
Editor
ROBERT M. McMEEKING

Assistant to the Editor
LIZ MONTANA

APPLIED MECHANICS DIVISION
Executive Committee
(Chair) M. C. BOYCE

W.-K. LIU
T. N. FARRIS

K. RAVI-CHANDAR
Associate Editors

E. ARRUDA „2007…
H. ESPINOSA „2007…

H. GAO „2006…
S. GOVINDJEE „2006…

D. A. KOURIS „2005…
K. M. LIECHTI „2006…

A. M. MANIATTY „2007…
I. MEZIC „2006…

M. P. MIGNOLET „2006…
S. MUKHERJEE „2006…

O. O’REILLY „2007…
K. RAVI-CHANDAR „2006…

N. SRI NAMACHCHIVAYA „2006…
Z. SUO „2006…

T. E. TEZDUYAR „2006…
N. TRIANTAFYLLIDIS „2006…

B. A. YOUNIS „2006…

BOARD ON COMMUNICATIONS
Chair and Vice-President

OZDEN OCHOA

OFFICERS OF THE ASME
President, HARRY ARMEN

Executive Director, V. R. CARTER
Treasurer, R. E. NICKELL

PUBLISHING STAFF
Managing Director, Engineering

THOMAS G. LOUGHLIN
Director, Technical Publishing

PHILIP DI VIETRO
Production Coordinator

JUDITH SIERANT
Production Assistant
MARISOL ANDINO

Transactions of the ASME, Journal of Applied
Mechanics (ISSN 0021-8936) is published bimonthly

(Jan., Mar., May, July, Sept., Nov.)
The American Society of Mechanical Engineers,

Three Park Avenue, New York, NY 10016.
Periodicals postage paid at New York, NY and additional
mailing office. POSTMASTER: Send address changes to
Transactions of the ASME, Journal of Applied Mechanics,

c/o THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS,
22 Law Drive, Box 2300, Fairfield, NJ 07007-2300.

CHANGES OF ADDRESS must be received at Society
headquarters seven weeks before they are to be effective.

Please send old label and new address.
STATEMENT from By-Laws. The Society shall not be

responsible for statements or opinions advanced in papers or
. . . printed in its publications (B7.1, Para. 3).

COPYRIGHT © 2004 by The American Society of Mechanical
Engineers. For authorization to photocopy material for

internal or personal use under those circumstances not falling
within the fair use provisions of the Copyright Act, contact

the Copyright Clearance Center (CCC), 222 Rosewood Drive,
Danvers, MA 01923, tel: 978-750-8400, www.copyright.com.

Request for special permission or bulk copying should
be addressed to Reprints/Permission Department. INDEXED by

Applied Mechanics Reviews and Engineering Information,
Inc. Canadian Goods & Services Tax Registration #126148048. ded

Piezoelectric Material Strip

TECHNICAL PAPERS
441 On the Use of a Kolsky Torsion Bar to Study the Transient Large-Strain

Response of Polymer Melts at High Shear Rates
Y. Hu and R. Feng

450 Dynamic Stability of Disks With Periodically Varying Spin Rates Subjected
to Stationary In-Plane Edge Loads

T. H. Young and M. Y. Wu

459 Influence of Surface Roughness on Shear Flow
S. Bhattacharyya, S. Mahapatra, and F. T. Smith

465 The Near-Tip Stress Intensity Factor for a Crack Partially Penetrating an
Inclusion

Zhonghua Li and Lihong Yang

470 Brittle to Plastic Transition in the Dynamic Mechanical Behavior of
Partially Saturated Granular Materials

Simon M. Iveson and Neil W. Page

476 Development of a Finite Element Cable Model for Use in Low-Tension
Dynamics Simulation

Brad Buckham, Frederick R. Driscoll, and Meyer Nahon

486 Collinear and Periodic Electrode-Ceramic Interfacial Cracks in
Piezoelectric Bimaterials

Christoph Ha¨usler, Cun-Fa Gao, and Herbert Balke

493 A Definition of Particle Rolling in a Granular Assembly in Terms of
Particle Translations and Rotations

Katalin Bagi and Matthew R. Kuhn

502 Three-Dimensional Vibration Analysis of Thick, Complete Conical Shells
Jae-Hoon Kang and Arthur W. Leissa

508 On the Acoustic Nonlinearity of Solid-Solid Contact With Pressure-
Dependent Interface Stiffness

S. Biwa, S. Nakajima, and N. Ohno

516 Rayleigh Waves in Anisotropic Crystals Rotating About the Normal to a
Symmetry Plane

M. Destrade

521 Modeling the Rotation of Orthotropic Axes of Sheet Metals Subjected to
Off-Axis Uniaxial Tension

Wei Tong, Hong Tao, and Xiquan Jiang

532 Evaluation of Tension Field Theory for Wrinkling Analysis With Respect to
the Post-Buckling Study

T. Iwasa, M. C. Natori, and K. Higuchi

541 On Some Peculiar Aspects of Axial Motions of Closed Loops of String in
the Presence of a Singular Supply of Momentum

Oliver M. O’Reilly and Peter C. Varadi

546 Interaction Between Dislocations in a Couple Stress Medium
M. Ravi Shankar, Srinivasan Chandrasekar, and Thomas N. Farris

551 Nonlinear Vibrations of Beams, Strings, Plates, and Membranes Without
Initial Tension

Zhongping Bao, Subrata Mukherjee, Max Roman, and Nadine Aubry

Journal of
Applied Mechanics
Published Bimonthly by ASME

VOLUME 71 • NUMBER 4 • JULY 2004

„Contents continued on inside back cover …



„Contents continued …

Volume 71, Number 4Journal of Applied Mechanics JULY 2004
560 Effect of Residual Stress on Cavitation Instabilities in Constrained Metal Wires
Viggo Tvergaard

BRIEF NOTES
567 Nonaxisymmetric Dynamic Problem of a Penny-Shaped Crack in a Three-Dimensional Piezoelectric Strip Under

Normal Impact Loads
Ji Hyuck Yangand Kang Yong Lee

572 Analysis of the M-Integral in Plane Elasticity
Y. Z. Chen and Kang Yong Lee

575 Impermeable Crack and Permeable Crack Assumptions, Which One is More Realistic?
Bao-Lin Wang and Yiu-Wing Mai

579 Onset of Degenerate Hopf Bifurcation of a Vibro-Impact Oscillator
GuiLin Wen, JianHua Xie, and Daolin Xu

582 A Long Crack Penetrating a Transforming Inhomogeneity
Yuping Wang and Roberto Ballarini

586 Upper and Lower Bounds for Incipient Failure in a Body Under Gravitational Loading
J. A. Chamberlain, D. J. Horrobin, K. A. Landman, and J. E. Sader

590 Buckling of a Rotating Rod Under Axial Force
C. Y. Wang

DISCUSSION
594 Discussion: ‘‘Zeroth-Order Shear Deformation Theory for Laminated Composite Plates,’’ by M. C. Ray—

Discussion by S. Kapuria and P. C. Dumir

ANNOUNCEMENTS AND SPECIAL NOTICES
596 Information for Authors

The ASME Journal of Applied Mechanics is abstracted and
indexed in the following:
Alloys Index, Aluminum Industry Abstracts, Applied Science & Technology Index, AMR
Abstracts Database, Ceramic Abstracts, Chemical Abstracts, Civil Engineering
Abstracts, Compendex (The electronic equivalent of Engineering Index), Computer &
Information Systems Abstracts, Corrosion Abstracts, Current Contents, EEA (Earth-
quake Engineering Abstracts Database), Electronics & Communications Abstracts
Journal, Engineered Materials Abstracts, Engineering Index, Environmental Engineering
Abstracts, Environmental Science and Pollution Management, Fluidex, Fuel & Energy
Abstracts, GeoRef, Geotechnical Abstracts, INSPEC, International Aerospace
Abstracts, Journal of Ferrocement, Materials Science Citation Index, Mechanical Engi-
neering Abstracts, METADEX (The electronic equivalent of Metals Abstracts and Alloys
Index), Metals Abstracts, Nonferrous Metals Alert, Polymers Ceramics Composites
Alert, Referativnyi Zhurnal, Science Citation Index, SciSearch (Electronic equivalent of
Science Citation Index), Shock and Vibration Digest, Solid State and Superconductivity
Abstracts, Steels Alert, Zentralblatt MATH



ea-
ding.
w that
e that
es at
of the
igh-
Y. Hu
Graduate Research Assistant

R. Feng1

Assistant Professor
Mem. ASME

e-mail: rfeng1@unl.edu

Department of Engineering Mechanics,
University of Nebraska-Lincoln,

Lincoln, NE 68588-0526

On the Use of a Kolsky Torsion
Bar to Study the Transient
Large-Strain Response of
Polymer Melts at High Shear
Rates
A Kolsky torsion bar is utilized successfully in a novel rheometric experiment for m
suring the transient large-strain response of polymer melts under high shear-rate loa
A molten low-density polyethylene is studied with the new technique. The results sho
the high-rate shear response of the material has an instantaneous rate dependenc
may not be discernible at low rates and a strain-dependent hardening that saturat
large strains instead of fading. The usefulness of the technique and the significance
findings are discussed in comparison with a modified rubberlike liquid theory and h
rate capillary measurements for low-density polyethylene melts.
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1 Introduction
During a rapid extrusion of molten polymer, a common proc

in injection molding, wire extrusion, and film blowing of plastic
the polymer melt is subjected to high strain-rate deformation
well as varying temperature and pressure. Local shear rate
reach 103 s21 near the extruder barrel surface and 105 s21 or
higher in the die lips,@1#. The cumulative strain in the materia
may be far beyond 100%. How to characterize accurately
response of viscoelastic polymer melts under these dynamic l
ing conditions remains a scientific challenge even though the
ology of polymer melts has been studied extensively,@2–4#.

