andg, and the angle.

contravariant components of the Kirchhoff stress te_nébrand In the metal wire, symmetry conditions are assumed at the
the Cauchy stress tenset! are related byr'! = (GIgs". Equi- plane ahead of the crack
librium is expressed in terms of the principle of virtual work U=0, T,=0, for x,=0. (2.4)

f i 8ndv= f Tisu;dS (2.2) Atthe top, the specimen is pulled by the grip, and the boundary

v : s conditions are taken to be

whereV and S are the volume and surface, respectively, in the u;=U, T,=0, for x;=Hj (2.5)
reference r(]:onflg;lratlon, and are the nominal traction compo-\yherey s the prescribed uniform end displacement. The cylin-
nents on the surface. drical sides of the specimen, the crack surfaces and the void sur-

) The deformatlons_ of _the metal wire are described in terms c’ffﬁlce are load free, so that the remaining boundary conditions are
finite strain generalization of the classichl flow theory of the

form 71 =L 7,, (see Hutchinsofil5]), making use of Young’s T,=T,=0, on all other surfaces. (2.6)
modulusE, Poisson’s ratiov, the initial yield stressry, and the 11,5 4verage nominal tractiof, on the wire in the crack plane
strain hardening exponer. The effective Mises stress is,. is obtained from the expression

= (3s;5'1/2)"2, wheres'l = 7'l - Gl 7{/3 is the stress deviator. The

tangent modulug; is the slope of the uniaxial stress strain curve, 1 (Ao N 0o
which is here taken to be represented by a power law Tazﬁ . [~ T Ix—o2mx“dx". 2.7)
0
g for o<o The variation of this nominal traction with the end displacentént
E Y will be used to illustrate the test behavior.
EZY) o o 13N . (2.3) When residual stresses due to thermal contraction mismatch
I — for o>o0, between glass and metal are included here, they are introduced in
E oy the following manner. In the metal initial principal true stresses

For the numerical solution a linear incremental finite elemert” are applied in both axial, radial and circumferential directions,
method is used, based on an incremental version of the princigtgile the glass is stress free. This is only possible with additional
of virtual work (2.2). In each increment equilibrium correctionforces applied on all internal and external surfaces of the metal
terms are applied to prevent drifting away from the true equilibNil’e. First these additional forces are stepped down to zero over
rium path (e.g., sed11]). The displacement fields are approxi-many increments, whil& =0, to allow for corresponding plastic
mated in terms of axisymmetric eight-noded isoparametric elgielding to develop around the void and the crack-tip. Subse-
ments, as if16]. The volume integral in the incremental versiorfluently, the overall tensile loading is applied by incrementally
of (2.2) is carried out by using 22 point Gauss integratiofi.e., Prescribing an increasing value bf. At a later stage, the incre-
“reduced integration} within each element. mentU may become zero or negative while the void grows rap-

The initial geometry of the axisymmetric problem analyzed iglly. To avoid numerical instabilities in such situations, a mixed
shown in Fig. 2, with a mesh drawn in. The radius of the met&ayleigh Ritz—finite element method is applied with the possibil-
wire is Ag, the outer radius of the glass cylinderBg, and the ity of prescribing node displacements on the void surfaté].
half-length of the test specimenli,. At the center of the metal
wire, in the crack plane, the presence of a void with initial radius
R, is assumed. Furthermore, at the location where the crack in lgfe .
glass meets the surface of the metal wire, an initial rounding Remeshing
the crack-tip with radiu®. is assumed, to be able to represent the Previous numerical studies of spherical ductile particles bridg-
large plastic strains that develop at this point as soon as the craul a crack in a brittle matrix,8,18], have approximated the ma-
starts to open. The geometry considered in all analyses hereris as rigid, but are otherwise somewhat similar to the present
specified by the valueBy,/Ay=4.8 andHy/A,=5.0. In the cy- investigation, and these earlier studies have been limited by strong
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mesh distortions during bridging. Therefore, the present investi
gation makes use of a remeshing procedure to be able to folloy
the void growth further into the failure process.

The remeshing procedure has been incorporated into the pr
gram applied here by Pedersgi#]. In this procedure, also used
by Tvergaard 12,13, the values of field quantities in the integra-
tion points of the new mesh are determined by interpolation in the
old mesh. First, a bilinear surface in terms of the local elemen
coordinatest and 7 is used to extrapolate valugsuch as stress
components in the old mesh from integration points to nodal
points, where the region of the element is specifiedHiy=é<1
and —1<#=<1. Then, values of the field quantities in the nodal
points of the new mesh are determined by interpolation in the olc
mesh, using the shape functions. Finally, the values in the integr:
tion points of the new mesh are determined by interpolation fron
the new nodal points, using the shape functions. To do this, it it
necessary to determine the location of each new nodal point in th
old mesh, i.e., the element number and the appropriate values
the local coordinateg and 7 inside that element.

The old coordinates of a new nodal point are determined by th
procedurg 12] that first the nearest old nodal point representing 0 L 1 .
an element corner is found, and then a Newton-Raphson iteratic 0 0.05 0.1 U/A 0.15
is used to determine the old values &&and ». This is done for (a) ¢
each adjacent element in the old mesh, until the element is foun
that contains the new point. If none of these adjacent element
contain the new point, the results of the iterations are used t
select another corner point for one of these elements, and tF
iterations are repeated for elements adjacent to that point.

As in [12] a remeshing is carried out wheXe = (Age)max in
any integration point, where,= [ (27;; 7'1/3)Ydt is an effective
strain, andAe, denotes the amount of this strain accumulated
since last remeshing. Here, the limiting valu®s() ax iS Mmostly
taken to be 0.2, but sometimes as low as 0.1, depending on ho
much mesh distortion is tolerated by the solution.

In a new mesh the points on the void surface and on the blunte
crack-tip are calculated by interpolation between old points or
these surfaces. The new mesh is stretched such that elements
relatively finer in the regions where very large strains develop.

0.15
U/4,

4 Results

For the glass the elastic material parameters are Young's mogys 3 Effect of different residual stress levels for initial void
lus E4 _and P0|s_son’s ratiog, while for the metal wire the corre- size R,/A,=0.01 and crack-tip radius R,/A,=0.01, with metal
sponding elastic material parameters are dendéeahd v, the wire material parameters o, /E=0.003, »=0.3 and N=0.1. (a)
initial yield stress iso, and the power hardening exponentNs Average nominal stress versus end displacement. (b) Void vol-
With a lead wire in glass the ratio of the elastic moduli is taken teme growth.
be Eq/E=4.3 andv,=0.23 is used. For the metal wire two sets
of material parameters are used, first a model material with
o,/E=0.003,»=0.3 andN= 0.1, which makes the cavitation pre- & R )
dictions comparable to those in Tvergaard eff@]. The second =0.517%*, o,=03=0.4261*, and thus the mean residual
set of elastic-plastic material parameters for the metal are basgssoR=0.456%*. In the following figures the level of re-
on material tables for lead and on the specifications of Ashkydual stress is specified by the value of the r@tﬁjgy_
et al.[9], o, /E=0.0004,r=0.42 andN=0.2. Figure 3 shows results using the first set of material parameters
When residual stresses are applied by the procedure descriggdthe metal wire, and usin®, /Ag=R;/A,=0.01. The figure
in Section 2, just below Eq2.7), the residual stresses in the wireshows the evolution of the average nominal tractibnin the
after that the additional forces have been stepped down, canrigtal wire and the rati&//V, of the current and the initial void
calculated by simple formulas for long elastic tubes, making th@lumes, versus the end displacementvhere 2J gives a rather
approximation that the specimen is long compared to its radiggod estimate of the crack opening. One set of curves corresponds
and neglecting plasticity. For the model material parameters to an initially stress free wire, while the other three sets of curves
=0.3) this gives the following values of the residual principahre obtained for various levels of tensile residual stresses. Thus, in
stress components in the wirerf=0.777%*, o3=05 one of cases, where*/o,=4 was applied initially, the expres-
=0.6295*, and thus the mean residual stres=0.6789*  sions given above resulted i/o,=2.72. The curves forR
(whered™ is the hydrostatic stress level first applied in the Wire =0 in Fig. 3 show that at the maximum traction the value of the
A purely elastic computation for the specimen geometry and thgtio V/V, grows by two or three orders of magnitude while
boundary conditions considered here has shown that these resigi@leases only very slowly. Thus, the behavior is close to a cavi-
stress values are obtained with very good approximation, evefion instability, but a real cavitation instability would occur at
though the specimen is not much longer than its radius. constantU, corresponding to a constant remote stress and strain
For the second set of material parameters0.42 the same state. When a residual stress is applied before the tensile loading
procedure leads to the following residual principal stress%s Fig. 3(a) shows that the maximum traction reached increases for

562 / Vol. 71, JULY 2004 Transactions of the ASME



—

il
T

CY

Fig. 5 Comparison of deformed meshes for two different val-

ues of of. The initial void size and crack-tip radius are
R,/Ay=0.01 and R./Ay=0.01, and parameters for the metal
wire are o,/E=0.003, »=0.3 and N=0.1. (a) Stage where V/V
=10 for o}=0. (b) Stage where V/V,=10* for of/a,=4.07. (c)
End of computation for a§7=0. (d) End of computation for
orlo,=4.07.

(@ less than that in Fig. (&), in agreement with the much smaller

value of the crack openingl2 The same tendency is visible

Fig. 4 Deformed meshes at four different stages for of=0. when comparing Figs.(B) and d), but more interesting is the

The initial void size and crack tip radius are  R,/A,=0.01 and  fact that the void radius in Fig.(8) has reached the value 04,

Rc/Ao=0.01, and parameters for the metal wire are  o,/E \hile in Fig. 5c) the void radius has reached the smaller value

=0.003, »=0.3, and N=0.1. (a) Initial mesh. (b) Stage where 0.347,.

VI Vp=100. (¢) Stage where V/Vo=10". (d) End of computation. The sensitivity to the initial void radius is considered in Fig. 6
by comparing results for three different valuesR)f/Aq. Thus,
one set of curves in Fig. 6 is identical to the curves zﬁf}/oy

. . . . =2.72 in Fig. 3, and comparison is made with results for a smaller
increasing Ie_ve_l of the tensile resu_jual stress, and Rig). $hows da Iarge? initial void sige Figure(@ shows hardly any sensi-
that the rapid increase of the void volume occurs at a small?'?. g ; .
value ofU. Also. the value obJ is closer to beina constant durin ivity of the average traction versus end displacement curve, while
’ ’ 9 95 6(b) shows significant differences between the values reached

the rapid void growth, when the residual stress level is higher. Th&: ?
modelpmateria(ﬁ used here for the metal wire is identicagl too FVIV,. These differences are expected, as the deformed meshes

considered by Tuergaard et ], 5o s known hat a caviaton & '® 514 1 1 compuiaton ave e smirto P ol
instability occurs at a mean stresg,=5.20, . Therefore, it is not ’ g q

surprising that the critical value df/A, decreases towards Zerolar;%irerlr}(t:rigzﬁgo c;feetgeinvlgild(tﬁ')sltzheatvtvr?;?/altgg o\éJOIgur\iAéasralmiga”y
in Fig. 3(b) when the mean value of the applied residual stresy : 9 grap

R ) o ~~Vvoid growth is closer to being constant when the void is initially
Im> approac_hes the valu_e that would give a cavitation InStabIIIQ’maller, which reflects the fact that the smaller void can grow
before applying any tensile load.

h lculation in Fi ith idual . h more before the remote stress state is affected by the void size.
For the calculation in Fig. 3 with no residual stress Fig. 4 shows Figure 7 keeps the initial void radius fixedRf/Ay=0.01, but

the initial mesh and three stages of the deformed mesh, when fi€ies the sensitivity to the assumed initial rounding of the crack-
void volume has increased by a factor 100, when the void volurﬂﬁ by comparing predictions for three different valuesRof/A, .
has increased by a factor40and at the end of the computationAS in Fig. 6 the comparison is made fof/o-,=2.72, and thus

. W oy=2.72,

defined here as the stage where the average nominal traction has _ P P
decayed to the level,/oy=1. It is seen that while the void ttll'% setof curves foR./A,=0.01 in Fig. 7 appears also in Figs. 6

grows in the center of the metal wire, the blunted crack tip devc?i—nd 3. The peak value of the average tracfionshows some

- N . ; ensitivity in Fig. Ta), with rather little difference between the
ops into something like a toroidal void, as has also been found OLak values foR. /Ay=0.003 andR. /A,=0.01, but with a no-
a ductile particle bridging a crack in a rigid matr{d,8]. co cLO

. ! ticeably lower peak foR./Aq=0.03. The void size vs. end dis-
Figure 5 shows comparisons of the deformed meshesrfpr placement curves in Fig.(B) show practically no sensitivity to

=0 and o/, =4.07, at the stage where the void volume hage value ofR./A,, although the curve corresponding to the low-
increased by a factor f0and at the end of the computationsest peak in Fig. @) differs a little.

Thus, Figs. %) and 5c) are identical to Figs. ¢) and 4d), The second set of material parameters for the metal wire, more
respectively. Figure ®) shows clearly that whel/V,=10* has realistic for lead based on material tables, is considered in Fig. 8.
been reached, the toroidal void at the crack-tip has grown muéls in Fig. 3, the comparison here is carried out /A,
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0 L L 1 Fig. 7 Effect of different values of the initial crack-tip radius,
0 0.05 0.1 0.15 for zr,’f,/zry=2.72 and R,/Ay=0.01. Parameters for the metal
() U/d, wire are o,/E=0.003, »=0.3 and N=0.1. (a) Average nominal

stress versus end displacement.  (b) Void volume growth.