The capillary and oscillatory rheometrics,@5#, are the two most
commonly used methods for measuring the rheological respo
of polymer melts under high shear-rate loading,@6–9#. A capillary
rheometer is essentially a small-size plunge extruder. The ov
response of asteadybut generallynonuniformmelt flow through
the entire extruder is measured. With an a priori assumed fl
field, an ‘‘apparent shear viscosity,’’ the ratio of shear stress
shear rate is determined from the measurement,@5#. Such a result
is meaningful if the material behaves as a viscous fluid~rate-
dependent only! under given temperature and pressure. If the m
terial response is of a viscoelastic fluid,@5#, however, the steady
state apparent shear viscosity determined by the capil
rheometry is, in general, an ambiguous measurement since it
be significantly affected by the cumulative strain, which is
unknown in the experiment. Though useful as a reference
regulating the processing conditions in manufacturing,@8#, such
data are not sufficient for developing an accurate material mo
for a viscoelastic polymer melt.

The oscillatory rheometrics typically involves the use of
oscillatory mechanical spectrometer to subject a molten poly
specimen to sinusoidal loadings of small strains. A uniform fl

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, Septembe
2001; final revision, November 20, 2003. Associate Editor: K. R. Rajagopal. Dis
sion on the paper should be addressed to the Editor, Prof. Robert M. McMee
Journal of Applied Mechanics, Department of Mechanical and Environmental E
neering, University of California–Santa Barbara, Santa Barbara, CA 93106-5
and will be accepted until four months after final publication in the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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field may be achieved in the specimen by using a concentric C
ette cell or a cone-and-plate rheometric configuration,@5#. The
dynamic viscosity and storage modulus of the sample material
be determined for these conditions. The frequency dependenc
the dynamic viscosity is often related to the rate dependenc
the apparent shear viscosity of the material in steady fl
@6,9,10#, though the two may bear entirely different origins
pointed out by Khanna@11#. The polymer melt elasticity may be
inferred from the storage modulus measurements. However,
nificant discrepancy between the two has been observed for s
polymer melts,@12#. Transient measurements are possible with
oscillatory rheometer but only for shear rates and strains sig
cantly smaller than those typical in a rapid extrusion proce
Large-amplitude oscillatory rheometer has been reported by G
comin et al.@13#. However, the long rise time of the device~;200
ms! makes it only suitable for steady-state measurement. An
perimental technique capable of measuring the transient la
strain response of polymer melts under high strain-rate loadin
currently lacking.

The limitation of the available rheological data on polym
melts also affects the theoretical modeling of these materials.
rheological descriptions used in polymer melt extrusion analy
and simulations are mostly empirical viscous models~see, e.g.,
@14#!. This is, to a large extent, because the capillary meas
ments of the apparent viscosity have been the only experime
data available for the high strain rates of interest. Unfortunat
as discussed earlier, such measurements are ambiguous and
ficient for modeling viscoelastic polymer melts. The more rigo
ous polymer melt models based on continuum mechanics p
ciple ~e.g., models based on the rubberlike liquid theory and
modification,@2,3,9#!, or macromolecule theory~e.g., various rep-
tation models of entangled polymers,@4,15,16#!, or a combination
of the two, @17#, on the other hand, have been developed a
calibrated mainly for low-rate loading,@9,16#. Transient large-
strain measurements at high strain rates are necessary to verif
usefulness of such a model for predicting the high-rate respons
viscoelastic polymer melts.

In order to measure accurately the transient large-strain
sponse of polymer melts under high shear-rate loading, we n
an experimental technique that accelerates a melt flow very
idly to minimize viscous heating and relaxation during the spin-
process, that retains a uniform steady flow field in the sample
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us-
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gi-
70,
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a sufficiently long time to render a homogeneous large-strain
formation, and that tracks accurately the time histories of the lo
ing and the sample response to enable a time-resolved mea
ment. In principle, the Kolsky torsion bar technique can be a g
solution for these issues. The technique is based on an experi
tal configuration introduced by Kolsky@18# in 1949, i.e., to sand-
wich a specimen between two long cylindrical bars functioning
two elastic waveguides. With the bars, dynamic loading can
applied to the specimen as an incident stress wave and the s
men response, which governs the stress waves leaving the s
men, can be detected far away from the specimen. The method
also been referred to as the split-Hopkinson bar technique.
method of generating dynamictorsional loading in the Kolsky bar
system by rapid release of a pre-stored torque was introduce
Baker and Yew@19# and further developed by a number of r
searchers,@20,21#. An overview of the state of the art of the Ko
sky torsion bar technique can be found in@21#.

However, the Kolsky torsion bar~KTB! technique has mostly
been used to study the dynamic plasticity of metals,@18–25#. In
extending the technique for polymer melt rheometrics, there
three technical issues:~1! integrating a proper rheometric cell wit
the system,~2! maintaining the specimen temperature, and~3!
measuring very low stress sustained in a polymer melt. The
KTB rheometer was developed by Clyens et al.@26# for studying
super-cooled lubricants. The bar ends sandwiching the spec
were machined to form a parallel-annular-plates rheometer as
as a cone-and-plate rheometer. No stress signal enhancemen
used since the stress levels in their super-cooled lubricants
sufficiently high. To investigate the low-stress response of lu
cants near the room temperature, Feng and Ramesh@27# designed
a KTB rheometer with a tubular input bar and a thinner so
output bar. The rheometric cell was a concentric Couette cell w
a cone-and-plate cup end so that the area of specimen-bar
face was significantly greater than that of the cross section of
output bar, resulting in a signal enhancement that was suffic
for measuring a sample stress as low as 0.015 MPa accurate

In this paper, we report a KTB rheometer developed specific
for polymer melts. This new rheometer provides a novel techni
for measuring the transient response of polymer melts under s
rate rates of 102;104 s21 and initial temperatures up to 300°C
and for shear strains up to 1000%. To demonstrate the usefu
of the technique, the results of a series of KTB rheometric exp
ments on a molten low-density polyethylene~LDPE! are also pre-
sented. These transient high-rate large-strain measurements a
our knowledge, the first of this kind and reveal important n
information on the rheological response of branched LDPE me
The significance of our new findings will be discussed in comp
son with a low-rate constitutive theory as well as high-rate ca
lary measurements reported in the literature for LDPE melts.

In what follows, the experimental technique is described fi
The experimental results on the molten LDPE are presente
Section 3. The results are further discussed in Section 4. Fin
the main conclusions are summarized in Section 5.

2 Experimental Technique

2.1 Kolsky Torsion Bar Rheometer. The new KTB rheom-
eter for polymer melts has three components: a KTB system
thermal chamber, and a sealed cone-and-plate rheometric cell
experimental setup is shown schematically in Fig. 1~a!. The KTB
system consists essentially of two long aluminum-alloy circu
bars—the input and output bars, respectively, a friction clamp
Duffy’s design,@21#, ~detailed in A–A view!, and a torsion driver
~pulley!. The thermal chamber has a through hole to allow
bars to sandwich the test specimen inside the chamber. In op
tion, the friction clamp is activated and the segment of the in
bar from the pulley to the clamp is twisted to store a desi
torque. Forcing the pre-notched bolt that locks the clamp to r
ture releases the stored torque very rapidly, giving rise to a
sional loading wave that propagates towards the specimen a
442 Õ Vol. 71, JULY 2004
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partial release wave of the same magnitude that travels tow
the pulley and then reflects from it~which is nearly rigid in tor-
sion! as a full unloading wave as shown in Fig. 1~b!, which is a
distance-time (x2t) diagram illustrating the torsional wave
propagation during the experiment. The loading and unload
waves form a torsional incident~loading! pulseTi . By design, the
torsional impedances of the bars and the shear stress assoc
with the incident pulse are significantly greater than the impe
ance and the material strength of the specimen, respectively
consequence, most of the mechanical energy associated witTi
reflects from the specimen as a reflected pulseTr while a small
fraction of the energy~governed by the material strength of th
specimen! transmits through the specimen as a transmitted pu
Tt propagating into the output bar. The primary mode of a line
elastic torsional wave in a circular waveguide is non-dispersi
Hence, the relative rotation between the two bars and the tor
transmitted through the specimen can be determined straigh
wardly from the shear strain gauge measurements of the th
pulses away from the specimen~Fig. 1~b!!. The related experi-
mental analysis will be described later.

Several special designs and techniques have been employ
satisfy the particular needs arising from the rheometric applicat
of interest. First, an asymmetric bar pairing is used. The input
is a 7075-T6 aluminum alloy rod~25.4 mm diameter! whereas the
output bar is a thin-walled 6061-T6 aluminum alloy tube~25.4
mm outer diameter and 0.89 mm wall thickness! as shown in Fig.
2~a!. This new design retains a very large impedance differen
between the input bar and specimen as necessary for steady
rate loading while minimizing the torsional rigidity of the outpu
bar to improve the accuracy of the measurements at low stres
The smaller the output bar rigidity, the larger the shear strain fo
given transmitted pulse, and thus the larger the signal-to-no
ratio.