Fig. 6 Effect of different values of the initial void size, for
aﬁ/o-y=2.72 and R./Ay=0.01. Parameters for the metal wire
are o,/E=0.003, »=0.3 and N=0.1. (a) Average nominal stress

versus end displacement.  (b) Void volume growth. differences between the levels of the peaks are not quite as pro-

nounced in Fig. 8 as in Fig. 3. The curves in Figh)&or the three
lower values ofaﬁlay are not vertical at any stage, but for

) pﬁ/ay=8.22 an early part, below lgg(V/Vy)=2, shows void
=R;/A;=0.01, and the different sets of curves correspond to difrowth at a constant value bf, so here a cavitation instability has
ferent levels of the initial residual stress field. The initial values @ccurred.

a*lo, applied here are much larger than those applied for theFigure 9 shows deformed meshes analogous to those in Fig. 5,
reference material in Fig. 3, but this relates to the finding Qfomparing results forR=0 and oRloy=8.22, with the initial
Huang et al[2] that a lower value ofr, /E gives a higher value geometry identical to that considered in Fig. 8. Figuré® and

of the critical stress levety, /o for the occurrence of a cavitation g b) illustrate stages wher¢/V,=10%, which is well beyond the
instability, ar_ld also _the_ .'“Cfe"?‘sed value of the_ power hardenipgyiq v oig growth range and well beyond the traction peaks, as is
exponentN gives a significant increase of the critical stress leveloap, in Fig. 8. For the high residual strésig. 8(b)) this void size

The highest residual stress levefy/ o, =8.22, considered here isjs reached at a stage where the toroidal void at the crack-tip has
obtained by first applying the hydrostatic stress lav&loy,=18 grown much less than found in the absence of residual stress.
and then stepping down additional forces to obtain equilibrium, &bme of this tendency is also seen at the end of the computations,
described above. This highest Ievelajﬁ,/ay is only slightly be- for T,/o,=1, where Fig. &) shows that the void radius on the
low the critical cavitation level, and therefore the nearly verticaymmetry plane has reached the value B#9while in Fig. 9c)

part of the corresponding growth curve in FigbBoccurs at a this void radius has only reached the value B¢6

very small value ofu/A,. The difference between the four dif- The comparison in Fig. 10 is somewhat analogous to that in
ferent sets of curves in Fig. 8 is analogous to that found in Fig. Big. 7. Thus, the initial void radius is kept fixed &,/Aq
Thus, the peak value of the average nominal traclignin the =0.01, while two values 0.01 and 0.0002 are considered for the
metal wire increases for increasing level of the residual stress, aniial rounding of the crack-tipR./A,. It is seen that the smaller
the higher peaks occur at lower valuesWfA,. However, the value of R./A, does give a higher peak value of the average
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Fig. 9 Comparison of deformed meshes for two different val-
ues of of. The initial void size and crack-tip radius are
1 R,/Ay=0.01 and R./Ay=0.01, and parameters for the metal
0 0.05 0.1 0.1 0.2 wire are o,/E=0.0004, v=0.42 and N=0.2. (a) Stage where
®) VIV,=10* for o¢R=0. (b) Stage where V/V,=10" for oi/a,
=8.22. (c¢) End of computation for o-ﬁ=0. (d) End of computa-
Fig. 8 Effect of different residual stress levels for initial void tion for 0’ﬁ/g’y=8_22_
size R,/Ay=0.01 and crack-tip radius R./Ay=0.01, with metal
wire material parameters o, /E=0.0004, »=0.42 and N=0.2. (a)
Average nominal stress versus end displacement. (b) Void vol-
ume growth.

5 /4,

nominal traction in the metal wire, and reduces the end displace-

ment needed to reach a cavitation instability, since the residual

tractionT,, and also part of the corresponding void growth Curvgtress may be. high enough to be nearly at the cavitation limit
Wwhen the tensile test starts.

in Fig. 1Qb) is practically vertical. Thus, a sharper crack-tip in- - U .
creases the tendency to observe a real cavitation instability in tq%f erhap? mlo(rj(_e |nterestl?gh|s the lfact t.t&a‘t thﬁ experiments hhave
center of the metal wire. shown a final diameter of the single void in the wire more than
half of the wire diameter, and that the parametric studies show an
. . increasing value of the final void diameter for increasing values of
5 Discussion the tensile residual stress. Also, the predicted final void diameters
An earlier investigation of cavity growth in ductile particlesapproach half the wire diameter at the highest levels of residual
bridging a brittle matrix crackTvergaard 8]) had some features stress considered here. It is noted that the end of the computations
in common with the present study, including that effects of ras rather arbitrarily defined as the stage where the average traction
sidual tensile stresses in the ductile particles were accounted fwis dropped to the valuie,= o, but if a smaller value had been
However, the elastic deformations of the surrounding ceramitiosen, the final void diameters would have been larger. The final
were not incorporated in these previous analyses and at large vgabmetries shown in Figs(&, 5(d), 9(c), and 9d) do not exactly
expansions the accuracy of the results was limited by strong mesdree with the photographs of the final fracture surfaces shown by
distortion, as had also been true in other early studies of cavitatidshby et al.[9]. Thus, in the experiments the void has not grown
instabilities. In the analyses here, the ability to evaluate the fingkactly in the center of the wire, and the remaining ligament ap-
size and shape of the void in the special tensile test specimenpefirs to have failed by shearing off. But parts of the observed
Ashby et al.[9] is entirely dependent on the application of a refracture surfaces do indicate the type of crack growth by a blunt-
meshing procedure. ing mechanism shown in Figs. 5 and 9 by a toroidal void growing
In the experiments modelled here the specimens were coofeom the initially sharp crack-tip.
slowly from the processing temperature to minimize the residual The cavitation instability or near cavitation instability behavior
stresses due to thermal contraction mismatch between the lead aocurs at the vertical or near vertical parts of the curves in Figs.
the glass. However, some level of tensile residual stresses n&ly) and 8b), and it is noted that the calculated final void shapes
have been left in the metal wire, and such residual stresses hath large diameters occur far beyond these vertical parts. In fact,
been incorporated in the present analyses to get a parametric even the stages illustrated in Figgah 5(b), 9(a), and 9b) occur
derstanding of their influence on the growth of a single void in theell beyond the vertical parts of the void growth curves. Thus,
center of the wire, in the crack plane. It has been found thatwéhen the large voids in these lead wires are seen as examples of
tensile residual stress increases the peak value of the averagperimentally observed cavitation instabilities, the instability
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The level of tensile residual stress to be expected in a ductile
reinforcing particle in a ceramic, due to cooling from the process-
ing temperature, has been estimatedldh by an elastic analysis
10 H—— 0.0002 for a spherical well bonded Al particle in an A5 matrix. When
the cooling range ia T=500°C it was found thatrg /o, =2.7 if
o,/E=0.005, whileog/oy=13.5 if o, /E=0.001. Thus, the lev-
els of residual stresses considered in the present paper are not
unrealistic. In addition to the effect on early occurrence of a cavi-
tation instability the tensile residual stresses increase the peak
value of the nominal traction for the crack-bridging mechanism
(Figs. 3 and 8 But the figures also show that the area under the
traction separation curve is reduced, so that the energy needed to
break the bridging particle is smaller.
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Nonaxisymmetric Dynamic Problem of nonaxisymmetric electric displacement or electric field for the pi-

ezoelectric layer is considered. In the absence of body forces, the

a Penny-Shaped Crack in a Three- governing equations for nonaxisymmetric loads are
Dimensional Piezoelectric Strip Under 2D
I_ 2 — -
Normal Impact Loads n—z &P=0 (=123
1)
. PD Cu—¢C ~
Ji Hyuck Yang Cas 0224 2 ”2 1 pqz}@:o
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cutpd? ’
1 Introduction q°=p?/£?, (C11,C12,C13,C33,Caq) are the elastic moduli measured

in a constant electric fieldd,,d33) are the dielectric permittivi-

_The dynamic response of a penny-shaped crack in a threge neagyred at a constant stramy(es; €50 are the piezoelec-
dimensional piezoelectric ceramic strip under nonaxisymmetrig constantsk; (i=1,2,j=1,2,3) are the unknown constants to
normal mechanical and electrical impact loads is analyzed ba ed " N

on the continuous electric boundary conditions on the crack si§e determined from Eq2), ®;(¢,z,p) (i=1,2,3,4) is the function
face. The potential theory and Hankel and Laplace transforms &i@nsformed fromg;(r,z,t) (i=1,2,3,4) by Hankel and Laplace
used to obtain the systems of dual integral equations, which dransforms, and ¢; is related to the potential functions
then expressed to Fredholm integral equations. The singular nig{r, 6,z) (k=1,2,3,4) as follows:

chanical and electric fields and all sorts of dynamic field intensity —

factors of Mode | are obtained, and the numerical values of vari- d=dexping), k=1,234, n=012.... (3)

ous flgld intensity factors for PZT-6B _plegoelectrlc ceramic are according to Gao and Fai], we set up the following bound-

graphically shown for transverse bending impact loads. ary conditions:

2 Problem Statements and Method of Solution o3 (r,0,0p)=0 (0sr<a), @)
Consider a piezoelectric st(ip of thickngsis @ontaining a cen- Ut (r,0,0p)=0 (asr<),

ter penny-shaped crack of diametea 8ubjected to the nonaxi-

symmgtric combined mechanical and electrical impact loads. The D#(r,0,0",p)=D*(r,0,0 ,p) (0<r<a),

cylindrical coordinatesr(,0,z) is set at the center of the crack.

The piezoelectric strip is transversely isotropic with hexagonal EX(r,0,0",p)=Ef(r,0,07,p) (0sr<a), (5)

symmetry, and the z-axis is oriented in the poling direction. The .

strip is subjected to a nonaxisymmetric normal impact stress or ¢*(r,0,0p)=0 (asr<=),

strain at the edges, and the electrical boundary condition of a o%(r,0,09)=0, ©6)
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Fig. 1 Infinite piezoelectric strip with a penny-shaped crack subjected to combined
mechanical transverse bending and electrical impact loads

Thr,6,h,p)=0, (9) Where
a(r,0) D(r,0) 1 o
Case 1: o*(r,0,h,p)= ——, D*(r,0,h,p)= ——, Si(§,p)= ——=, (i=1273), (16)
Uz( p) p z( p) p ! ni(é:p)
o (10) Ain, Bjp (i=1,2,3,n=1,2,3...) are thaunknowns to be solved,
. e(r,0 . E(r,0) a andb are real constants, which will be determined from the
Case 2: &;(r,0,h,p)= b E; (r,0,h,p)= p ' edge loading conditions{, " is the inverse Hankel transform of
11)
. _o(r,e) _E(r,0)
Case 3: oj(r,6,h,p)= b E; (r,0,h,p)= b Case 1, a/r,=1.0, =0"
(12) B — — ah=15, 6,/0,=1.0
&(r,0) D(r,0) @h=10, c,/0,=10
Case 4: &X(r,0,h,p)= , D¥(r,6,h,p)=———, ah=10, 0,/5,=0.6
P P 13 o ah=1.0, o,/ c,=0.2
e ah=05, o,/c,=1.0
whereo,, o4, o, are normal stresses, ,, o,,, o4, are shear o —_—
stressesDy (k=r,0,z) are electric displacements, (k=r,6,z2) >= = — A
are displacements) is electric potential, superscriftmeans the ¢§
Laplace domaing(r,6), (r,6), D(r,6), andE(r,6) are the
magnitudes of applied stress, strain, electric displacement, a~~ o
electric field, respectively. The field equations are obtained fro1%= 204’ \ ~.—" T T
Eqgs.(1) as follows: M - e —
® 1 3
up =2, H(Zl kus{Ansinh(sgz) fF teTTT T
n= i=
a(r,0)
+ B, coshl{s;éz)] | { cosnf+ Z, (14) 00 i | ! | L !
p 0 10 20 30
- L3 ct/a
*=— - koisi[Ain sinh(s;éz
¢ nZo ¢ Zl 28 Ain SINN(s;£2) Fig. 2 Change of the normalized dynamic stress intensity fac-

o tor with the normalized time, the ratio of crack radius to layer
(r,0) thickness, and the ratio of o,/0y for PZT-6B ceramic under
z, (15) transverse bending loads of Case 1

+Bip coshs@z)]) cosnf—
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= Case 1, a/h=1.0, 6./0,=1.0
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Fig. 3 Change of the maximum normalized dynamic stress intensity factor

for the time with the polar angle @ and the ratio a/r, for PZT-6B ceramic under
transverse bending loads of Case 1

order n. Applying Egs.(3)—(13), we obtainnth systems of dual * *
integral equations, which are then expressed to the followthg o(r,0)= 2 a(r)cosné, ;(r,g)zz en(r)cosné,
Fredholm integral equations of the second kind: n=0 n=0 22)

0

¢”(a’p)+fo So(B.p)l (@, B)dB D(r,a)=n20 D,(r)cosné, E(r,9)=n20 E,(r)cosné.

\F 1) o[ 1+n 3 Numerical Results and Discussion
— N —n
- 77( pMy « fo [2—r2 Co(r)dr ) Material properties of PZT-6H3], and the normalized time is

defined as follows:

where
T=tc/a, (23)
_ * _ wheret is time, a is crack radius, and,(=+/(C44t+ 6215/d11)/p) is
I”(a"B)*aL EINCEP) = 1ns yi @) In A BE) A€ the shear wave velocity defined from the governing equation.
(18)
Example 1: Nonaxisymmetric Transverse Bending Impact
N(&,p) =[F12(&,P)M4x(&,p) +F 1€, P)M 4o €,P) Loads. Let the mechanical loads be nonaxisymmetric transverse
bending impact and the electrical loads be axisymmetric impact as
T F1d£,p)Magl£,p) 1/, (19) shown in Fig. 1. Then, the applied loads can be expressed as
follows:
3
Mo= lim 2 Fli(flp)Mm(&p)}, (20) r
gl 151 ay(r.0.ht)=| oot 01— cos&)H(t), (for Case 1,3,
1
a
Bln(&p)=§1’2f n(a@,p)Ins 1 éa)de, (21) r
0 g,(r,0,ht)=| egg+e;—cosf|H(t), (for Case 24,
" (24)
Jn() is the Bessel function of order of the first kind, F;; (i,]
=1,2,3) andMy; (j=1,2,3) have the same forms as those of D,(r,6,h,t)=DgH(t), (for Case 1,4,
Yang and Led?2]. Here, we assume that the applied loads can be
expanded with Fourier series as follows: E,(r,0,h,t)=EyH(t), (for Case 2,3,
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- Case 2, a/h=1.0, a/r,=0.6, €,/£,=0.6, 0=0"
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. -5
> g,= 5.0 X 10
© - T g,=1.0X10"
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N
-
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Fig. 4 Change of the maximum normalized dynamic stress intensity factor for the time with the electric field E, for PZT-6B

ceramic under transverse bending loads of Case 2

1

whereH(t) is the Heaviside unit step function, ando; are the _ o
W(H,p)Ly(E,H,p)dH=E7, (25)

magnitudes of applied stred3, is the magnitude of applied elec- Vi(E,p)+ f
tric displacement at initial time, and, is shown in Fig. 1. From 0
Eqgs.(22) by using the inversion of Laplace transform for E24), where

the first and second terms in the Fourier series are remained and

two systems of Fredholm integral equations are obtainechfor - s
=0 andn=1. The Fredholm integral equation for=0 is the L(Z H, :f EHS[N(—, )1}\] =S)Ja(HS)d
same form as that of Yang and LE# and the Fredholm integral S P) 0 VEH a P OB

equation fom=1 is in the form (26)
|
'S 'S S | S S S
\ s 7F11 2P My 2P +F1 2P M2 2P +F3 2P M3 2P .
57p - mo ) ( )
I
_ B Cagdastedy)e
S=éa, E=—, H=-—, :M, (Case 4.
a a 28) da3
The field intensity factors in the Laplace domain become as
_ T 3pmgry follows:
‘Pl(:vp):_ EY=1 wl(arp)l
2ag 2a’c, 2 1 2ac;
Ko = —\ma—|coWyo(lp)+ 5—T(1p)cosh|, (30)
™ p 3r,
T 3pmgr, 2 im 2ac
Vi(H,p) =~ /525 = 1(B.p), D= = fra— — e
1(H.p) 2aH a7, P1(B.p) K S ma coWo(1p)+ ar, W ,(1,p)cosh|,

(31)

c,=0q,, (Case 1,3 2 1m, 2ac;

Ke* = —Jma— —|coWo(lp)+ =—W(1,p)cosd|,

™ p mg 3ry

=cCae1, (Case 3, (29) (32)
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2 1mg 2ac; alr4 is shown in Fig. 3. The peak value increases as the adtip
KE* = 7 VT o CoWo(1,p)+ ?‘1’1(1@)13059}. increases in the range 0 deg<90 deg, but the tendency is op-
0 . (33) Posite in the range 90 degy<180 deg.
The change of the peak value of the normalized dynamic stress
where intensity factor for the time with the electric fiek, for PZT-6B
Cn= ceramic in Case 2 is shown in Fig. 4. The dynamic stress intensity
0o=09, (Case L3 X . e SH
factor increases as the magnitude of the electric field increases and
=Casep— €33y, (Case 3, (34) it is concluded that the dynamic stress intensity factor changes
) with the direction of the electric field. And this also shows that the
B (Caxdzzte3z)eo— €330 electrical load effects the mechanical field strongly. In Case 4, the
N dag ’ tendency of the changes of the field intensity factors with the
These shows that both the mechanical and electrical loads eﬁgﬁgglg-dlsplacement 's similar as that of the electric field in
the field intensity factors, respectively.
Two systems of Fredholm integral equations are solved numeyi- :
cally using Gaussian quadrature formula. Then dynamic field iré'— Conclusions
tensity factors are obtained for time from Eq80)—(33). The The normalized dynamic field intensity factors increase with
accuracy of this numerical dynamic field intensity factor valueigicrease of the ratio of crack radius to the strip thickness. For the
are affected by the numerical inversion parameters sudhasd case of constant stress loading, the dynamic electric field intensity
8, and Gauss Legendre and Laguerre integrating points. We (igetor and the dynamic electric displacement intensity factor de-
quasi-static field intensity factor values as a criterion to choose thend on the material constants and the applied mechanical load,
value of N and é. In this paper, we used values df=6 and but not on the applied electrical load. For the case of constant
6=0.4~1.8 to fit the quasi-static field intensity factor values. strain loading, the dynamic field intensity factors depend on the
The change of the normalized dynamic stress intensity fact@pplied mechanical and electrical loads.
K7(t)/(2co) (al ) Y2, with the normalized time, the rat@'h and
the ratio o1 /0y under transverse bending loads in Case 1 References
.Shown. in Flg' 2.' Itis Shown. th‘."‘t the normalized dynamlc stress[l] Gao, C. F,, and Fan, W. X., 1999, “A General Solution for the Plane Problem
intensity factor increases with increase of the ratit and the in Piezoelectric Media With Collinear Cracks,” Int. J. Eng. S87, pp. 347—
time of peak value changes a little with the ratith. And as the 363.
ratio o, /o increases, the normalized dynamic stress intensity[2] Yang, J. H., and Lee, K. Y., 2001, “Penny Shaped Cra(ik in Three Dimensional
factor increases gradually. ?;z_oleg;ctnc Strip Under In-Plane Normal Loadings,” Acta Med#8 pp.
The change of the peak value of the normalized dynamic stresgs) wang, z. k., and Huang, S. H., 1995, “Fields Near Elliptical Crack Tip in
intensity factor for the time with the polar angfeand the ratio Piezoelectric Ceramics,” Eng. Fract. MecBl, pp. 447—456.

(Case 4.
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Analysis of the M-Integral in Plane with the starting pointx, ,y,) and the end pointx, y) (Fig. 1. In

| . . Eq. (2), a closed path CH" is defined such that it may encloses
E aSthIty some holes, cracks or inclusiofisig. 1).

The following analysis depends on the complex variable func-
tion method in plane elasticity14]. In the method, the stresses
Y'_ Z Chen ) ) ) ) ) ) (ox,0y,0yy), the resultant forcesX, Y) and the displacements
Division of Engineering Mechanics, Jiangsu University, (u,v) are expressed in terms of two complex potentia{s) and
Zhenjiang, Jiangsu 212013, P. R. China #(2) such that

Kang Yong Lee oxtoy=4Red(2)
Department of Mechanical Engineering, Yonsei oy— oyt 2oy =2[z¢"(2)+ ¢ (2)] (3)

University, Seoul 120-749, South Korea ) -
f==Y+iX=¢(2)+2¢'(2)+(2) 4)

. : . . - 2G(utiv)=kd(z)—2¢'(2)— )(2) (5)
In this paper, analysis of the M-integral in plane elasticity is car-
ried out. An infinite plate with any number of inclusions andvhereG is the shear modulus of elasticity=(3—»)/(1+v) is
cracks and with any applied forces and remote tractions is coffer the plane stress problerk,=3—4wv is for the plane strain
sidered. To study the problem, the mutual work difference integraioblem, andv is the Poisson’s ratio.
(abbreviated as MWDI) is introduced, which is defined by the In the following analysis, two stress fields are introduced. The
difference of works done by each other stress field on a lardigst field is the physical field, which is defined from the geometry
circle. The concept of the derivative stress field is also introduce@ind the loading condition shown in Fig. 1, and it is called the
which is a real elasticity solution and is derived from the physicat-field hereafter. Clearly, for the-field we can write
stress field. It is found that the M-integral on a large circle is
equal to a MWDI from the physical stress field and a derivative Ui)=Ui»  Tij(a)= Tij - (6)
stress field. Finally, the expression for M-integral on a large circl§jeantime, the relevant complex potentials for tadield can be
is obtained. The variation for the M-integral with respect to th%xpressed in the forr(14])
coordinate transformation is addressed. An illustrative example

for the use of M-integral is presentedDOI: 10.1115/1.1748271 “a
b (2)=p(2)=A1z+ A, Iogz+ao+k§:1 >x (@)

1 Introduction ~ by

In plane elasticity, many path independent integrals were inves- Vi (2)=$(2)=B12+ By logz+bo + gl P 8)
tigated,[1-10]. The integrals include thé-integrals,L-integral,
M-integral, and some others. These integrals have a general propere
erty that the values of the mentioned integrals do not depend on o w i
the path, provided there is no singularity between two integration A= oxtoy _ FxtiFy ©)
paths. Naturally, if the closed path encloses some singularity 1 4 2 2m(k+1)
points or cavities, these integrals must not vanish.

Some particular problems for théd-integral were investigated, Ui—tff o —  k(Fx—iFy)
[11-13. It was felt that in some complicated cases solutions for Bi=———tioy, By=- "Afm' (10)

the M-integral were still unknown. In this paper, analysis of the

M-integral in plane elasticity is carried out. An infinite plate with In Eqgs.(9) and(10), oy, oy, andoy, are the remote stresses,
any number of inclusions and cracks and with any applied forcaadF, andF, are the resultant forces applied on the finite region
and remote tractions is considered. After some manipulations, thiethe infinite plate. Also, the coefficientg andb, (k=1,2,..) in
expression foM-integral on a large circle is obtained. The variagEgs.(9) and(10) will be determined from a concrete solution.
tion for the M-integral with respect to the coordinate transforma- The second field is defined as a derivative field to the physical
tion is addressed. An illustrative example for the us#&ahtegral field, which is called thes-field hereafter{7,15,16. The complex

is present. potentials for theB-field is defined such that
, o Ka
2 Evaluation of M-integral on a Large Circle bp(2)=2¢ (Z):AlerAz—kEl 5 (11)

The M-integral in plane elasticity is a path independent integral,

which was introduced previously3]) ) . kby
o Yip(D)=24' (2)=Byz+ Bz—kzl - (12)
M(L)=f (WX n;—U; i Xoijn;)ds (1) o ) ) _
(X0.¥0)u(L) Note that theg-field is not independent and is derived from the
a-field. Thus, by using Egs3) and (5) the displacements and
M(CH)= § (Wxn;—U; (X n;)ds (2) stresses for theg-field can be expressed as
e | J J
. . ) U U
whereW=u ;o;;/2 denotes the strain energy density,the dis- ui(ﬁ)zx_'er_' (O Uj(g)= Ui jX}) (13)
placementsg;j; the stressesp; the direction cosines, and, d ay
=du;/dx;. In Eq.(1), the path ‘L"is generally defined as a path 9o Jo
ij ij
Oii(p=0ii tX——+Y—— (Or oji5=0i t 0 X)-
Contributed by the Applied Mechanics Division ofiff AMERICAN SOCIETY OF e IxX ay By T T Ak
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- (14)
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 12, . . . )
2001; final revision, December 13, 2003. Associate Editor: B. M. Moran. In addition, one may introduce the following integ(&lig. 1):
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o e ©
v GXY
(x,¥)
(Xo H yO )
CR o
Y4 X,
> X,
Fig. 1 An infinite plate containing cracks, holes, and inclusions
1 In Egs.(18) and(19) the circle “CR’ is sufficiently large such
N(CH)= % 5 (Ui()Tij(p) ~ Ui(p)Tij () )jdS that all the defects are included in the circle. Equatib®) shows
(CH) that instead of evaluating the integidl(CR) we can evaluate its
1 equivalent valueN(CR). This is the aim of the mentioned deri-
— é E(ui(oij+0'ijkak)nj—uiykxkoijnj)ds. Vatiqn. ) ) )
(CH) Since the complex potentials for thefield and B-field were

(15) shown by Eqs(7), (8), (11), and(12), the relevanMWDI shown

. . . " Eq. (19 can be evaluated. Using a known res{it5,16], we
From the Betti’s reciprocal theorem in elasticity, one can conclu a.(19 g W, 16

that the integraN(CH) takes the same value if the closed path

“ CH" includes the same defects. ClearN(CH) shown by Eq. m(k+1)

(15) is a kind of a mutual work difference integraliWDI) for M(CR)=N(CR)= TRG[_Albl_Blal+AZBZ]-

two physical stress fieldgx-field and B-field). (20)
A relation betweenM (CH)-integral and theN(CH)-integral

has been found, and it reads

M(CH)=N(CH). (16)

The equality(16) can be proved in a similar manner as showsd Relation of the M(CR) Integral With the Coordi-
previously,[15,16. nate Transformation
Since the equality16) is proved, and the closed patiCR’ is The M(CR) shown by Eq.(18) is evaluated in thexoy:
a particular type of CH" (Fig. 1), thus, we have coordinates(Fig. 1). Consider now how theM-integral corre-
M(CR)=N(CR) (17) sponding to a given state of stress for the infinite plate changes
under transformation from one system of rectangular coordinates
where to another. Letx, y) and , ,y,) be the coordinates of the same
point in the(xoy) and (x,0,Y,) systems and let

M(CR)= 3g(CR)(W><iniUi,ka(Tijnj)dS (18) z,=z+zq (With z,=x, +iy,, z=x+iy, zZg=Xq+iyq)
(21)

In Eq. (20), A;,A,,a; (or B;,B,,b;) have the dimensions of
stresses, resultant forces and moments, respectively.