Second, controlled convection heating is used to heat the sp

Fig. 1 Schematic of KTB rheometric experiment. „a… Experi-
mental setup based on a Kolsky torsion bar system. „b… Tor-
sional wave propagation during the experiment.
Transactions of the ASME
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men and to maintain its initial temperature at a designed va
The heating is provided by resistance rope heaters and a force
circulation system inside the thermal chamber~Fig. 2~a!!. A ther-
mocouple sensor and an OMEGA thermal control module fo
the temperature control unit that can regulate the temperature
tuation to within61°C.

Finally, a sealed cone-and-plate rheometric cell is integra
into the system. As shown in Fig. 2~b!, the cone-and-plate con
figuration is formed directly by a cone press-fitted into the tubu
output bar and the flat end of the input bar. The motivation for t
arrangement is that the dimension of a separately machined
can be determined accurately with an optical profilometer.
though using the flat side to drive specimen shear flow cau
small flow field nonuniformity in the vicinity of the outer edge
the effect is negligibly small compared to the other sources
experimental error. A thick-walled aluminum alloy collar that c
slide smoothly on the bars is used for two purposes. One i
prevent the specimen from any large outward radial mot
~driven by the centrifugal force! at high-speed rotations. The othe
is to improve the temperature uniformity across the specimen.
solid input bar conducts heat much quicker than the tubular ou
bar and a polymer melt is typically a poor conductor. Therefore
significant temperature gradient may develop across the speci
The collar provides a heat conduction bypass between the
bars and increases the thermal inertia of the rheometric cel
addition, an experimental study was done to optimize the posi
of the rheometric cell inside the thermal chamber. As the res
the temperature variation in the specimen is within 1°C.

The use of the collar, however, gives rise to an edge effect.

Fig. 2 Schematic of the rheometer assembly. „a… Thermal
chamber and asymmetrically paired bars. „b… Cone-and-plate
rheometric cell.
Journal of Applied Mechanics
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specimen sticks to the inner surface of the collar so that the m
flow field near the surface is significantly different from that aw
from it. This problem is resolved by inserting a thin Teflon fil
between the collar and the specimen~Fig. 2~b!!. For the tempera-
tures of interest~below 300°C!, the Teflon film remains an excel
lent solid lubricant. The torque transmitted by the soft Teflon fil
is negligibly small compared to that transmitted by the specim
An experimental verification will be given later.

Foil resistance shear strain gauges forming a full Wheatst
bridge circuitry are installed on each bar for measuring the
sional pulses. The gauges used for the output bar have a nom
resistance of 3000V to allow a high excitation voltage of 62
volts. The combination of high gauge excitation and lo
impedance output bar provides a sufficient signal-to-noise r
for determining shear stresses as low as 0.01 MPa. During
experiment, the strain gauge signals are fed to a NICOLET m
tichannel digitizer operated in common mode rejection and
corded at a 10-MHz sample rate and a 12-bit resolution. The d
acquisition process is synchronized to obtain time-resolved m
surements of the relevant torsional pulses. The analysis to d
mine the specimen shear rate and stress from the measureme
presented below.

2.2 Analysis of Experiment. Hartley et al.@21# described
in detail the analysis of the conventional KTB experiment,
which the symmetric bar pairing allows the determination of t
specimen shear rateġs solely based on the reflected pulse me
surement. The asymmetric bar pairing used in this work requi
however, the use of all three pulses to determineġs . An analysis
specialized for this experimental configuration is therefore in
der. In the derivation follows, subscripts 1 and 2 denote the qu
tities of the input and output bars, respectively, andi, r, andt the
quantities associated with the incident, reflected and transm
pulses, respectively.

Assume that the velocity field in the specimen is linear after
spin-up process. Thenġs can be related to the angular velocitie
of the two bar-specimen interfacesvk (k51,2) as

ġs5
v1Rs2v2Rs sin2 a

h sina
, (1)

whereRs , h, anda are the radius, vertex height and half verte
angle of the cone, respectively. In the equation, the denominat
the distance from the edge of the flat end to the cone surface~Fig.
2~b!! and the numerator the velocity difference over the distan
The characteristic equations governing the propagation of ela
torsional waves in the bars give

v15
Tr2Ti

K1
and v252

Tt

K2
. (2)

Here Kk[rkcSkI k (k51,2) are the torsional impedances of th
bars withrk , cSk, andI k being the material densities, shear wa
speeds and polar moments of inertia of the bars, respectively.
torque pulsesTq (q5 i ,r ,t) can be related, through the elementa
torsion formula, to the corresponding shear strain pulsesgq (q
5 i ,r ,t) as

Ti5
cS1K1

R1
g i , Tr5

cS1K1

R1
g r and Tt5

cS2K2

R2o
g t , (3)

whereR1 is the radius of the input bar andR2o is the outer radius
of the output bar. The relationsGk5rkcSk

2 (k51,2) withGk being
the shear moduli of the bars have been used. Combining
~1!–~3! and using the relation sina5Rs /ARs

21h2 lead to the fol-
lowing expression:

ġs5
ARs

21h2

h FcS1

R1
~g r2g i !1

h2cS2

R2o~Rs
21h2!

g tG . (4)
JULY 2004, Vol. 71 Õ 443
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Note that the occurrence ofġs and the recordings of the thre
shear strain pulses are four events usually at different times.
determination of the shear rate-time profileġs(t) requires time
shifts for the measured shear strain pulses. For an unknown s
men, a rigorous determination of all the time differences is di
cult. In practice, a subjective ‘‘best match’’ of the three pulses
time is used as an approximation. The error is within62 ms.
Consequently, the slope of a rapid variation inġs is less accurate

The shear stress in the speciments can be related straightfor
wardly to Tt by applying the stress continuity across t
specimen-output bar interface and making use of the assump
of uniform shear stress in the specimen, i.e.,

Tt5
2p

3
tsRs

2ARs
21h2. (5)

The right-hand side of Eq.~5! is the result of integrating the
torque produced byts over the cone surface~Fig. 2~b!!. Using Eq.
~3! andK25r2cS2I 2 in Eq. ~5! gives

ts5
3r2cS2

2 ~R2o
4 2R2i

4 !

4R2oRs
2ARs

21h2
g t , (6)

whereR2i is the inner radius of the output bar, and the relati
I 25p(R2o

4 2R2i
4 )/2 has been used. Note that the time correlat

of the shear stress-time profilets(t) with ġs(t) is as good as the
time-shifting approximation used to determineġs(t).

The maximum torque that can be stored in the KTB appara
used is 560 N-m. On the other hand, a minimum torque of 40 N
is required for producing a loading pulse of good quality. Forh
52 mm~which is used in this work!, the possible range of platea
shear rate is from 700 s21 to 104 s21. For shear rates beyond th
range,h needs to be modified accordingly.

The deviation of the specimen velocity from the assumed lin
field may be estimated with the analysis by Walters and Wa
@28#. For a581 deg used in this work, the maximum deviation
about 0.4%, an insignificant value. The primary sources of exp
mental error are:~1! the deviation of theeffectivegauge output-
bar shear strain relation, which is not exactly known, from
idealized gauge calibration~assuming a perfect Wheatston
bridge!, which is actually used, and~2! the uncertainties assoc
ated with our measurements of the geometric and material pa
eters used in Eqs.~4! and ~6!. The error bars estimated with ou
error analysis and elastic tests are 4% forġs and 5% for ts .
Although the temperature of the heated end of each bar~inside the
thermal chamber! may approach 50% of the melting temperatu
of aluminum alloy during the experiment, the temperature rise
each gauge location is small because the gauge resides far
from the thermal chamber and most of the heat is conducted a
through the bearing blocks between the gauge and chamber~Fig.
1~a!!. As long as a temperature correction for the gauge facto
not necessary and the bars remain elastic during the experim
even if a torsional impedance change does occur in the he
portions of the bars, it may only affect the measurements for
initial slopesof sudden changes inġs(t) andts(t), for which the
KTB technique is not very accurate anyway. However, for
temperatures covered in this work, there has been no sign
may indicate a significant torsional impedance change in the
due to the heating of the specimen.

2.3 Description of Sample Material. The new KTB rhe-
ometer for polymer melts has been evaluated in a series of ex
ments on a molten low-density polyethylene~LDPE!. The raw
material was DuPont 20 Series LDPE resin, which had a mate
density of 920 kg/m3 at 23°C, a melt index of 1.9 g/10 min and
melting point of 109°C~manufacturer’s data!. The resin pallets
were melted in a vacuum oven and resolidified into a brick. Sp
mens of 2.5 mm thick and 25 mm in diameter were then machi
from the brick. Each specimen was reheated sandwiched betw
the two bars and shaped to fill the gap of the rheometric cell~Fig.
444 Õ Vol. 71, JULY 2004
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2~b!!. Excessive material~if any! was removed, a layer of thin
Teflon film was applied, and the collar was slid into the place
complete the assembly. Finally, the assembled specimen
heated up again slowly to a designed initial temperature. For
temperatures covered in this work~150°C;210°C!, the material,
referred to hereafter as the DuPont-20 LDPE, is colorless.
molecular structure of the material is known to contain irregula
spaced long-chain branches.

3 Experimental Results
The experiments presented below were designed to exam

first the shear rate and shear strain dependences of the tran
response of the DuPont-20 LDPE heated to 190°C and then
material’s temperature dependence at a chosen shear rate
shear rates examined range from 800 s21 to 9900 s21 ~nearly the
full span of the designed capacity!. The material meltscompletely
for temperatures above 130°C and color change was observe
the material heated in air to 230°C and beyond. Therefore,
variation of initial temperature was chosen to be from 150°C
210°C.