_ 1 wherez, represents a translation of the coordinate sygtein 1).
N(CR)= ﬁCR)E(“i<a>"ii<ﬂ>‘“i(m"ma))”ids In addition, the complex potentialg, (z,), #,(z,) in the
(X4 0,Y,) system can be obtained from the known complex po-
_ ig 1 tentials ¢(z), ¢(2) in the (xoy) system,[14]. Using the obtained
(

CR)E(Ui(‘fii + 01} 1K) N~ Ui X0 Ny ds. complex potentialsp, (z,), ¥, (z,) and Eq.(20), it is found

(19) M, (CRI=M(CR)+M, (22)
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where
l oo o oo
Ma———BG {[(k+1)o +(k=3)oy JFXgt+[(k+1)oy

+(k=3) oy JFyya+ 4oy (FyXa+Feya)}. (23)

In Eq. (23) the termM, is caused by the translation of the coor-

dinates. From Eqg22) and (23) we see that only if the resultant
forces are equal to zerd-(=F,=0) theM(CR) is an invariant
with respect to the translation of coordinates.

Secondly, consider now how thd-integral changes under ro-

tational transformation from one system of rectangular coordiith major and minor axea andb (a=((1+m)a)/

nates to anotheiFig. 1). Let (x, y) and (x, ,y,) be the coordinates
of the same point in théxoy) and (x,0y,) systems and let

It is assumed that, for two damaged mediums, if the values of
M(CR) are the same they are said to be in the equivalent damage
situation.  Therefore, after letting M(CR),=M(CR),
=M(CR)(q, it is found that

1+m

V1+m?
Equation (29) reveals that a crack with half-lengtla,
(=v2a,) is equivalent to a circle with radius, on the basis of
the above-mentioned assumption. Similarly, an elliptical notch
JI+mZ,b

=((1—m)a)/(1+m)) is equivalent to a circle with radius, .

8y, Ac=V2a,. (29)

Acknowledgments
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where the angler represents a rotation of the coordinate systefnoundation of China for the first auth@y. Z. Chen, and by the

z=zexplia) (with z,=x+iy,, z=x+iy,) (24)
(Fig. 1.
A similar derivation will give the following resul{{14]):
(k+1)

T
M (CR)=M(CR)= ———

G Rd:—Albl—Blal-i-Asz].

(25)

In Eq. (25), M(;H(CR) denotes the value d¥l-integral evaluated
in the (x,,y,) coordinates. Also, from Eq25) we see that the

M(CR) value is an invariant with respect to the rotation of the

coordinates.

4 Discussion
It is found that the value oM (CR) under the remote loading

oy =0,=p is a suitable measure to evaluate the included damy7)
age. An example is introduced below. In the example, an elliptic

hole in an infinite plate is subjected to the remote loadirg
=o;’=p. Three cases(a) a circle hole with a radiug,, (b) a
elliptical hole with major and minor axesa” and “b,” and (c) a
crack with the half-length radius,, , are considered for compari-
son. After some manipulation, for the three cases we have

m(k+1)

M(CR)@=—gg —[4a3p’] (26)

m(k+1) [4(1+m?)
MCR) =55 | T1emz 2P| (m=(a-b)/(atb))
@7)
M(CR)WF%[ZaépZ]. (28)
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|mpermeab|e Crack and Permeable ness. The results from different electrical boundary condition as-

sumptions on the crack faces are compared. Some conclusions are

Crack Assumptions, Which made.
One is More Realistic?

2 Piezoelectric Crack Problem

We consider a plane-strain problem shown in Fig. 1. Assume
that all field variables are functions &fandy only. Constitutive
. . . equations for piezoelectric materials polarized algndirection
Yiu-Wing Mai subjected to mechanical and electrical fields can be written as

Bao-Lin Wang
e-mail: baolin.wang@aeromech.usyd.edu.au

T_
Centre for Advanced Materials Technolog@AMT), (03 Oyy Ty Dx Dy) ' =Clexx eyy 264y Ex By), (1)
Department of Mechanical and Mechatronic Engineeringyhere
Mechanical Engineering Building JO7, The

: . : Ciy Ciz O 0 —esy
University of Sydney, Sydney, NSW 2006, Australia
Ciz Czz3 O 0 —€33
C: 0 0 C44 _els O , (2)
This paper investigates the applicability and effect of the crack- 0 0 es e 0
free electrical boundary conditions in piezoelectric fracture. By
treating flaws in a medium as notches with a finite width, the €1 € O 0 €33

results from different electrical boundary condition assumptions,. and D; are stresses and electric displacements, respectively;
on the crack faces are compared. It is found that the electrically, | e, ande; are elastic constants, piezoelectric constants, and
impermeable boundary is a reasonable one for engineering profielectric permittivities, respectively. The strain is related to
lems. Unless the flaw interior is filled with conductive media, thye mechanical displacement by &ij=(u; ;+U;,)/2, where a

permeable crack assumption may not be directly applied to th@mma indicates partial derivative. The electric fiEldis related
fracture of piezoelectric materials in engineering applications. to the electric potentiad by E;=— ¢ ; .

[DOI: 10.1115/1.1748294 The governing equations for displacements and electric poten-
tial are
1 introduct #%u a%u v P )
ntroduction Cir—> t¢C +(Cy3t Cyg) —— +(€331+€15) —— =0
w3 44(7_)/2 (C13tCa4) oxdy (e31+€15) axdy

Due to the rapid growth in applications, the mechanical and ) ) ) 5 5
fracture properties of piezoelectric ceramics are becoming more J°u v v ¢ ¢
and more important. The material is brittle. In order to address thEF1s™ Ca4) Xy a2 +C33(7_y2 tes_ 7 +e33(7—y2 =0/,
issues concerning durability and reliability of piezoelectric mate- 5 5 5 5 5
rials, fracture behaviors of those materials should be investigated Ju d°v v ¢ ’é
and understood thoroughly. The effect of electromechanical field€z1t €1s) m+elsﬁ+esa&_)lz_ fur o €3 Y2 =
on the fracture behavior of piezoelectric ceramics is highly com- ©)
plex. The understanding of the cracking under mechanical and
electrical loads is of both academic and practical importance. Whereu andv are displacement ir andy direction, respectively.

An important issue in studying fracture mechanics of piezoelec-Assume that the piezoelectric medium is loaded by a remote
tric materials is the crack-face electric boundary conditions. Thewgiform stresses = o, and a uniform electric displaceme,
are two idealized crack-face boundary conditions that are extenD... DenoteD, as the normal component of the electric dis-
sively used in the literatures. One commonly used boundary cdilacement inside the craclog is unknown. The boundary con-
dition is the specification that the normal component of electriditions along the cracked plane=0 is stated as follows:
displacement along the crack faces equals to Zse®, e.g.,

J

[1-11)). This boundary condition ignores the permittivity in the v(x.0=0, $(x0=0, [x|=a, )
medium interior to the crack. The other commonly used boundary x.0=0. |xl<a 5
condition treats the crack as being electrically permedtl2- 7y(x0 =0, [x|=a, ®)
15]. For permeable crack, the electric field and the electric dis- Dy(x,00=Dy, [x|=a. (6)

placement intensity factors are found to depend only on the apg- ) i )
plied mechanical loads. The stress intensity factor and the ene g{if this problem, the solutions can be obtained by means of com-
release rate become independent of the electrical loads. This iiX Variables as outlines {%],

contrast to the test results]. Other approach towards resolving T_

the piezoelectric crack problems considers the deformation of the (U, v, ¢)'=2RdAF), 0
crack,[9,16—18. This approach is based on the assumption that (04, Dy)T=2 RgB,F), (8)
under applied mechanical and electrical loads, the crack will open

and there is an electrical potential difference on the upper surface (0xy. oy Dy)T=2ReBF), 9)

and the lower surface of the crack. _ _ . .
In this paper, we reconsider the usually used two electricghirfn':\;igf‘i“] andB=[B,] are (3<3) matrices,B, is a (2

boundary condition assumptions on the crack faces. Considerin& '

the fact that flaws in experiments are not like cleavage cracks of F=[F.(z)]=(Fi(z)), Fazy), Fa(ze))7, (10)

zero gap width, we treat the crack as a notch with a finite thick-
f=[f(z)]=(Fi(z1), Fi(za), F3(z3))", (11)
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- Z,=X+py, «a=123. (12)
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June 4, .
2002; final revision, September 18, 2003. Associate Editor: K. Ravi-Chandar. ~ The vectors andF are determined by
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O, Do

(0%, DX)T=2 ReB;H)t (22)

a
Var
The energy release rate can be calculated by the crack closure

A integral to yield
Y, X3

G=—-malm

3 3
(a'le Azq+(D..—Dy) }_‘,l As, Hato}

X, X1 23)

Poling —n

3 Solutions Based on Electrically Impermeable and
Electrically Permeable Crack Assumptions

Conventionally, there are two kinds of electrical boundary con-
dition assumptions used to the fracture of piezoelectric ceramics,
i.e., the impermeable crack assumption and the permeable crack
Geoy Deo assumption. The simplest way to solve the problem is that the
crack is assumed to be electrical impermeable and the electric
Fig. 1 A piezoelectric medium with a notch of finite thickness field inside the crack is zero. Therefore, in Ef5) D=0, f, and
F, can be determined immediately from Eq$3) and (14).
On the other hand, the permeable crack assumption treats the
crack as being electrically permeable and there is no electric po-

z, tential jump across the crack. It can be shown from @g) that
fo(Zy)=Hto|l —=—=—-1], 13
Im Az, H, [to=0. (24)
Fa(zo) =Huto(VZi—a%~2,), (14) ot

in whichH is a (3x 2) matrix, andH,, is theath row of matrixH, ~DenoteH,; as theath row and thejth column element of matrix
H. The unknown electric displacemeB inside the crack can be
to=(0w, D.—Dy). (15)  determined from Eq(24). The result is

Since the vectott, contains an unknowrD,, additional as-
sumptions are needed to solve Eg3). This will be discussed in

3
21 A3qu al

Secs. 3 and 4 of this paper. Ontg(z,) andF ,(z,) are evalu- Im I
ated, the full field solution of the cracked piezoelectric material Do=D..+ 3 (25)
can be determined. In particular, the electric potential julep
across the crack are obtained as follows: Im E A3aHa2)
a=1

Av=—4\a’—x?Im

3
2 Az Hoto | (16) OnceDy is determined, Eq¢13) and(14) can be u_sed to evaluate
a=1 the unknown constants, andF . The electric displacement in-
tensity factor is

3
Ap=—4a2—xZIm| D, A3aHat0). (17) °
a=1 —Im 2 A3aHal O
In order to obtain the stress and electric displacement distribu- K., = . Ja (26)

. . . . (\2 3 .

tions near the crack front, we introducing the polar coordinates

and 6 such that Im 2 Az Hoo

a=1
X=a+r cosf, y=rsinb, (18)

It can be shown from Eq$13) to (15) that the full field solution

then the functiorf ,(z,) may be expanded for small values rof depends on the electrical load only through the tBrm-D,. Itis

Ja 1 clear from Eg.(25) that D,—Dy can be expressed in terms of
f(Z,)=H ptp—= —=. (19) applied mechanical loads. Therefore, solutions for an electrically
J2r \Jcoso+p,sine permeable crack depend only on the mechanical loads, but not on

Using the conventionally defined stress intensity factors and eldf€ applied electrical load.
tric displacement intensity factor, stress and electric displacement
at the crack tip in the crack plané=0, are given by

(Ki, Ki) 4 A Notch of Finite Thickness
(oyy, Dy)= \/E ' (20) In the last section, we considered a flaw in the piezoelectric

) . . . ~ media as a cleavage crack of zero gap width. In fracture mechan-
whereK; is the mode | stress intensity factdt,, is the electric ics experiments, however, a flaw in a specimen is usually cut with
displacement intensity factor. They take the following values 3 tool of finite thickness. Thus, flaws in the experiments are not

(K, Ky)=(0m, Dx—Do)\/a. 1) :/le/(iteh gefﬁ]\ﬁgsvigiﬁ?ks of zero gap width, but rather like notches
Itis clear thatk, depends only on the applied stress. The electrical Suppose the thicknes$of the notch is sufficiently small, ex-
boundary conditions on the crack surfaces have no effect on thept near the tip of the notch, the gradient of crack opening along

stress intensity factors. the crack is small. Along thg direction the electric fiel& and the
From Eq.(8), the stress vectar,, andD, at the crack tip takes electric displacemerid, on the upper notch surface can be written
in #=0 plane takes the following values: as([19])
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A ¢(x,0) A ¢(x,0) o 1
EX)=———— Do(X)=—€p————, @7 3
8(X) 8(X) £
where €; is the dielectric permittivity of the medium inside the'é 0.8
notch, which is usually the air or vacuum. By substituting frong
Eq. (17) into Eq. (27), we obtain g 0.6
<
Do(x)=4\a?—xXZe, 25
: : % 04
Im E AaaHal) o tIm 2 AsaHa2> (D= Do) % .
a=1 a=1 KIV
. 8(x) % 0.2 2.534x10"°c_va
28) 2 :
This equation can be used to determine the unknByn If we )
consider an elliptic notch such that . 0 001 002 003 004 005
8(x)=+a’—x2(8y/a), (29)
. - Notch thickness to | atio
from Egs.(28) and (29), it follows that the electric displacement otch thickness to length ratio &y/a
inside the notch is Fig. 2 Electric displacement intensity factors caused by a uni-
3 3 form electric displacement load D, or a uniform mechanical
load o
Im| D AgHor | oot Im| > A3aHa2) D..
a=1 a=1
Do= 5 . (30)
Im| > Ag,Hez | +(8/a)l(4€o) —0.01108<10 ¥, +0.00437D..
a=1 DO:
It follows from (21) that the electric displacement intensity factor 0.004372-2.828 5, /2)
at the notch tip is The electric displacement intensity factor at the notch tip is
3 0.01108< 10 Y%, +2.825 5,/a)D.. a
(90/8)(4€9)D=-~Im Zl AsaHar | 0 K= 0.004372+ 2.825 8y /a) &

\/g- B The dependence of the electric displacement intensity factor on
the notch thickness to length ratio is plotted in Fig. 2, for an
Z‘l A?’“H“Z) *(So/a)/(4) electric displacement load or a mechanical load. The gap width is
known from the numerical computations to have a major influence
It is clear that if the notch interior is filled by conductive mediunbn the electric field intensity factors. Therefore, the effect of the
such thate, equals infinity, Eqs(30) and(31) reduce to the per- finite flaw gap in a realistic structure must be assessed. Since it is
meable crack solution, Eq$25) and (26), respectively. On the impossible to make a notch of zero width so that it behaviors as a
other hand, If the permittivity of the notch is ignored such that sjit crack, the permeable crack assumption may not be directly

K= 3

Im

equals zero, Eq¢30) and(31) reduce, respectively, to applied to the piezoelectric fracture problems. The idealization of
_ _ an electrically impermeable boundary is a reasonable one for
Do=0, and Ky=D.\a, (32)  notch aspect ratios of 0.01 or greater. Some authors studied this
which are the impermeable crack solutions. issue and reached a similar conclusif®12].

It is informative to consider some experimental date. Park and
Sun[8] used a 0.46 mm thick diamond wheel to cut a flaw of 11.5
o mm length in a PZT-4 piezoelectric ceramic. The notch thickness
5 Applications to length ratio in their test is

A PZT-4 piezoelectric ceramic loaded by a remote stress ~ _
=0, and an electric displacement lo&d=D.. is considered §as 90/a~0.46(11.5/2=0.08.
an example. The properties of PZT-4 piezoelectric ceramic afée normalized electric displacement intensity factor is
same as those given j8]. The dielectric permittivity of the air or
vacuum ise,=0.0885< 10" 1° C/Vm. Kiv —0.0190
As discussed above, the stress intensity faktprely the ap- 2534x10 Y5, Ja
plied mechanical load only. The notch thickness and the crack .
face electrical boundary condition assumption have no effect &1 & pure mechanical load, and
K,. The electric intensity factor for an impermeable crack and a

permeable crack are DK'\\}_ —0.981
~va
K= Dao\/av
for a pure electric displacement load. The results are very near to
and those obtained from impermeable crack assumpeno for me-

chanical load, and one for electrical displacement Joeldwever,

_ - 10
Kiy=2.534< 10" 3, for the permeable crack model, the normalized electric displace-

respectively. ment intensity is onéfor mechanical loador zero(for electrical
On the other hand, if the flaw is a notch of finite thicknesdisplacement logd Therefore, the permeable crack assumption
rather than a slit crack, the electric fidl, inside the flaw is gives a completely erroneous result.
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Onset of Degenerate Hopf In this brief note, the dynamical phenomenon of a class of

. . . degenerate Hopf bifurcation is reported for the vibro-impact os-
Bifurcation of a VIbrO-ImpaCt cillator (1). Degenerate Hopf bifurcation may lead to two-
Oscillator coexisting quasi-periodic impact motions, usually observed in

continuous or discrete-time systerfs]. This dynamical behavior
is interesting since it allows changing the system behavior quali-
GuiLin Wen tatively without altering system bifurcation parameters. An ana-
lytical method is proposed for analyzing the occurrence of the

Mem. ASME, . . . . degenerate Hopf bifurcation in vibro-impact systems. To cope
School of Mechanical and Production Engineering, with the discontinuity of velocity of impact that gives rise to dif-
Nanyang Technological University, Singapore 639798 ficulties in solving the dynamics of the differential equatighg
and Department of Applied Mechanics, we establish a four-dimensional map in a Poincaetion for the

vibro-impact system. Consequently, the center manifold reduc-

Southwest Jiaotong University, Chengdu 610031, tion, [6], and the normal form techniqug?,8], can be employed

P.R. China to reduce the Poincammap into a two-dimensional normal form.

. . Thus, Chenciner’s theorys], of degenerate Hopf bifurcation of
JianHua Xie maps inR? can be applied to theoretically describe the phenom-
Department of Applied Mechanics, Southwest Jiaotong enon of the degenerate Hopf bifurcation in the vibro-impact sys-
University, Chengdu 610031, P.R. China tem(1). o o

To establish the Poincamap of the vibro-impact systeiti),
Daolin Xu we first look into the general solution of the piecewise linear
. . . . system, between two successive impacts, expressed as
School of Mechanical and Production Engineering,
Nanyang Technological University, Singapore 639798 2

xi=2 i (8 coswjt+b; sinw;t+A; sinfwt+ 7)), (23)
=1

An analytical method of the degenerate Hopf bifurcation is praand
posed for vibro-impact systems. The phenomenon of the bifurca-
tion and its complicated dynamics are observed. This type of bi-
furcation originates multi-coexisting solutions dependent of the XFZ #ij(— ajw; sinwjt+bjw; cosw;t+Ajw cog ot + 1))
initial state of the system[DOI: 10.1115/1.1767163 =1

2

A two-degree-of-freedom impact oscillator is shown in Fig. 1. (i=1,2 (2b)
The masdM ; with forced excitation impacts against a rigid waAll ) )
when its displacemenX; reaches to the gap. The impact causes Whered;; are the elements of the canonical modal mairof Eq.
the discontinuity of velocity of the impacting mass by grazingld), «; the eigenfrequencies of the systeapandb; the integra-
incidence thus inducing a variety of complicated dynamics. THEN constantsd; the amplitude parameters, anthe phase angle.
vibration of the oscillator consists of the nonimpact motions sepahese coefficients can be determined by the modal parameters and
rated by impacts. The non-impact motion between two successfd@ _initial - conditions: x;(0)=b, x;(27/w)=b, X;.(0)
impacts &,<B) can be expressed by the linear differential Eqst ~ R¥1-(27/ @), X2(0)=X,(27/w), X5(0)=X;(27/w). Ac-
(1a) in a nondimensional form. For the impact motiok,B), ~ cording to the general solutiof2) and its initial conditions, the
the relationship between the velocities before and after an imp&istence of periodic impacts must satisfy with the following
is described by a coefficient of restitutiéhin (1b). condition;

1 0% | 1 =1 |[x] [sin(et+7) b tanry+ V(tar? 7o+ 1)d?— b2
| T | e U Y R (tar? 7o+ 1)d = ©
(1a) °
)'(1+ - R.Xl, ’ (X]_: b) (lb) where d=— (lzbllAlJ'_ l/flez). Let S =sin 27T(1)i /(1), Ci

=c0s 2rw; /w. The initial phase angle, satisfies
whereX, , andx,_ represent the velocities of mal§k; before and

after an impact, respectively, ands the phase angle. The nondi- To=Tg if b=0; (4a)
mensional quantities are defined ag=M,/M, u=K,/Kq,
0=0 M1 /Ky, t=TVK, /My, b=BK; /Py, xi=X;K{ /Py, X1 b tan7o= \/(tarf 7o+ 1)d?—b?|
:X1+K1/Pl, ).(l—:X].—Kllpl' or TOZCOSil nZN 1d if b#0.
The vibro-impact oscillatofl) is a piecewise linear system that (taf7o+1) b
may exhibit very rich dynamical behaviors. Quasi-periodic mo- (4b)
tions and its torus-doubling bifurcations were obserVdd, In where  Fo=tan X((asb1151(1— Co) @p— thotbarSo(1— C1) @) (1

strong resonance cases, the system may directly bifurcate i'lt?%)w/|L//|w1w2(1—cl)(1—cz)(1—R)). The impact response of

unstable_3-3-periodic impact _motions or stable 4-4_—periodic irTﬂ’le system(1) can be described as follows. Given the state
pact motion[2], from a Hopf bifurcation. With an additional pro- éxl X1,X,,%,,7) of the system at the instant settas0, the mo-

portional damping of the Rayleigh type, a verity of periodic an on of the system is determined by the general solut®rof E
chaotic behaviorg Was.reporte[di]..The grazjng bifgrcation re- 1) until th)é next impact. When )i/mpagt occurs, mu(;ﬂt:)b’ tr?e
sulted from the piecewise properties and singularities of the ijaocity of the impacting mass is changed by the impact law,
pact were also investigateldl], in a perfectly plastic vibro-impact %, =—R¥_ . After an impact, shift the phase=wt+ 7, and

case. reset the time=0, and renew the initial conditions in E¢L).

_ _ o With the new initial state, the motion of the systdi) may be
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- described by.the genera.l 50'9“(’29 until the next impact. In this
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 4,Wa)_/r the motion of the vibro-impact system can be traced over an
2002, final revision, January 27, 2004. Associate Editor: A. A. Ferri. arbitrary number of impacts.
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Fig. 1 A two-degree-of-freedom impact oscillator 2r ‘ - 1
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Choosing a Poincaresection, [1], ¢CR*XS, where o
={(X1,X1,%p,%5,0) eR*XS,x;=b,X;=%;, } and6=wt, we can 35

establish a four-dimensional Poincarep for the impact system ~ 0 0005 081 0015 002 0025 003 003 004
(1). The map can be expressed in the brief form
~ Fig. 2 Degenerate Hopf bifurcation diagram against the pa-
X'=f(w;X) (®)  rameters (e, p)
where the state vectdt= (X, ,X,,%,,7)" andw is chosen as the
bifurcation parameter. LeX* denotes a fixed point of Poincare )
map (5) in the hyperplaner, which corresponds to the 1-1 peri- (i) In the parameter domai® where u<0, a(u)>0, B(u)

odic impact motion of the systerfl), [1,3]. Supposed that the <O andA >0, there exist a fixed point* and two Hopf circles.
degenerate Hopf bifurcation of the systém occurs at K*,».), | he unstable circle separates the stable circle from the stable fixed

the disturbed system is given as point. -
, (ii) If u<0 andA=0, as shown in Fig. 2, the coalescence
AX'=f(u;AX) (6)  phenomenon of the stable and unstable circles may occur.

where AX is a disturbed vector at fixed poit* and u=w, (iii) If u<0 andA<0, see Fig. 2, only a stable fixed point

—w. The Jacobian matriDf,«(0;0) of map(6) satisfies the €XIStS. o _ o

following conditions for a Hopf bifurcatior,1]: (iv) If >0, as shown in Fig. 2, the fixed point is unstable
(C1) f(u;0)=0 for all u; associated with a stable bifurcated Hopf circle.
(C2) Df yx(1;0) has a pair complex conjugate eigenvalues  Note that the proposed method is a general approach applicable
M), )\71(#) satisfying|\,(0)|=1, and the other eigenvaluesto piecewise linear systems. It is possn_ble to extenql the method_ to
Na(), Aa(p) satisfying|hs 40)|<1: nonlinear impact systems if their nonimpact solutions are avail-
(ng) )\’m(é);&l m=123 43’; 6.7 ' able, because from the solutions we are able to establish a Poin-
(Ca) é|)\ |’/d | ' ’_’R’ X >O where \ _\.(0)(1 caremap (5) based on which center manifol§], and Chencin-
K ﬁ“?)) Mlu=0=REAL ere hqy(u)=X1(0)( er’s theory,[5], can be utilized in the study of degenerate Hopf

KA TO([u])).

The conditions C1, C2, and C4 are the critical conditions for the

degenerate Hopf bifurcation and C3 is the nonresonance condi-
tion. Note that for the transversality condition C4, if ' o T i '
d\q(w)|/du|,-0<0 by setting u=w.—wo, then 04l :
d|)\1(,u)|/d,u,|lu:o>0 by settingu=0— ;.