The data from a typical experiment are presented in Fig. 3
terms of the time-resolved profiles ofġs andts ~the shear rate and
shear stress in the specimen, respectively!. The initial temperature
of this experiment was 190°C. Under the applied rapid rotati
ġs ~the thicker line with respect to the left axis! increases to 3900
s21 in a rise time of about 65ms. This rapid spin-up process wil
hereafter be referred to as stage I. After stage I,ġs remains nearly
constant as designed until the arrival of unloading approxima
550ms later. The unloading is as rapid as the loading. The pe
of the shear rate plateau and the subsequent rate releasing pr
will be referred to as stages II and III, respectively. Different fro
typical KTB experiments on metals, the present experiment
not end at the completion of the rate releasing that bringsġs back
to zero. Instead,ġs runs across the baseline and evolves at sm
but measurable negative values. This period of negativeġs will be
referred to as stage IV. In response to the loading,ts ~the thinner
line with respect to the right axis! displays interesting behavior. I
increases withġs in stage I as expected. However, in stage II,ts
increases continuously with time whileġs remains nearly con-
stant. In other words,ts increases with the cumulative shear stra
in the specimengs at a constantġs . Clearly, the material respons
is other than purely viscous~rate-dependent only!. It appears to

Fig. 3 Shear rate and shear stress profiles from a typical KTB
rheometric experiment on the DuPont-20 LDPE melt at 190°C.
The thicker line with respect to the left axis is the rate profile.
The thinner line with respect to the right axis is the stress pro-
file.
Transactions of the ASME
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have a significantshear strain hardening, a phenomenon that ma
occur in a viscoelastic fluid. For this experiment, the increase ints
during stage II is actually greater than that in stage I. Although
rising of ts in stage I also involves the contribution of stra
hardening, it is due primarily to the increase inġs since the rising
slope in stage I is much steeper than that in stage II.

The material response in stages III and IV is particularly int
esting. In stage III,ts decreases withġs ~Fig. 3!. However,ts
retains a large residual value whenġs reaches zero. The evolutio
of ts thereafter~in stage IV! corresponds to a time-depende
elastic recovery of the specimen. Because the solid input ba
significantly more rigid than the thin-walled tubular output bar
torsion, this elastic recovery causes the output bar to rotate fur
in the same direction as in the previous stages but at a very s
and time-dependent decaying angular velocity while the input b
specimen interface remains essentially motionless. The resu
the small-amplitude reverse shear rate profile seen in stag
~Fig. 3!. This elastic release appears to require much longer t
to complete than the permissible time window of the experime
Point A in Fig. 3 indicates the time when the reflection of t
leading transmitted wave from the free end of output bar (WF ,
Fig. 1~b!! arrives at the output bar gauge and the gauge signal
no longer be unambiguously related tots . There seems a shea
stress oscillation at the beginning of stage IV. It is not yet cle
however, whether this is real material response or a manifesta
of the dynamic interactions between the specimen and the c
tube assembly~Fig. 2~b!! as ġs changes direction. A definite an
swer requires further study.

It should be pointed out that whereasts appears to decreas
instantaneouslywith ġs in stage III, the decrease ofts in stage IV
is entirely time-dependent. The data in this period reflect the re
laxation behavior of the rapidly sheared material. In a sense,
KTB rheometric experiment is a high-rate transient test in load
and a step shear-relaxation test in unloading, considering the s
larity between stage IV and the step shear-relaxation experim
@3,5,9#.

To verify that the use of a thin Teflon film as lubricant betwe
the specimen and collar does not affect adversely the accurac
shear stress measurement, an experiment without Teflon film
carried out. The collar used in the experiment had a reces
avoid direct contact with the specimen. A moderate input ang
velocity was employed so that the centrifugal force during
experiment was insignificant. The initial temperature was a
190°C and the plateau shear rate was 3970 s21. In Fig. 4, the shear
stress profile obtained from this experiment~the broken line! is
compared with that from the previously described experiment~the
solid line!, which used a thin Teflon film and had a very clo
plateau shear rate of 3900 s21. The two profiles are seen to b
nearly identical, indicating that the effect of thin Teflon film on th
shear stress measurement is negligible compared to the exp
experimental error.

Figure 5 presents the shear stress-timets(t) profiles obtained
from six experiments with an initial temperature of 190°C a
shear rates ranging from 800 s21 to 9900 s21. The plateau shea
rate reached in each of the experiments is specified in the fig
For clarity, the data are shown for the rate loading and relea
cycle only without the time-dependent elastic release. The co
sponding shear rate profiles are similar in pattern to that show
Fig. 3 and will not be presented for the lack of space. The st
profiles for plateau shear rates up to 5510 s21 bear the character
istic features similar to those described earlier. However, the
of ts increase in stage II decreases with increasing plateau s
rate. The data from 7850 s21 experiment seem to indicate th
development of a shear stress plateau right before the arriva
rate releasing. Note that the loading pulse duration is the sam
all the experiments shown. The higher the plateau shear rate
larger the value ofgs before the rate releasing. Hence, the la
response in 7850 s21 experiment may be a sign of the saturati
of shear strain hardening. This becomes apparent in the data
9900 s21 experiment. If the initial rise ints is viewed as predomi-
Journal of Applied Mechanics
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nantly rate-dependent response and the increase ofts afterwards
as strain-dependent response, the former is more pronounc
higher shear rates while the latter is more pronounced at lo
shear rates. In other words, the material response at higher s
rates is more viscous than viscoelastic and vice versa at lo
shear rates.

The shear strain-timegs(t) profile for each experiment wa
determined by integrating theġs(t) profile over the time so tha
thets2gs relation is obtained. The results for the six experime
described in the previous paragraph are summarized in Fig
Note that the initial rise is due primarily to the increase inġs . The
slope should not be viewed as a measure of elastic modulus.
strain hardening after the initial rise is apparently nonlinear. Ho
ever, the hardening trends of all the experiments are surprisin
similar considering that the variation of the plateau shear r

Fig. 4 Comparison of shear stress measurements with and
without thin Teflon film. The initial temperatures for both ex-
periments were 190°C. The solid line is the measurement with
Teflon film and under a plateau shear rate of 3900 s À1. The
broken line is the measurement without Teflon film and under a
plateau shear rate of 3970 s À1.

Fig. 5 Shear stress profiles for various shear rates and 190°C
initial temperature
JULY 2004, Vol. 71 Õ 445
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from one experiment to another spans more than one orde
magnitude. This indicates that the observed shear strain harde
is, by and large, independent ofġs . A further implication is that a
master curve of shear strain hardening can be extracted from
ts2gs curves. The maximum shear strain reached in 990021

experiment is approximately 580%. The data from the th
highest-rate experiments together seem to indicate that the s
strain hardening saturates~or remains at a steady value! whengs
reaches 300% and beyond.

If the ts2gs curve for a complete loading-unloading cycle
measured, the density of energy dissipation during the experim
can be determined by calculating the area enclosed by thts
2gs curve. Although eachts2gs curve in Fig. 6 has a significan
portion of the unloading data, it does not contain the later par
release including the further elastic stress relaxation beyond
time window of experiment and the elastic recoil process un
macroscopically ‘‘zero-stress’’ condition,@9#. In other words, the
energy density calculated using the area underneath eachts2gs
curve in Fig. 6 is somewhat greater than the true density of en
dissipation during the experiment. However, for an upper bo
estimate of the temperature rise during the experiment, suc
approximation is conservative and sufficiently accurate. The
merical result of such an estimate will be presented later.

The experiments to study the dependence of the transient la
strain response of the material on the initial temperatureu0 were
designed for a plateau shear rate of 4000 s21. Four experiments
were carried out foru05150;210°C at a 20°C increment. Th
results are presented in Fig. 7 in terms of a comparison ofts(t)
profiles. The plateau shear rates of the four experime
~3900;4090 s21! are very close to the targeted value so that
comparison is not biased by the shear rate. Qualitatively,
trends of the stress profiles are similar. Quantitatively, howe
both the initial rise ofts ~responding to the rapid increase ofġs)
and the shear strain hardening after the initial rise increase
decreasingu0 . Since, by design, the value ofgs right before the
unloading varies very slightly for these experiments, the sign
cant variation in the strain hardening is due entirely to the cha
in u0 . In comparison, the variation of the initial rise is less s
nificant. In other words, the strain-dependent part of the mate
response is more sensitive tou0 than the rate-dependent~viscous!
part of the material response. If the strain hardening continue
decrease with increasingu0 , the material response may eventua
become predominantly viscous rather than viscoelastic.