From C1 and C2, a local center manifold,,6], of map (6) 0t
exists. The local dynamic behavior of the four-dimensional ma|
(6), can be reduced into a two-dimensional map, -
5 0.2r
Flpd=Mwz+ X gi(w2Z+0(zP), (1) . 5
i+j= .

where the coefficientg;; (1) can be expressed by the coefficients 8.2
of map(6), see[1]. With the nonresonance condition C3, througt o4
a smoothu-dependent change of the coordingté,8], we can '
obtain the following normal form of mafy), 0+

P.(1,2)=N1()Z+Cy( )22+ Cs(u)2°22+0(|2°)  (8)  wa

where the exact form of the coefficiertg( ) andcs(w) in terms R . . :
of gj(n) of map(7) can be found irf8]. - _ 01 0 01 €3 93 04 0F 0B 67 D8 OB

Let a(u)=ReCs(w)\i(w)), B(u)=ReCs(m)hy(n)) and A :
=a(u)?—4upB(r)Re\;. The Chenciner’s theory5], of degen- !
erate Hopf bifurcations, stated in the following Lemma, can b,

: : . '_e .3 Coexisting Hopf circles and a fixed point resulted from
useql to check the existence of the degenerate Hopf blfurcatlon‘,ﬂbqdegenerate Hopf bifurcation at  @=0.7297 (u<0) and a
the impact systenil).

. . =0.0313, where the unstable circle separates the stable circle

Lemma, [5]. Under the transversality condition C4, a degenetrom the stable fixed point. The symbol © X’ denotes the location
ate Hopf bifurcation of mayg6) occurs ifa(u)=0 atu=0. Four of the last iteration of the Poincare ~ map (5). A view on the pro-
types of solutions are illustrated in Fig. 2. jected section  (x;,X5).
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bifurcation. However, for most of nonlinear systems, analyticatanish with the emergence of a single stable fixed pxint (iv)
solutions do not exist. Thus analytical approach to such systems&given w=0.7262 (u>0), the bifurcated Hopf circle of the Poin-
infeasible. caremap is attracting.

We now study the dynamical phenomena induced by the degenin summary, an analytical method for analyzing degenerate
erate Hopf bifurcation with the aid of the analytical method proHopf bifurcation is introduced to piecewise linear systems. The
posed. Sefuy,=3.644, u,=7.167787,b=2.037673,R=0.5365 method could be extended to nonlinear impact systems if its non-
for the system(1). The critical bifurcation parameter i®. impact solution is available. The phenomenon of multi-coexisting
=0.72871 in the systenl). A fixed point of map(5) is X* motions is observed from the degenerate Hopf bifurcation in a
=(—0.661343,0.536408,0.0458349,1.449941hat is a period specific piecewise linear system, the vibro-impact systBDif-

1-1 impact motion of the syste). The eigenvalues of the Jaco-ferent motions take place dependent on the initial state of the
bian matrix of map(6) are \;,=0.57377i0.81901, \3,= System. This characteristic allows one to alter the system dynam-
—0.41743i0.33629, respectively, where|\;j=1 and ics qualitatively without varying a system parameter.
dINy(u)|/dul,-o=0.22475. With the center manifoldi6], and

normal form reduction|8], we find thata(u)=0 at u=0. Thus

the degenerate Hopf bifurcation occurs. References

The complicated dynamics resulted from the degenerate Hopfl] Luo, G. W, and Xie, J. H., 1998, “Hopf Bifurcation of a Two-Degree-of-
bifureaion Is surmatized below) Given = 0001 (€. o {5080 12 e S S A0, 200000 o
:0'72.97) such thabz(,u) 29'03125'[;(/‘) = 70'5(_)869 andA [ Deg’reei—of—.lvzreedom ’\ﬁk:;ro—i’mpact ’Systgm in Two Strong Resonance Cases,”
>0, Fig. 3 shows the co-existence of three solutions of %y Int. J. Non-Linear Mech.37, pp. 19-34.
The unstable Hopf circléinner circlg separates the stable fixed [3] Aidanpaa, J. O., and Gupta, R. B., 1992, “Periodic and Chaotic Behavior of a
point (center poin) form the stable Hopf circléouter circle. Any Threshold-Limited Two-Degree-of-Freedom System,” J. Sound \iB52),

o . : : ; . . 305-327.
initial state point starting from the regime outside the stable circler,; ESO G.W. Xie. J. H.. and Guo. S. H. L.. 2001 “Periodic Motions and Global

or the regime between the two circles will converge to the stable ~ Bifurcations of a Two-degree-of-Freedom System With Plastic Vibro-Impact,”

Hopf circle which corresponding to the stable quasi-periodic im-__J. Sound Vib.2405), pp. 837-858. ) ) o

pact motion of the syster(fl). When an initial state point starts [5] Chgncmerﬂ, A., 1985, “Bifurcations de Points Fixes Elliptiques I-Courbes In-
. . R . . variantes,” IHES Pub. Math§1, pp. 67-127.

from th? regime surrounded by the inner circle, the iteration of the[G] Carr, J., 1981Applications of Center Manifold TheofApplied Mathematical

Poincaremap eventually converges to the fixed pokit, a 1-1 Sciences 3p Springer-Verlag, New York, pp. 33—36.

periodic impact mo“on(u) The coalescence phenomenon of the [7] looss, G., 1979Bifurcation of Maps and ApplicationgMathematics Studies
. < 36), North-Holland, Amsterdam.
stable and unstable circles occurs«at0.73086 (u<0 andA [8] Wen, G. L., and Xu, D., 2003, “Control of Degenerate Hopf Bifurcations in

=0). (iii) Taking ¥=0.7318 <0 andZ<O), all the circles Three-Dimensional Maps,” Chao$3(2), pp. 486—494.
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A Long Crack Penetrating a se ALt )y poe*

. . og==—
Transforming Inhomogeneity Y (ko= 1)+ 2p,
while those resulting from the distribution of dislocations are rep-
resented as

>a (1b)

Yuping Wang and Roberto Ballarini
Department of Civil Engineering, Case Western Reserve

. . *2b, (1) *
University, Cleveland, OH 44106-7201 o= Jo l—lX dt+ Ja Kyy(x,t)by(t)dt
a
This note presents the stress intensity factors of a long crack pen- + f KX, t)by(t)dt x=<a (2a)
w

etrating a circular transforming inhomogeneity. Using the Greens
functions of dislocations interacting with a circular inhomogene-
ity experiencing an isotropic (free expansion) eigenstrain, the a 2b,(1) a
elasticity solution is reduced to a system of singular integral UZd:f 2 dt+f Ky(x,1)b,(t)dt

. . . e yy _ AL 2
equations representing the traction boundary condition along the w =X
crack surfaces. The normalized stress intensity factor, obtained .
through a numerical solution of the integral equations, has a
strong dependence on the elastic mismatch, and can be either *Ll Kaax,D)by()dt  ws<x=a. (20)
negative or positive depending on the crack-tip location. The for- ) ] )
mulation and results generalize a previously publishet EQ.(2), bi(t)= wi/m(x;+1)d[ vy]/dt is defined as the disloca-
transformation-toughening model that assigns equal elastion density in regiori, [v,] is the crack-opening displacement,

moduli to the inhomogeneity and the surrounding medium. ~ «=3—4v and »=v for plane strainx=(3—»)/(1+v) and 5
[DOI: 10.1115/1.1767166 =0 for plane stress, and th&; are combinations of regular and

generalized Cauchy kernels that can be recovered from[REf.

The zero-traction condition along the crack line is enforced by

summing to zero the stress contributions from Eg.and (2).
Analysis The asymptotic behavior df;(t) was studied in detail in Ref.

] ) o [1], where the loading was associated with a far-field stress con-
_Consider the plane elastostatics problem shown in Fi@. A  sistent with a nominal stress intensity factor, rather than with an
circular inhomogeneity with radiusPoisson’s ratio, , and sr,]ear _expanding inhomogeneity. Note that if one is interested in calcu-
modulusu,, is embedded in an infinite plate with Poisson’s ratigating the stress intensity factor produced by a far-field loading
v, and shear modulug, . A semi-infinite crack penetrates thejnteracting with the eigenstrain within the inhomogeneity, then an
inhomogeneity, which is experiencing an isotrogitee expan- anpropriate superposition procedure must be performed. The dis-
sion) eigenstraing{; = §;€*, where thes;; are the components of |ocation densitied;(t) can be expressed as follows:

the strain tensor and; is the Kronecker delta. The bonding be-
tween the inhomogeneity and the surrounding matrix is perfect.

w

As shown in Fig. 1a), the origin of the coordinate system is g1(t)
located at the center of the inhomogeneity, and the crack tip is by(t)= (t—w)05 ~(t—a)~ (32)
located at point\{,0). The stress intensity factor produced by the
eigenstrain within the inhomogeneity is definedKai%“.
The solution is formulated as the superposition of two prob- ga(t)
lems, as shown schematically in Figgbland Xc). The first b(t) = (t—w)%a—t)“ (30)

involves the stresses produced along the crack line in an un- . . . .

cracked plate containing the expanding inhomoger(&ity. 1(b)), where the domlnant smgularlty_ at the interfage, and the un-
and the second the stresses produced along the crack line H§PgWn regular functions;(t) satisfy

continuous distribution of dislocationg=ig. 1(c)). The stresses

produced by the eigenstrain are (1-B?)(1+co um)+2[2aB—1—(2aB— B2)cosu]
+ap(2—pw(a—B)A(1—u)’—aB+ Bla—pB)cosu]
=0 (4a)

41+ e* (a?
e AL+ pap, (_] c=a (1a)

I (k= 1)+ 25 | X 01()=0 at t=o0 (4b)

/ (It a)B+(a—B)(1—B)(—1+4u—2p%) —(1- %) cos pum) po(kyi+1)
92(a)/gy(a)= (1+a)(—1+2B8-28u) pa(ka+1)

X (a-w)*. (40)

Contributed by the Applied Mechanics Division ofHE AMERICAN SOCIETY OF MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept. 25, 2002; final revision, Feb. 6, 2004. Associate Editor: K. Ravi-Chandar.
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Fig. 1 (a) A semi-infinite crack penetrating a circular inhomo-
geneity which is experiencing an isotropic eigenstrain; (b) an
uncracked infinite plane containing a transforming circular in-
homogeneity; (c) an infinite plane containing a continuous dis-
tribution of edge dislocations

)

Journal of Applied Mechanics

T T T T T T

u1=0.1 Plane Strain|

T T T T T T

0 1 2 3
log, o(k/1,)

v,=0.3 Plane Strain:

© log, ,(1u/1e,)

Fig. 2 Plane strain nondimensional stress intensity factor as
functions of shear modulus ratio,  u,/pu,, for several combina-
tions of Poisson’s ratios vy ,v,

Using the numerical approach developed by Erdogan €0l
which relies on the properties of Jocobi polynomials, the values of
gi(t) are calculated at discrete points and the stress intensity fac-
tor is recovered aK|°°=2mZ7/(a—w)*g,(w). It should be
noted that because the integral equations are not homogeneous, no
stabilization procedure is required to calculate a unique solution.

JULY 2004, Vol. 71 / 583



0.0 . 01. v=,=0.2 /=01
0.5
w0
‘c -1.0
ks
& 5]
X
-2.0- .
04 r T -
-1.0 0.5 0.0 0.5 1.0
(a) wia
2 Y T T
1. v=,=0.2 /=10 /

3 2 4 0 1
(© log, (/1)

N
-

Fig. 3 Plane stress nondimensional stress intensity factor as

functions of shear modulus ratio,

pol pq, for several combina-
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Fig. 4 Variation of the plane strain nondimensional stress in-
tensity factor with crack-tip position, for several combinations

of elastic mismatch

Results

The nondimensional stress intensity factor is defined as

tions of Poisson’s ratios  vq,v, K:OC o /27ng(w) wo a—w
= =0 — V1, Vo, ——
pie*Va  (a—w)Fuetia s a

However, if the loading is associated with a far-field stress intefror the crack tip at the center of the inhomogeneity=0),
sity factor rather than an eigenstrain within the inhomogeneiti( w, /1) for various Poisson’s ratios is presented in Figa-—2)

[1], then the integral equations become homogeneous, and a &a-plane strain and Figs.(&c) for plane stress. For relatively
bilization procedure is required for a unique solutif3, small levels of material mismatch, the number of integration
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points required to achieve converged stress intensity factors is K loc 16 [1+v
approximately 20. However, large levels require a significantly ! =— . (6)
higher number of integration points; the converged results pre- ,ule*\/a 387 \1-v

Sfmid in this _note \{verfe obta_uneld using 300. pm_ntj_. F(_)r POSItNRe results presented in Fig. 2 corresponding to uniform elastic
€, the stress intensity factor is always negative, indicating Craciioqyji match Eq(6) to within three significant figures.

tip shielding, and shows a very strong dependence on elastic mis-

match, the dependence being greater for plane strain than for

plane stress. As expecteld',OC approaches zero as the inhomoge-

neity becomes much more compliant than the matrix, and ap-

proaches a constant value indicated by dashed lines as the i erences

mogeneity becomes rigid. [1] Wang, Y., and Ballarini, R., 2003, “A Long Crack Penetrating a Circular

An interesting result of this analysis is that the crack tip is not Inhomogeneity,” Meccanicéspecial issue in honor of Professor Piero Villag-
always shielded. As shown in Fig(a-c), a positive stress inten- gio), Meccanica3§, pp. 579-593.

. S e . ! . [2] Erdogan, F., Gupta, G. D., and Cook, T. S., 1973, “Numerical Solution of
sity factor, indicating amplification, results for Cra_Ck tips that h'ave Singular Integral EquationsMechanics of FractureG. C. Sih, ed., Noord-
entered but have not reached the center of the inhomogeneity. hoff, Dordrecht, The Netherland$, Chap. 7, pp. 368—425.

The results presented above generalize those calculated in RdB] Rubinstein, A. A., 1992, “Stability of the Numerical Procedure for Solution of
[4], where a transformation toughening model is developed for an fﬂ'gg#ﬁC'gt?%':r'nigfaé'ﬁﬂgzz(Sg)m;:)”f';‘f;zterva" Application to Fracture
elastically homogeneous plate. For this case, the plane-strain Nofaj | ambropoulos, J. C., 1986, “Effect of Nucleation on Transformation Tough-
malized stress intensity factor reduces to ening,” J. Am. Ceram. Soc69(3), pp. 218—222.
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Upper and Lower Bounds for |ncipient Plane Strain Rectangular Block. An appropriate statically
. . admissible stress field for the rectangular block is

Failure in a Body Under

Gravitational Loading 3=-pg

(ZTV x)xx+
Pg 2 2/7\2

ﬂ) 2323}, (1)
pg

J. A. Chamberlain. D. J. Horrobin where the height of the block is

K. A. Landman, and J. E. Sader 27,
Ho="g" @
Department of Mqthematlcs and Statlstlcs, University of Using the lower bound theorem of limit analy$@hakrabarty 7])
Melbourne, Victoria 3010, Australia it then follows that the height of incipient failure is greater than or
e-mail: jsader@unimelb.edu.au equal toH,,, i.e., in scaled terms
h=1. (3)

Recent numerical work has investigated incipient failure of yield Axisymmetric Cylinder. The statically admissible stress
stress materials under gravitational loading, for both the rectarfield for the cylinder case is chosen as

gular block and cylinder geometries [Chamberlain et al.; 2001,
Int. J. Mech. Sci. 43(3):793-815, 2002, Int. J. Mech. Sci. _
44(8):1779-1800]. While the rectangular block solution is exact, 2=-pg g
the cylinder solutions give lower bounds on the height of incipient

failure. Consequently, we construct upper bound solutions for théth the height of the bodyy,, equal tosy /(pg), whereo, is
height of incipient failure of a cylinder under gravitational load-the uniaxial yield stress. In scaled terms, the lower bound results
ing. This closes the cylinder problem and quantifies the accuragye
of the Haar-Karman hypothesis used in slip-line analysis. For
completeness, we also give a simple lower bound solution for the h=1 (Tresca and h=— (von Mises. (5)
cylinder, as well as upper and lower bound solutions for the two- 2
dimensional rectangular block. These results have the advantage

of being analytical, in contrast to the previous purely numerica®8 Upper Bound Analyses
results. [DOI: 10.1115/1.1767164

zZ|2z, (4)

S

To use the upper bound theorem of limit analysis we require a
kinematically admissible velocity fieldChakrabarty[7]). We

1 Introduction

Flow of a cylinder of yield stress material under gravity to a
lower height can be used to determine its yield stress; the relevant
experimental technique is commonly termed the “slump test”
(Murata [1], Christenseri2], and Pashias et al3]). While this
flow phenomenon has been studied extensively, the closely related
problem ofincipient failure, where the body is on the verge of
flowing, has received limited attention in the literature, with the
only work to date being the slip-line analyses of Chamberlain
et al.[4,5]. While an exact solution was given for the case of a
rectangular blockChamberlain et al[5]), only a lower bound
solution was derived for the complementary case of a cylinder .
(Chamberlain et al[4]) with the Haar-Karman hypothesis being .
invoked. The principal aim of this article is therefore to close the ’ 2R0
cylinder problem by using limit analysis to construct an upper <——> X1 >
bound on the height of incipient failure. For completeness, we
also present upper and lower bound analyses for the rectangular (a) X;
block. The analytical formulas obtained using upper and lower
bound analyses are of practical value due to their simplicity.

The geometry and coordinate systems used are shown in Fig. 1. A
Final results are scaled by the length,2(pg), wherer, is the
shear yield stresg is the density and is the acceleration due to

Z
gravity, giving the scaled radius or half-widty and the scaled /_ \

N’

Yo aahoooeee-

height of incipient failureh. In the analyses we use both Tresca
and von Mises yield condition@®esai and Siriwardanis]).

2 Lower Bound Analyses

To construct a lower bound solution, we specify a statically
admissible stress field. . ..

K
=
o
Y
e
Y

1To whom correspondence should be addressed. E-mail: jsader@unimelb.edu.au (b)
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- ) . )
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 23Fig. 1~ Geometry and coordinate systems (&) plane-strain rect-
2003; final revision, January 27, 2004. Associate Editor: Z. Suo. angular block (b) axisymmetric cylinder
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Fig. 2 Diagram of the upper bound solutions for (a) perfect
slip on the base (single velocity discontinuity ) and (b) perfectly

rough base (double velocity discontinuity ) Fig. 3 Height of incipient failure for the plane strain rectangu-

lar block: (a) perfect slip upper bound (UB) from Eq. (7), exact
slip-line (EXACT) see Ref. [5], lower bound (LB) from Eq. (3);
(b) perfectly rough base upper bound (UB) from Eq. (10), exact
slip-line (EXACT) see Ref. [5], lower bound (LB) from Eq. (3)
consider two extremes of base frictiofn) perfect slip andii) a

perfectly rough base.

used in the plane strain solutiorisee Fig. 2 In addition, we

Plane-Strain Rectangular Block specify that the radial velocity is constaiftudo [8]).

Perfect Slip Base. The flow field is approximated by rigid . . . L
regions separated by velocity discontinuities, as illustrated in Figp';gigggtg'p Base. Referring to Fig. 2a), the velocity field is

2(a). The kinematically admissible velocity field is
-7 above AB,

(6) VE = 7
L (Ifi— ZRZ) below AB,

. —X, aboveAB,
vE =

| cotzk, below AB, (11)

2b

from which we obtain(Chakrabarty{7]) the upper bound ) o o
whereb=tan¢{, andAB is a velocity discontinuity.

h<y1+r,. 7
0 @ Tresca Yield Condition. Applying the upper bound inequality
Perfectly Rough Base.To satisfy the perfectly rough condi- and minimizing with respect tb, we obtain
tion on the base, we require two discontinuities, see Rig. The

kinematically admissible velocity field is given by 4hs%+b+2rob+1+ % J1+Db2+ %M(WJF b).
-X, above AB, (12)
V¥ =1 u;X,;+u,X, betweenAB and AC, (8) whereb satisfies
0 below AC, 2b%(1+2r)+by1+b?>=2+In(b+\1+b?). (13)
where von Mises Yield Condition. Applying the upper bound in-
1 —tany equality and minimizing with respect g we obtain
Ui anittany’ "2 tanz+tany’ ©) 1 b2 2 b2 b
, 4h<—+b+2rob+ \/1+ —+ =In| \/1+ —+ = |, (14)
The upper bound result is then b 4 b\ 4 2
h<1+2r,. (10) Where

2
Axisymmetric Cylinder. For the axisymmetric geometry, we b2(1+2rg)+b /1+ E: 1+21n
use configurations of velocity discontinuities identical to those 0 4

b2 w
w1+z+§. (15)
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Fig. 4 Height of incipient failure for the cylinder with perfect

slip on the base: (a) Tresca yield condition upper bound (UB)
from Egs. (12)—(13), slip-line lower bound (SLB) see Ref. [4],
lower bound (LB) from Eq. (5); (b) von Mises yield condition
upper bound (UB) from Egs. (14)—(15), slip-line lower bound
(SLB) see Ref. [4], lower bound (LB) from Eq. (5)

Perfectly Rough Base.Referring to Fig. ), the velocity
field v* is given by

-7 above AB,
1/, .1

v = o +Z§[at(R072R)fZ] betweenAB and AC,
0 below AC,

(16)
wherea andt are defined byat=tany and (1-a)t=tan{.

Tresca Yield Condition. Applying the upper bound inequality,
minimizing with respect t@ andt, gives the required result

2t 1 2 1 [\Aa+rtP+t

dh< -+ -+2rgt+1+ s \/1+ -+ 5z In| ——

g Fpterd 2 4 2t | Jati2—t]’
17)

where
4+1 At (1+4 )t2+t 4+t2 (18)
n——-,|= r = .
Va2t o2

von Mises Yield Condition. Applying the upper bound in-
equality and minimizing with respect ®andt gives

4h 2+ t +2rot+ 1+ t2+2| 16+t2+t 19
si — — p— —
t T2t NI N e 9

with t given by
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Fig. 5 Height of incipient failure for the cylinder with a per-
fectly rough base: (a) Tresca yield condition upper bound (UB)
from Egs. (17)—(18), slip-line lower bound (SLB) see Ref. [4],
lower bound (LB) from Eq. (5); (b) von Mises yield condition
upper bound (UB) from Egs. (19)-(20), slip-line lower bound
(SLB) see Ref. [4], lower bound (LB) from Eq. (5).

V16+t2+t t
44+41n m)—(l—l—zlro)tz—s-z\/l&#tz. (20)

4 Results and Discussion

The above results are illustrated in Figs. 3, 4, and 5. For the
rectangular block we find that the upper bound solutions give an
excellent approximation to the exact slip-line results, whereas the
lower bound solutions are comparatively poor.

For the cylinder case, the actual solution must lie between the
slip-line lower bound and the appropriate upper bound solution,
possibly touching one of these curvage Figs. 4 and)5Conse-
quently, the error in the height of incipient failure introduced by
using the Haar-Karman hypothesis is bounded by the difference
between the slip-line lower bound solution and the upper bound
solution. This difference depends on the yield condition, base
boundary condition, and radius, and is quantified in Figs. 3 and 4.
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Buck"ng of a Rotating Rod Under whered, is the angle of inclination. A vertical force balance gives

Axial Force G+ Cr=Gp_. ®)
A moment balance about the left end gives
C. Y. Wang G/l cosb,+C/s} cosf,+F'l sinf,+M,=M/_,.  (6)
Professqr, Mem.. ASME’ De_partments of Ma.them.at|cs and The end momenM |, is in general a function of the angle dif-
Mechanical Engineering, Michigan State University, ference of two adjacent links. For small deformations the moment
East Lansing, M| 48824 is proportional to the angle difference
M/ =N\(0ps1—6,). )

The difference equations governing the rotation of a segmentéfiere X is the linear rotational spring constant. Normalize all
rod under axial force is formulated. The stability boundaries aréengths by the total length=NI and all forces by\/I and drop
found to be highly dependent on the number of links, the rotatigfimes. Eqs(1)—(6) become

rate and the compressive force. For a large number of links, the 2
result approaches to that of the continuous elastic rod through Cho“(Yn-1TYn)/2, (8)
some fractional power. The analysis is applicable to segmented (Yn_112y5)
drill shafts. " 3Ny, 1Ty, 9)
[DOI: 10.1115/1.1767165 Yn-1TYn
Xp=Xn_1+C€0S6,/N, (10)
. =Y,_1+Sin6,/N 11
Introduction Yn=Yn-1 n (11)

The prediction of buckling or whirling of an axially rotating rod Gn=Gn-1=Cn (12)
is important to the design of shafts and rotating machinery. The ; _ _
linearized stability of elastic rotating rods leads to a fourth-degree (Gnt CoSo)COSOn +F SN byt 1= 200+ -1 =0 (13)
eigenvalue problentsee, for exampld,1,2]). Bobisud and Chris- Here
tenson 3] considered the case where an axial force is applied to a
rod whose one end is clamped and rotated and the other end w=0L A [m
hinged. The problem is important in the stability of drill bits. AN

Fio:jatllng Shaf.ts arerometlmels t%o.”Ionhg ]fto pe ma.de or trarF-a normalized rotation rate. The boundary conditions are that the
ported In one piece. For exampie, drill Shalts In mining or e, j ;¢ “clamped” at one end and “hinged” at the other end. This

drilling are composed of several segments connected togethgr,, . . : o .
Marine and truck engine shafts may also be jointed. Previoqg equivalent to extending with fictitious link&, and 6y, such

(14)

literature in this area includes the work by Wdrdgd who studied at

a segmented rod rotated at one end while the other end is free. 0,=0, (15)
However that source cannot be applied to the drill shaft since it

does not admit an axial force. The present paper studies the sta- OnN=On1- (16)

bility of an idealized segmented drill shaft which is composed of The other boundary conditions are
joined rigid links. The results are compared with those of the

continuous elastic rod. Xo=0, (17)
Yo=0, (18)
Formulation
yn=0. (19)

Consider a rod witiN segments joined together. The joints are N . L
strengthened by rotational springs to maintain the structure’ ForilnC|p|ent buc.kllng,. the angles of inclination are small.
straightness. The rod is then rotated at one end with angular fgluations(11)—(13) linearize to
locity Q) and compressed axially by the foré€. Figure 1a) w?
shows the buckled rod under a Cartesian system rotated about the ~ Gn+F o+ o (Y1t 2Yn) + 41— 200+ 6py
x' axis. Figure 1b) shows the force balance on timh link.