Fig. 6 Shear stress-shear strain relations for various shear
rates and 190°C initial temperature. The circles indicate the
maximum shear strains reached in the experiments.
446 Õ Vol. 71, JULY 2004
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4 Discussion
It has been shown that the low-rate large-shear respons

branched LDPE melts can be modeled quite well by incorpora
a memory function into the rubberlike liquid theory,@29#. In par-
ticular, Laun@9# demonstrated that both the transient shear m
surements~for ġs up to 10 s21! and the steady-state apparent she
viscosity data~for ġs up to 103 s21) for a molten branched LDPE
can be well represented by an integral constitutive equation ba
on such a modified rubberlike liquid theory. For a step shear
loading of intensityġs and starting att50, the analytical result of
the integral equation is

ts~ t !5ġst(
i

nġst igi

11nġst i
expS 2

11nġst i

t i
t D

1ġs(
i

t igi

~11nġst i !
2 F12expS 2

11nġst i

t i
t D G , (7)

wheren, t i , andgi are material parameters. Althoughġs appears
in the both terms on the right-hand side of Eq.~7!, the first one
describes the effect of the shear strain (ġst) and the second one
accounts for the explicit response toġs . Comparing Eq.~7! with
our high-rate data on the molten DuPont-20 LDPE helps to id
tify the key difference between the response of a viscoela
polymer melt under low shear-rate loading and that under h
shear-rate loading. For short-time response,ts given by Eq.~7!
does not jump withġs since for a very smallt both the shear strain
and shear rate terms are nearly zero. In contrast,ts shown in Fig.
3 changesinstantaneouslywith a change inġs . To some extent,
the high-rate response is more of Kelvin-Voigt~i.e., ts5Ggs
1hġs , whereG and h denote shear modulus and viscosity, r
spectively! than rubberlike liquid~Eq. ~7!!. The fact that the rate-
dominant initial rise ints decreases with the plateau shear ra
~Fig. 5! suggests that the instantaneous viscous response of a
coelastic fluid may not be discernible in low-rate rheometric e
periments. The type of high-rate transient measurements prese
here is important in developing better material models for v
coelastic polymer melts.

For long-time~large-strain! response, the exponential terms
Eq. ~7! vanish giving rise to ‘‘viscous like’’ shear response, whic
depends only on the steady-state apparent shear viscosity, the
term in the second summation. The high-ratets2gs data shown
in Fig. 6, on the other hand, indicate that whereas the shear s
hardening saturates forgs.300%, the effect ofgs does not fade

Fig. 7 Variation of transient response with initial temperature.
The mean plateau shear rate is 3990 s À1 and the deviation is
Á90 sÀ1.
Transactions of the ASME
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in such a steady state. Therefore, although a relationship betw
the steady-statets /ġs ratio and ġs may also be determined fo
high shear-rate loading, it is fundamentally different from t
steady-state apparent shear viscosity as in Eq.~7!. Another evi-
dence to support this conclusion is the fact that the full rate
leasing only releases a fraction of the shear stress sustained
steady state~the three higher-rate experiments, Figs. 5 and 6!.

The observed viscoelastic flow behavior may be explained
the molecular level as the following. Driven by active therm
motions in the molten polymer, vastly many molecular segme
may be disentangled from surrounding molecules at any gi
instance so that they are momentarily ‘‘free’’ to move. Unde
biased mechanical field, these disentangled molecular segm
may either move in the direction dictated by the applied field
new locations thus forming a flow at the macroscopic level
swing to align with the flow direction. In each case, such a m
lecular segment needs to pass through the network of surroun
molecules. The viscous drag of the molecular network against
passing-through motion gives rise not only to viscous stress
depends on the velocity of relative motion but also to elas
stretching of the molecular segment as well as the molecular c
it associates with. At the same time, the moving and stretc
molecular segment may be part of molecular network for ot
moving segments to pass through. Hence, as the flow evolves
molecular chains are quickly stretched and consequently stiffe
The molecular network becomes more viscously resistive aga
the passing-through molecular segments, resulting in a higher
cous stress for the same applied strain rate. However, once
molecular chains are stretched to such an extent that the el
stress increment due to further stretching will exceed the co
sponding viscous stress increment, the hardening will stop as
quired by the equilibrium condition. From this perspective, t
observed shear strain hardening can be viewed as the result
material state variation from an undeformed, less viscous mole
lar network to a highly stretched, more viscous one. As such,
material response during loading may be described with a visc
model having a strain-dependent apparent viscosity. Howe
such a model will be invalid under rapid unloading or oscillato
loading. This is because the reverse transition through relaxa
to a more compliant molecular network istime-dependentand can
be significantly slower than the applied load variation. For
strained viscoelastic polymer melt, the effect of elastic deform
tion of molecular network will not fade quickly. A useful mode
for this type of material behavior needs to keep track of the c
tribution of elastic strain.

As an attempt to separate empirically the contributions of sh
rate and shear strain to the viscoelastic flow response of the
ten DuPont-20 LDPE at high shear rates, theloading portion of
the data obtained for 190°C initial temperature is treated as
sum of a rate-dependent viscous jumpDts(ġs) and a rate-
independent master curve of shear strain hardening, for which
function 0.2592 tanh(0.72gs) MPa was found to fit the data we
with deviations being within 4%. Figure 8 shows the results
subtracting the master curve from the loading portion of thets
2gs curves shown in Fig. 6. Step jump appears to be a g
approximation to all the curves, demonstrating that the propo
separation is a reasonable treatment. According to the ma
curve, ts reached a steady state~the saturation of shear strai
hardening! in the experiments with a plateau shear rate of 55
s21 or higher~Fig. 5!. For the three experiments at lower rates, t
steady-statets can be estimated using the master curve. In Fig
both the steady-statets /ġs ratios measured~the filled squares!
and estimated~the open squares! are presented and compared wi
the steady-state apparent shear viscosity results on a PEM
LDPE melt~the circles on the solid line!, @6#, and a Union Carbide
LDPE melt ~the dashed line!, @14#, both from the capillary mea-
surements at 190°C. In terms of absolute value, the three se
results clearly disagree one with another, indicating signific
material difference~likely in molecular weight!. However, the de-
Journal of Applied Mechanics
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creasing trend of the steady-statets /ġs ratio with increasingġs
~or the shear shinning! is close to those of the steady-state app
ent shear viscosity results. It should be pointed out that deri
from the capillary data the latter rely on an a priori assumed fl
field in the extruder,@5#. Therefore, the steady-statets /ġs2ġs
relation determined directly by the KTB rheometric experime
can be used to verify the high-rate capillary results, the traditio
database for polymer processing design and control. Also sh
in Fig. 9 are the ratios ofDts(ġs) to the plateau shear rate~the
triangles!. The shear thinning in this set of data is seen to be m
weaker than that of the steady-statets /ġs ratios. In fact, there is
almost no thinning for shear rates up to about 5500 s21. This

Fig. 8 Viscous stress jumps for various shear rates and 190°C
initial temperature

Fig. 9 Comparison of the ratios of shear stress to shear rate
with the apparent shear viscosity results on similar LDPE
melts. The squares are the steady-state data and estimates for
the DuPont-20 LDPE melt at 190°C. The triangles are the results
corrected for the shear strain hardening. The circles and the
broken line are respectively the capillary results of the appar-
ent shear viscosity of a PEMEX LDPE melt, †6‡, and that of a
Union Carbide LEDP melt, †14‡, both at 190°C.
JULY 2004, Vol. 71 Õ 447
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demonstrates, from a different perspective, the ambiguity of us
the steady-state apparent shear viscosity in describing the h
rate response of a viscoelastic fluid.

Finally, it should be pointed out that the effects of temperat
increase during the KTB rheometric experiment have not b
included in the above analysis and discussion. The experime
nearly adiabatic because the time scale is much shorter than
for significant heat conduction. Hence, the specimen tempera
is expected to increase somewhat with the energy dissipation
ing the experiment. Although it is difficult to measure the te
perature change during the experiment, its upper bond can
estimated as discussed in the previous section. For the ex
ments with 190°C initial temperature, the upper bond of tempe
ture rise is less than 1.35°C, an insignificant value on the orde
the temperature measurement uncertainty. However, for la
strains~under longer loading pulses! and higher stresses~at lower
temperatures!, the viscous heating may become significant and
calculation for the temperature change during the experiment
become necessary. A related issue is that the viscous heatin
gether with the saturation of the strain hardening may initiate
development of an inhomogeneous flow field and further an a
batic shear bending in the specimen,@30#. The evolution of such a
shear bending should, however, be accompanied by a signifi
reduction ints . There is no such a sign in the experimental d
obtained in this work.

5 Closing Remarks
The Kolsky torsion bar technique has been successfully utili

in a novel rheometric experiment for characterizing the trans
large-strain response of polymer melts under shear rates
102 s21 to 104 s21 and temperatures up to 300°C. The new KT
rheometer measures the specimen response under a constan
rate and at a microsecond resolution and is particularly usefu
viscoelastic polymer melts in that the effect of shear strain can
examined separately from that of shear rate. The loading co
tions realized with this technique enable revelations of import
characteristic features of the high-rate response of viscoela
polymer melts that can not be observed with the existing rheom
ric techniques for polymer melts.

A series of KTB rheometric experiments have been carried
on molten samples of the DuPont-20~branched! LDPE. The ex-
periments cover a range of plateau shear rates from 800 s21 to
9900 s21 and several initial temperatures from 150°C to 210°C
a 20°C increment. The maximum shear strain reached in the
periments is 580%. The results show that the transient respon
the material under the high shear-rate loading not only is tim
dependent~or strain-dependent! but also has aninstantaneousde-
pendence on the shear rate. The latter phenomenon is qualita
different from the rate dependence described by the modified
berlike liquid theory, which has been shown to represent the l
rate response of branched LDPE melt well,@9#. The experimental
data further suggest that the explicit rate dependence decre
with the shear rate and may become indiscernible at low sh
rates. Transient high-rate large-strain measurements are nece
for characterizing this part of the material response.