Notice that the resultant centrifugal for@ does not act on the =0, n=1toN (20)
mid point of the link, but at a distancg, form the left end at 1
(Xn—1,Yn—1). Simple integration along the link shows Ya=Yn-1t fn N= 1 toN (21)
Ch=mO(y;_;+y)/2 (1) .2
|(yr']_l+2yr']) GnZanl_7(ynfl+yn) n=1 to N. (22)
Vi )
n ! ’
3(Yn-1+Yn) Together with Eqs(15), (16), (18), and (19) there are 8I+4
Herem s the mass of the link anids its length. The two ends are equations for the B+4 unknowns 6 --Oni1, Yo "Yns
related by Go -Gy . For nontrivial solutions the determinant of coefficients
. is set to zero, giving a characteristic equation for the paramEters
X,=X;_,+1 cosé,, 3) andow.
Yn=Yn_1+1siné, (4)

Contributed by the Applied Mechanics Division of AMERICAN SocieTy oF  Stability

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . . -
CHANICS. Manuscript received by the ASME Applied Mechanics Division, October The rod cannot buckle with one link. N=2, the characteristic

16, 2003; final revision, January 15, 2004. Associate Editor: S. Mukherjee. equation gives the stability boundary
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G'+dG'

c M'+dM".
F /l%— F
29 |

(@) (b) (c)

Fig. 1 (a) The rotating segmented rod. (b) Force balance on the nth link, Cj, is the centrifugal force. (c) A segment of the
continuous rod.

Fig. 2 Stability boundaries for the primary mode

7 , 5 interior zeroes for th@™ mode. It is clear from Figs. 3 and 4 that
F+ 289~ EZO' (23)  the mode shapes due to axial force or centrifugal force are quite
different.

The rod is stable if the left-hand side of E@?3) is less than zero.

For N=3, after some work, we find the two solutions . . . .
Comparison With the Continuous Elastic Rod

(24) The continuous elastic rod was considered by Bobisud and
Christenson3]. An alternative derivation is as follows. Figure

. . . 1(c) shows an elemental segment of the rod. ketbe the arc
corresponding to the two modes of buckling. The determinant i, trom the origin and be the local angle of inclination. A
solved numerically foN=4. Figure 2 shows the stability bound'\(/jertical force balance yields

aries for the primary mode. The rod is unstable if rotation an

axial force indicate a state above each curve. Of special interest

are the buckling loads when rotation is abseat=0). Table 1

shows the buckllng |Oads Of a” the modes ME 6. Table 1 BUCkIlng loads when rotation is absent
The higher modes occur when the lateral displacement of tie

rod is restricted, for example a rod in a confining tube. The four _ 3 4 ° 6
modes folN=5 are shown in Fig. 3 for the same initial angle. OrF=2.5 1.4514 0.924 0.634 0.461
the other hand, if the rod is subjected to rotation oriy=(0) the 3.2153 32532%6 21é61717 21-222508
critical rotation speeds faN<6 are given in Table 2. ) 3677 3126
The mode shapes foi=5 is shown in Fig. 4. In general, the 3.768

rod would bend to one side for the first mode, and therenaie

Journal of Applied Mechanics JULY 2004, Vol. 71 / 591
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" T~——— X T

Fig. 4 The buckling modes for N=5 when axial force is ab-

Fig. 3 The buckling modes for N=5 when rotation is absent. sent. From top, first to fourth modes, respectively.

From top, first to fourth modes, respectively.

dG’+pds' Q2%y'=0 (25)

Table 2 Critical speeds when axial force is absent wherep is the mass per length. Moment balance about the left end
gives
N=2 3 4 > ° dM’+F’ds’ sing+G’ds cosd=0. (26)
»=4.1403 2.3918 1.6123 1.1845 0.9192 . . .
8.7596 56715 4.0520 3.0032 The Euler-Bernoulli elastic law states that the local moment is
12.802 9.1374 6.8402 proportional to the local curvature
16.117 12.442
18.872 M’ =El do -
- ds’ ( )

whereEl is the flexural rigidity. The kinematic relation is

10

e
OO 5 10 15

Fig. 5 Stability boundaries for the continuous rod, first four modes
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20

R

10

-

Fig. 6 Comparisons of the stability boundaries of the segmented rod
(dashed lines ), first mode only

to that of the continuous rod

dy’

E =siné.
Normalize all lengths by the rod lengthand drop primes. The
forces are normalized bigl/L? and indicated by hats. Eq&5)—
(28) yield the linearized equations

(28)

d? ~ ~
@"FF@"‘G:O, (29)
4G J4y=0 30
gs TIy=0. (30)
dy
35" (31)

whereJ*=pQ?L*El is the rotation parameter. Equatiof&9)—
(31) is simplified to
d'o +F a0 J46=0
ds' T ds? e
The solution of Eq.(32) is a linear combination of coshs),
sinh(as), coss), sin(Bs) where

a=\(VF2+43*-F)/2,

(32

(33)
B=V(VF2+43*+F)/2. (34)
The fixed-hinged boundary conditions are
0(0)=0 a0 1)=0 35
(0)=0, -(1)=0. (35)

2

3
J, 0 NH

(solid lines )

B cosB sinha— « cosha sinB=0 (38)

which is the same equation obtained in R&fl. Figure 5 shows
the stability boundaries for the first four modedH(is plotted to
compress the figuje

The connection between a segmented rod and a continuous rod
was delineated by Wang]. For largeN the joint spring constant
\ of the segmented rod is asymptotically related to the flexural
rigidity El of the continuous rod by

El~AL/N. (39)
Using Eq.(39), the normalized forces and rotation rates for large
N are related by

F~FN2, J~o¥N¥ (40)

Figure 6 shows the stability boundaries for the first mode, re-
plotted in terms of the combinations given in E40). We see that
the N=50 curve is already fairly close to the continuous case.
Thus the results of the continuous case can be (s@Hin 2%
erron if the number of links of the segmented rod is more than 50.

Discussions

The nonlinear difference equation governing the rotation of a
segmented rod under axial force can also be used for large defor-
mations, given the constitutive relation of the rotational spring.
We find that the centrifugal force and axial force have different
effects on the buckling mode, while both decreases stability. In-
creasing the number of links decreases stability, and increases
the number of eigenmodes. Asbecomes large, the results for the
continuous elastic rod is recovered, but only with the proper frac-
tional transformation given in Eq40). Our Figs. 2 and 6 should

From Egs.(29), (30), the requirement of zero displacements g€ useful in the design of segmented drill shafts.

the ends gives

d®e Ldo
38 (O +F55(0=0, (36)
d3e . do

References

[1] Love, A. E. H., 1944A Treatise on the Mathematical Theory of Elasticidth
Ed., Dover, New York.

[2] Odeh, F., and Tadjbakhsh, I., 1965, “A Nonlinear Eigenvalue Problem for
Rotating Rods,” Arch. Ration. Mech. Anal0, pp. 81-94.

[3] Bobisud, L. E., and Christenson, C. O., 1979, “Critical Force in the Buckling
of Drill Bits,” ASME J. Appl. Mech., 46, pp. 461-462.

For nontrivial solutions off, the resulting characteristic equa- [4] wang, C. V., 1993, “The Axially Rotating Segmented Rod,” Int. J. Solids

tion from Eqgs.(36), (37) is simplified to

Journal of Applied Mechanics

Struct.,30, pp. 2437-2444.

JULY 2004, Vol. 71 / 593



Journal of
Applied

Mechanics

Discussion: “Zeroth-Order Shear : 4 4 4
- . MX_WPX + Mxy_wpxy - QX_FRX
Deformation Theory for Laminated x y
Composite Plates”(Ray, M oh oh .
C., 2003 ASME J. Appl. Mech., 70, pp. =3 '8“0"9W,x+?'7(¢x+wyx)}- (©)
374-380)
4
S. Kapuria (My_ WPV) y+( Mxv™ 32 ny) (Qy 2Ry )
e-mail: kapuria@am.iitd.ac.in
P. C. Dumir R = 7(lﬁy+w } @)
Applied M.echanics Department, .I.T. Delhi, Hauz Khas, For Ray's theory, the equations of motion are
New Delhi 110016, India
It is the contention of the authors that the “zeroth-order” shear Ny x T Nyyy=lolo— 11 W x+ |8)\_X (8)
deformation theory presented by Rdi] is mathematically x
equivalent to Reddy’s third order theof®]. The notation of Ref. B
[1] is used herein. Ray’s approximations for the in-plane displace- . . Qy
ments ny,xJr Ny,y: lovo—I 1W,y+ I 87\_ 9)
y
B 3z 27 Q, 3z 27%\ Q,
I = S W L L Al Tl My 2M gy g+ My gy + P
@ 6. 6
are identical to those of the Reddy’s thedig], with =l oWr+ 15 (Ugx+Doy) = 2(W 4t W yy) + 1 )\X X4 %)
X y
_3Q, 3Q (10)
¢x+W,x—m, l/’y+W,y_m- 2
4 4
Hence the equations of motion and boundary conditions of Ray’s | Mx~ 3n2 Px| | My~ 3n2 Pxy| = Qu— h? Ry
theory are mathematically equivalent to those of the dynamic ver- X Y
sion of Reddy’s theory. This is established explicitly by compar- h
ing the governing equations of the two theories. _2 Q Flalln— 1 oW (11)
For Reddy’s theory, the equations of motion are -3 xT1gt0 Totlx
Ny o+ Ny =1 ol |w+2h (e ) 3) 4 4 4
X, X XY,y oYo 11 8 X X MV_WPV —+ Mxy_wpxy — Qy_FRy
Y X
} 2h
ny,x+ Ny,y=|0v0 |1W + —= 8(¢y+Wy) (4) 2h |7 .
3 )\ Q + I SUO I QW,y (12)
y

4 4 4
Qx,x_ W Rx,x+ Qy,y_ F Ry,y+ W ( Px,xx+ 2ny,xy+ Py,yy) +p
with 1,=91,/4h?—61,/h*+415/h8. Using Eq.(2), it is observed

4 4 414 that Egs.(8), (9), (11), (12) are identical to EqH3), (4), (6), (7).
=W+ ng(uoﬁﬁo,y) 3Rz ( l4— BhZ)(zpX x T W xx Forming the combination Eq10)-Eq. (11),—Eq. (12), yields
Eq. (5).
41 For Reddy’s theory, the boundary conditions are obtained from
+ i'py ytWyy) — Ti(w ot W) (5) the following boundary integral formed after using Green's theo-

rem in Hamilton’s principle
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- - 4
f {Nnéun+ NpsoUgt+ M 0+ M 0hs— 3n2 Pnow ,

~ A 4
+ anx+ Qyny+ W{( Px,x+ ny,y) ny+ ( I:)y,y+ ny,x)ny

3. Alg| .. )
+Pns,s}_3TZ Uo+(|4—3—hz (l/jX+W,X)_I4W,X Ny
4, 4l
32 Vot | la— 3n2 (z//y+wy) y(Ny|ow|ds
4
— 2 55 APu(s) W(S) (13)
1

wheres; are locations of plate corners and
Un=UoNy+voNy, Us=UgSc+voSy
N 12 2
Np=Nyni+Nyng+2N, nny

Nps=Nynysy+Nynys,+ N, (n,s, +nys,)

4 . 4

Q =Q.— 2R (@=x.y), MBZM;;_WP/; (B=X,Y,Xy)
(14)

with s,=—n,,s,=n,. The expressions ok, ,Mus;M,Mps;

P..Pns are similar to those olN,,, N, and of ¢, ,¢; W, ,W g

Substituting the expressions &fl, ,+ M,y
from equations of motiorf11) and (12) into Eq.(17) and using
Eqg. (2), reduces it to exactly the same expression as in(Eg).

+| =yt I iy — S—y |9>ny]5w ds (15)
y

Substituting

0Qy= o+ &N,x:(&!/n'i_ M,n)nx+(5‘r//s+ &N,s)sx

2hA,

0Qy=Sthy+ oW = (S + W )Ny + (Sihs+ oW 5)s,

(16)

2h)\

in Eq. (15) reduces it to

J

N, OU,+ NpysSUg+ M, Sty + M Sif

4
- W(Pné\/\/,n"— Pn,sé\N,s) + (Mx,x+ Mxy,x)nx

+(Myyy+Myyn,+

y . Qx
XY,y —1Up+ 1w — ~ Ig)nX
X

—|1i)0+|2w,y—%|9 ny{ ow|ds. (17)

and My, +M,,

are similar to those dfi,,us. For Ray’s theory the correspondingHence Ray’s theory is not a new theory since its equations of

boundary integral is

35Q, 4
N O+ Nas 8l 50 | M= 0 Py

4 35Qy 4
+ Mxy_pry ny +T)\y My—WPy ny

""(M ) x]_Mné\N,n_Mns&N,s
+[ 'VIXX'H\/lxyy)n +(Mxy>< My,y)ny

+

. o Qx
- I 1UO+ IZW,X_ _Ig nX
Ax

Journal of Applied Mechanics

motion and boundary conditions are mathematically equivalent to
those of Reddy'’s theory. The results of this theory for any bound-
ary conditions will be identical to those of Reddy’s theory. The

statics results of Ray’s theory in Table 1 agree with Reddy’s re-
sults,[2]. The difference in Table 6 from Reddy'’s results is due to

neglect of some inertia terms by Ray while obtaining Navier’s

solution. Ray’s theory is not a zeroth-order theory but Reddy’s
third order theory in disguise. Moreover, the displacement ap-
proximation of Ray’s theory is valid only for the case of cross-ply

and antisymmetric angle-ply laminates since for the general lay-
up, the given expressions &f, A, would not be valid.
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