The strain dependence of the material under the high shear
loading appears as a significant shear strain hardening for s
strains up to 300% where the strain hardening saturates a
steady state is reached. However, the strain effect does not
for the time duration of the experiment. The ratio of shear stres
shear rate is a function of shear strain. An important implicatio
that the shear thinning shown in the available capillary meas
ments of the high-rate apparent shear viscosity of LDPE m
may actually be a manifestation of the saturation ofshear strain
hardening at large shear strains instead of a measure of theshear
rate dependence of the viscosity. If the rate-dependent visc
jump is separated out of the high-rate transient response of
DuPont-20 LDPE melt at 190°C, it shows little shear~rate! thin-
ning for shear rates up to 5500 s21 ~Fig. 9!.
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The dependence of the material response on the initial temp
ture has been studied at a plateau shear rate of about 399021.
There is no qualitative difference in the material response for
range of initial temperatures examined~from 150°C to 210°C!.
Quantitatively, however, the strain-dependent part of the respo
softens more rapidly with increasing temperature than the ins
taneous rate-dependent part of the response. Predominantly
cous response can be expected for the material at significa
higher temperatures. At lower temperatures, the shear strain h
ening of the material will stiffen. However, the material respon
at temperatures above the melting point is still expected to
different from that of a rubberlike liquid by a noticeable instan
neous dependence on the shear rate.
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Dynamic Stability of Disks With
Periodically Varying Spin Rates
Subjected to Stationary In-Plane
Edge Loads
This paper presents an analysis of dynamic stability of an annular plate with a per
cally varying spin rate subjected to a stationary in-plane edge load. The spin rate o
plate is characterized as the sum of a constant speed and a small, periodic perturb
Due to this periodically varying spin rate, the plate may bring about parametric insta
ity. In this work, the initial stress distributions caused by the periodically varying s
rate and the in-plane edge load are analyzed first. The finite element method is ap
then to yield the discretized equations of motion. Finally, the method of multiple sca
adopted to determine the stability boundaries of the system. Numerical results show
combination resonances take place only between modes of the same nodal diamete
stationary in-plane edge load is absent. However, there are additional combination
nances between modes of different nodal diameters if the stationary in-plane edge l
present.@DOI: 10.1115/1.1753267#
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Introduction
Spinning disks find wide applications in mechanical engine

ing, from early circular saw blades, turbine rotors to recent flop
and compact disks, etc.. With the progress of industrial tech
ogy, the speeds of spinning disks have been increasing, and
ensuing vibration problem has been exacerbated. Thus, the to
pertaining to the vibration and stability of spinning disks ha
attracted much attention to researchers since the early 19
Early investigations dealt primarily with the determination
natural frequencies and critical speeds of spinning disks. La
and Southwell@1# first derived the frequency equation and plott
the mode shapes of a spinning circular plate. Southwell@2# con-
tinued to analyze the free vibration of a spinning annular pl
with clamped inner edge and free outer edge.

Spinning disks are usually subjected to in-plane loading in
plication. Mote@3,4# studied the free vibration of circular disk
subjected to initial in-plane stresses introduced purposely by
ing or to thermal membrane stresses resulting from the cut
process. The free vibration of a spinning disk under a concentr
radial edge load was first investigated by Carlin and his
workers,@5#. Redcliffe and Mote@6# extended the work of Carlin
et al. by considering a general concentrated edge load with
normal and tangential components. In these two papers, the
centrated edge load is spinning along with the spinning disk,
is, there is no relative motion between the disk and the edge l

In most real situations, the loads of spinning disks are fixed
space. Iwan and Moeller’s work@7# appears to be the first publi
cation on this subject. They investigated the free vibration o
spinning disk transversely in contact with a stationary load sys
consisting of a mass, spring, and dashpot. Ono et al.@8# extended
Iwan and Moeller’s work to include the pitching parameters
well as the friction force between the spinning disk and the s

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septe
ber 19, 2001; final revision, June 6, 2002. Associate Editor: N. C. Perkins. Discus
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Jo
of Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and w
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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tionary load system. A further study of effects of load paramete
such as friction force, transverse mass, damping and stiffness
the analogous pitching parameters, of a stationary load system
the free vibration of a spinning disk was conducted by Chen
Bogy @9#.

Afterward Chen@10# continued his research efforts to study th
stability of a spinning disk under a stationary concentrated e
load in the radial direction. The edge load may be a conserva
or follower force, and the analysis is based on the inertial coo
nates. Numerical results show that a stationary, conservative,
compressive edge load decreases the natural frequencies o
forward and backward traveling waves but increases the nat
frequencies of the so-called reflected waves. The compres
edge load induces a divergence-type instability before the crit
speed and a flutter-type instability beyond the critical speed w
a reflected wave meets a forward or backward wave. In addit
the effect of the conservative edge load on the natural frequen
of the spinning disk is mostly through the transverse compon
of the edge load and is much more important than the effect of
follower edge load. The parametric instability of a spinning di
under the action of space-fixed pulsating edge loads was fur
investigated by Chen@11#. He found that sum-type resonance
occur between both reflected modes or both nonreflected mo
but difference-type resonances take place when one mode i
flected and the other is nonreflected.

In the mean time, Shen and Song@12# also studied indepen
dently the stability of a spinning disk under a stationary conc
trated in-plane edge load. The edge load is more general, ha
not only the normal component but also the tangential compon
The analysis is based on the rotating coordinates attached to
spinning disk, and parametric instability is shown to exist. T
results reveal that the radial component of the in-plane edge
dominates the rotational speed at which parametric instability
curs, and the tangential component of the in-plane edge l
dominates the width of instability zones.

The spin rates of the disks considered in all abovementio
references are constant. However, in the real world, the spin r
of the disks usually fluctuate within a small interval. The work
Kammer and Schlack@13# appears to be the first one concernin
this topic. In this paper, the angular speed is expressed as the
of a constant and a small periodic perturbation, and the KB

-
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E
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method is used to derive approximate solutions. Later Young
Liou @14,15# applied the method of multiple scales to investiga
the parametric instability of a rotating cantilever plate and a ro
bearing system with nonconstant rotating speeds. The nonli
response of spinning disks with nonconstant spin rates was
studied by Young@16#. Sum-type resonances are shown to ex
between modes of the same nodal diameter. This work extend
past research efforts of the authors to analyze the dynamic st
ity of annular plates with periodically varying spin rates subjec
to stationary in-plane edge loads.

Equation of Motion
Figure 1 shows an annular plate which is clamped at the in

radius r 5a and subjected to a radial tractionf (u) at the outer
radiusr 5b, where (r ,u) is an inertial coordinate system fixed i
space. The disk is spinning with an angular speedV, while the
radial edge traction is fixed in space. The radial edge traction
be a conservative forcef c or a follower onef d and is assumed to
be symmetrically distributed. The equations governing the
plane stressess rr* , suu* , ands ru* of the plate due to rotation ar
~@17#!

]s rr*

]r
1

s rr* 2suu*

r
1

1

r

]s ru*

]u
52rrV2

(1)
]s ru*

]r
1

1

r

]suu*

]u
1

2s ru*

r
5rr

]V

]t

wherer is the mass density of the plate. Equation~1! is linear;
consequently, the resulting stress field will be the sum of t
parts: one due to the centripetal acceleration and the other du
the angular acceleration. The former is axisymmetric and can
obtained as

Fig. 1 Configuration of a spinning disk subjected to a station-
ary in-plane edge load
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s rr 1* 5co* 1c1* S a

r D 2

2
31n

8
rr 2V2

suu1* 5co* 2c1* S a

r D 2

2
113n

8
rr 2V2 (2)

s ru1* 50

and the latter is found to be

s rr 2* 5suu250
(3)

s ru2* 5c2* S b

r D 2

1
1

4
rr 2

]V

]t

where co* , c1* , and c2* are undetermined coefficients, andn is
Poisson’s ratio of the plate. By using the boundary conditio
u* (a)5s rr* (b)5s ru* (b)50, whereu* is the radial displacemen
of the plate, these undetermined coefficients can be solved a

co* 5
11n

8

~12n!a41~31n!b4

~12n!a21~11n!b2
rV2

c1* 5
12n

8

~31n!b22~11n!a2

~12n!a21~11n!b2
rr 2V2 (4)

c2* 52
1

4
rb2

]V

]t
.

The radial edge traction is assumed to be symmetrically dist
uted with respect tou; hence, it can be expended into a Fouri
cosine series,

f ~u!5(
k50

`

f k cos ku (5)

where f k are Fourier coefficients. By the symmetry class of t
stresses, the in-plane stressess̃ rr , s̃uu , ands̃ ru of the plate due
to the radial edge traction may be assumed of the form

s̃ rr ~r ,u!5(
k50

`

s̃ rrk~r !cosku

s̃uu~r ,u!5(
k50

`

s̃uuk~r !cosku (6)

s̃ ru~r ,u!5(
k50

`

s̃ ruk~r !sinku

wheres̃ rrk , s̃uuk , ands̃ ruk are Fourier coefficients ofs̃ rr , s̃uu ,
and s̃ ru , respectively. Using the generalized two-dimension
elasticity solution in polar coordinates and imposing the period
ity conditions of the radial and circumferential displacementsũ
and ṽ, and the disk boundary conditions,ũ(a)5 ṽ(a)5s̃ ruk(b)
50, s̃ rrk(b)52 f k /h, whereh is the thickness of the plate, th
in-plane stress componentss̃ rrk , s̃uuk , and s̃ ruk can be solved.
The solutions are given in Carlin et al.@5#.

With respect to the inertial polar coordinates, the transve
displacement of the plate can be expressed asw5w(r ,u(t),t).
Therefore, the equation of motion of a spinning disk with visco
damping subjected to stationary conservative edge loads ca
written as
JULY 2004, Vol. 71 Õ 451
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h S ]w

]t
1V

]w

]u D1rS ]2w

]t2
12V

]2w

]t]u
1V2

]2w

]u2 D
5

1

r

]

]r S s rr* r
]w

]r D1
suu*

r 2

]2w

]u2
12s ru*

]

]r S 1

r

]w

]u D
1

1

r F ]

]r S s̃ rr r
]w

]r
1s̃ ru

]w

]u D1
]

]u S s̃ ru

]w

]r
1

s̃uu

r

]w

]u D G
1

f ~u!

h
d~r 2b!

]w

]r
(7)

wherec is the viscous damping coefficient of the plate;D is the
flexural rigidity of the plate,D5Eh3/12(12n2), in which E is
Young’s modulus of the plate;d~•! is the Dirac delta function; and
¹4 is the biharmonic operator in the polar coordinates. If t
stationary edge load is of follower type, the last term in Eq.~7! is
dropped. Note that when the spin rate is not constant as the
studied in this work, there exists a termr(]V/]t)(]w/]u) on
both sides of the above equation and is canceled out each o
The boundary conditions of the disk in terms of the transve
displacementw are

w5
]w

]r
50, at r 5a

]

]r S ]2w

]r 2
1

1

r

]w

]r
1

1

r 2

]2w

]u2 D 1
12n

r 2 S ]3w

]r ]u2
2

1

r

]2w

]u2 D
50, at r 5b (8)

]2w

]r 2
1nS 1

r

]w

]r
1

1

r 2

]2w

]u2 D 50.

Solution Methods
Equation~7! is a fourth-order partial differential equation wit

variable coefficients and is unable to be solved directly. A solut
of this equation is assumed to be in the form of a Fourier ser

w~r ,u,t !5(
j 50

J

@Pj~r ,t !cosj u1Qj~r ,t !sin j u#. (9)

Substituting Eq.~9! into Eq. ~7! and equating the coefficients o
each cosju and sinju yields a set of partial differential equation
for the functionsPj (r ,t) andQj (r ,t). This set of partial differen-
tial equations is still too complicated to have exact solutio
Thus, the finite element method is adopted to eliminate the de
dence upon the spatial coordinater. By using the two-noded beam
element, the functionsPj (r ,t) andQj (r ,t) within an element can
be assumed as~@18#!

Pj
e5cTuj

e , Qj
e5cTvj

e (10)

where c is the shape function vector, anduj
e and vj

e are nodal
parameter vectors within an element. Going through the fin
element formulation yields the following two sets of discretiz
equations,

@M1#ü1
c

rh
@C1#u̇12V@G1# v̇1S D

rhb4
@Ke1#1V2@Kr1# D u

1S V̇@H1#1
cV

rh
@G1# D v50 (11)
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@M2# v̈1
c

rh
@C2# v̇12V@G2#u̇1S D

rhb4
@Ke2#1V2@Kr2# D v

1S V̇@H2#1
cV

rh
@G2# Du50

where @M# and @Ke# are the mass and elastic stiffness matric
respectively;@C# and @G# are the damping and gyroscopic matr
ces, respectively;@Kr # and @H# are geometric stiffness matrice
due to the centripetal acceleration and the angular accelera
respectively;u and v are vectors formed by all nodal paramet
vectorsuj

e andvj
e , respectively, and a overdot denotes a differe

tiation with respect to timet. Note that all the matrices excep
@Ke# are of block-diagonal forms.

Equation~11! is a set of coupled ordinary differential equation
with variable coefficients. If the spin rate of the disk can be e
pressed as the sum of a constant speedVo and a small periodic
perturbationV1(t), i.e., V5Vo1V1(t), Eq. ~11! can be com-
bined together and rewritten in the nondimensional form as

@M #p912mVo~a@C#1@G# !p81$@Ke#1m2Vo
2~@Kr #

12a@G# !%p522mV1@G#p82$m2~2VoV11V1
2!@Kr #

1mV18@H#12am2VoV1@G#%p (12)

wherea5c/2rhVo , m5Arhb4/D, p5@v
u#,

@M #5F @M1# @0#

@0# @M2#
G @C#5F @C1# @0#

@0# @C2#
G

@G#5F @0# @G1#

@G2# @0#
G ,

@Ke#5F @Ke1# @0#

@0# @Ke2#
G @Kr #5F @Kr1# @0#

@0# @Kr2#
G

@H#5F @0# @H1#

@H2# @0#
G ,

and a prime denotes a differentiation with respect to the dim
sionless temporal variablet5tAD/rhb4. Note that the matrices
@M#, @C#, and @Kr # are symmetric, while@G#, @H#, and @Ke# are
asymmetric. To improve the solvability of Eq.~12!, a modal
analysis is then applied to uncouple the undamped, autonom
terms in the system equation. Since the matrix@Ke# is asymmetric
in this case, rewrite Eq.~12! into the following set of the first-
order differential equations,

F @M # @0#

@0# @ I #
Gq81F2mVo@G# @Kt#

2@ I # @0#
Gq

522aFmVo@C# @0#

@0# @0#
Gq22aS 11

V1

Vo
D

3F @0# m2Vo
2@G#

@0# @0#
Gq

22
V1

Vo
FmVo@G# @0#

@0# @0#
Gq2

V18

Vo
F @0# mVo@H#

@0# @0#
Gq

2S 2
V1

Vo
1

V1
2

Vo
2D F @0# m2Vo

2@Kr #

@0# @0#
Gq (13)

where @Kt#5@Ke#1m2Vo
2@Kr #; @I# is an identity matrix, and

q5@p
p8#.

The eigenvalues of the corresponding undamped, autonom
system in Eq.~13! appear in complex conjugate pairs, i.e.,ln
5gn6 ivn , n51,2, . . . ,N, where N is the total degrees-of-
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freedom of the discretized system defined by Eq.~12!, andvn are
the nondimensional natural frequencies of the disk with a cons
spin rateVo . When the natural mode is stable, the real part of
corresponding eigenvaluegn is zero. If gn becomes positive, the
natural mode corresponding to this eigenvalue is unstable. I
addition, the imaginary part of this eigenvaluevn is equal to 0,
the mode experiences the so-called divergence-type instabilit
the imaginary parts of two eigenvalueslm and ln which have
positive real parts are equal, i.e.,vm5vn , these two modes ex
perience the so-called flutter-type instability. The normalized ri
and left eigenvectors of the corresponding undamped, autonom
system in Eq.~13! also appear in complex conjugate pairs, i.e.

x2n215an1 ibn , x2n5an2 ibn

y2n215dn1 ien , y2n5dn2 ien , n51,2, . . . ,N

wherexj andyj are normalized right and left eigenvectors, resp
tively; an anddn are real parts ofx2n21 andy2n21 , respectively;
bn and en are imaginary parts ofx2n21 and y2n21 , respectively.
Due to the biorthogonality of the right and left eigenvectors,an ,
bn , dn anden have the following properties~@19#!,

dj
TF @M # @0#

@0# @ I#
Gak52ej

TF @M # @0#

@0# @ I #
Gbk5

1

2
d jk

ej
TF @M # @0#

@0# @ I#
Gak52dj

TF @M # @0#

@0# @ I #
Gbk50

(14)

dj
TF2mVo@G# @Kt#

2@ I # @0#
Gak52ej

TF2mVo@G# @Kt#

2@ I # @0#
Gbk52

1

2
g jd jk

ej
TF2mVo@G# @Kt#

2@ I # @0#
Gak52dj

TF2mVo@G# @Kt#

2@ I # @0#
Gbk52

1

2
v jd jk

whered jk is the Kronecker delta function.
Consider the case that the disk is stable when the spin ra

constant, i.e., all the real parts of the eigenvaluesgn are zero.
Introduce now a linear transformationq5@a1 ,b1 , . . . ,aN ,bN#z.
Substituting this transformation into Eq.~13!, premultiplying the
matrix @d1 ,2e1 , . . . ,dN ,2eN#T and using the orthogonality in
Eq. ~14! yields the following partially uncoupled equation:

z81@L#z522H 2a@C* #12aS 11
V1

Vo
D @S* #12

V1

Vo
@G* #

1
V18

Vo
@H* #1S 2

V1

Vo
1

V1
2

Vo
2D @K* #J z (15)

where@L#5block2diag.@vn 0
0 2vn#

@C* #5@d1 ,2e1 , . . . ,dN ,2eN#TFmVo@C# @0#

@0# @0#
G

3@a1 ,b1 , . . . ,aN ,bN#

@S* #5@d1 ,2e1 , . . . ,dN ,2eN#TF @0# m2Vo
2@G#

@0# @0#
G

3@a1 ,b1 , . . . ,aN ,bN#

@G* #5@d1 ,2e1 , . . . ,dN ,2eN#TFmVo@G# @0#

@0# @0#
G

3@a1 ,b1 , . . . ,aN ,bN#

@H* #5@d1 ,2e1 , . . . ,dN ,2eN#TF @0# mVo@H#

@0# @0#
G

3@a1 ,b1 , . . . ,aN ,bN#
Journal of Applied Mechanics
tant
he

, in

. If

ht
ous

,

c-

e is

@K* #5@d1 ,2e1 , . . . ,dN ,2eN#TF @0# m2Vo
2@Kr #

@0# @0#
G

3@a1 ,b1 , . . . ,aN ,bN#.

The terms on the left-hand side of Eq.~15! are uncoupled in a
blockwise sense; however, those on the right-hand side of
equation are still coupled together. To match the form of the m
trix @L#, the matrices on the right-hand side are partitioned intoN2

blocks of 232 matrices. Consequently, Eq.~15! can be rewritten
into the following form:

jn82vnhn524a(
r 51

N

~cnr
11j r1cnr

12h r !24aS 11
V1

Vo
D

3(
r 51

N

~snr
11j r1snr

12h r !24
V1

Vo
(
r 51

N

~gnr
11j r1gnr

12h r !

22
V18

Vo
(
r 51

N

~hnr
11j r1hnr

12h r !

22S 2
V1

Vo
1

V1
2
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Vo
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n51,2, . . . ,N

wherejn and hn are the (2n21)th and 2nth entries ofz; cnr
i j ,

snr
i j , gnr

i j , hnr
i j , andknr

i j are thei 2 j th entries of then2r th blocks
of @C* #, @S* #, @G* #, @H* #, and@K* #, respectively.

Perturbation Analysis
Equation~16! represents a set of simultaneous ordinary diff

ential equations and has no exact solutions. However, if the ri
hand side of the equation is small in some senses, perturba
methods can be utilized to obtain analytical solutions. In t
work, the angular speed perturbationV1 is assumed to be peri
odic. Hence, it can be expanded into a Fourier series of the f

V1~t!5 (
m52M

M

kmeimbt (17)

whereb is called the perturbation frequency. Since the speed
turbationV1 is small as compared with the steady speedVo , the
magnitude of each Fourier coefficientkm is also small as com-
pared with Vo . Therefore, the small parametere appearing in the
perturbation technique is defined ase5ukMu/Vo here.

In this work, the method of multiple scales is used to find
analytical solution of Eq.~16!. By introducing new independen
variablesTj5e jt, j 50,1,2, . . . , it follows that the derivatives
with respect tot become expansions in terms of the partial d
rivatives with respect toTj , @20#, i.e., d/dt5D01eD11 . . . . It
is assumed that the solution of Eq.~16! can be represented by
uniformly valid expansion having the form

jn~t,e!5jn0~T0 ,T1 , . . . !1ejn1~T0 ,T1 , . . . !1 . . . (18)
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hn~t,e!5hn0~T0 ,T1 , . . . !1ehn1~T0 ,T1 , . . . !1 . . . .

Due to the complexity of the problem, the expansion is carried
to the order ofe. Substituting Eq.~18! into Eq. ~16! and equating
the coefficients of like powers ofe yields the following equations

Order 1

D0jn02vnhn050
(19)

D0hn01vnjn050

Order e

D0jn12vnhn1

52D1jn024â(
r 51

N

~cnr
11j r1cnr

12h r !

24â(
r 51

N

~snr
11j r1snr

12h r !

24(
m51

M

k̂meibmt
•(

r 51

N

~gnr
11j r1gnr

12h r !

22(
m51

M

ibmk̂meibmt
•(

r 51

N

~hnr
11j r1hnr

12h r !

24(
m51

M

k̂meibmt
•(

r 51

N

~knr
11j r1knr

12h r !1c.c.

(20)
D0hn11vnjn1

52D1hn024â(
r 51

N

~cnr
21j r1cnr

22h r !

24â(
r 51

N

~snr
21j r1snr

22h r !

24(
m51

M

k̂meibmt
•(

r 51

N

~gnr
21j r1gnr

22h r !

22(
m51

M

ibmk̂meibmt
•(

r 51

N

~hnr
21j r1hnr

22h r !

24(
m51

M

k̂meibmt
•(

r 51

N

~knr
21j r1knr

22h r !1c.c.

where k̂m5km /ukMu, bm5mb, and c.c. denotes the comple
conjugate of the preceding terms. In the above equation,k050 is
assumed without loss of generality, anda5eâ is assumed to have
the damping term appearing in the same order as the first ex
tion term. To this order of approximation, four cases of reson
combinations of frequencies have to be considered.

I The Case ofbm Away Fromvp6vq. When the requency o
the excitationbm is away fromvp6vq , one speaks of a nonreso
nant case. In this case, the secular terms are eliminated from
~20! if the amplitude ofjn0 has the form,

An~T1!5ane22âcnT1 (21)

wherean is an arbitrary function ofT2 , andcn5cnn
111cnn

221snn
11

1snn
22 . Note that the above equation is obtained as a resul

cnn
125cnn

21 andsnn
125snn

21 . The former is due to the symmetry of th
matrix @C* #, and the latter is observed during the course of n
merical computation. The amplitudeAn will decay with time, and
hence the system is always stable ifcn.0. In the course of nu-
merical computation, it is interesting to find thatcn is always
equal to 0.5 unless the system configuration falls with
454 Õ Vol. 71, JULY 2004
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divergence–or flutter-type instability zones, wherecn is negative.
Therefore, unless the system is experiencing divergence
flutter-type instability, the system is stable when the excitat
frequency is away from the sum or difference of any two natu
frequencies.

II The Case ofbm Near vp1vq. When the frequency of the
excitation bm is nearvp1vq , a combination resonance of th
summed-type exists between thepth andqth modes. By eliminat-
ing the secular terms from Eq.~20! yields the expressions for th
transition curves which separate the stable regions from the
stable regions,

bm5vp1vq6eF S LpqL̄qp

cpcq
2â2D ~cp1cq!2G1/2

1O~e2!

(22)
where

cp5cpp
111cpp

221spp
111spp

22 , cq5cqq
111cqq

221sqq
111sqq

22 ,

Lpq5@~22ikpq
2122kpq

2222igpq
2122gpq

221bmhpq
212 ibmhpq

22!

2~22kpq
1112ikpq

1222gpq
1112igpq

122 ibmhpq
112bmhpq

12!#k̂m

L̄qp5@~2ikqp
2122kqp

2212igqp
2122gqp

221bmhqp
211 ibmhqp

22!

2~22kqp
1122ikqp

1222gqp
1122igqp

121 ibmhqp
112bmhqp

12!#k̂m .

If there is no damping in the system, the transition curves beco

bm5vp1vq62eALpqL̄qp1O~e2!. (23)

In the course of numerical computation, one finds thatLpq and
L̄qp are either real or pure imaginary simultaneously. Therefo
transition curves exist ifLpq and L̄qp have the same sign whe
they are real, and have opposite signs when they are pure im
nary.

III The Case ofbm Nearvp2vq. When the frequency of the
excitationbm is close tovp2vq , a combination resonance of th
difference-type exists between thepth andqth modes. Similarly,
by eliminating the secular terms from Eq.~20! yields the expres-
sions for the transition curves

bm5vp2vq6eF S LpqLqp

cpcq
2â2D ~cp1cq!2G1/2

1O~e2!

(24)
wherecp andcq are defined in the same way as the previous ca
while

Lpq5@~22ikpq
2112kpq

2222igpq
2112gpq

221bmhpq
211 ibmhpq

22!

2~22kpq
1112ikpq

1222gpq
1112igpq

122 ibmhpq
111bmhpq

12!#k̂m

Lqp5@~22ikqp
2112kqp

2222igqp
2112gqp

222bmhqp
212 ibmhqp

22!

2~22kqp
1122ikqp

1222gqp
1122igqp

121 ibmhqp
112bmhqp

12!#k̂m .

Again thatLpq andLqp are either real or pure imaginary simu
taneously is observed during the course of numerical computa
Therefore, transition curves exist ifLpq and Lqp have the same
sign when they are real, and have opposite signs when they
pure imaginary.

IV The Case ofbm Near vp1vq and vq1vr. In this case,
bm is simultaneously nearvp1vq andvq1v r , and there are no
other resonances to this order. To express the nearness ofbm to
vp1vq andvq1v r , one introduces two detuning parameterss1
ands2 defined by

bm5vp1vq1es1 , bm5vq1v r1es2 . (25)

It follows that the secular terms in Eq.~20! are eliminated if

D1Ap1âcpAp1LpqĀqeis1T150

D1Aq1âcqAq1LqpĀpeis1T11LqrĀre
is2T150 (26)

D1Ar1âcrAr1L rqĀqeis2T150
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whereAp , Aq , andAr are the amplitudes ofjp0 , jq0 , andj r0 ,
respectively.Lpq and Lqp are the same as those defined in E
~22!, and Lqr and L rq are defined in a similar way. The abov
equation admits solutions having the form

Ap5apei ~ l̄1s1!T1, Aq5aqe2 ilT1, Ar5are
i ~ l̄1s2!T1

(27)

whereap , aq , and ar are complex functions ofT2 , andl is a
complex number. Substituting Eq.~27! into Eq.~26! yields a set of
algebraic equations inap , āq , andar . To have nontrivial solu-
tions ofap , āq , andar , the determinant of the coefficient matri
must vanish, andl must be real also to have stable response of
system. This results in a cubic equation inl,

l31 p̂~s1 ,s2 ,e!l21q̂~s1 ,s2 ,e!l1 r̂ ~s1 ,s2 ,e!50, (28)

where the coefficientsp̂, q̂, andr̂ are functions ofs1 , s2 , ande.
To guarantee all three roots being real, the coefficients of
cubic equation, so ares1 , s2 , ande, must satisfy the following
relationship:

1

4
~2p̂329p̂q̂127r̂ !21~3q̂2 p̂2!3<0. (29)

From the above relationship, the transition curves can be obtai
The transition curves correspond to the values ofbm for which l
has at least two real, equal roots.

Numerical Results and Discussions
Before presenting the numerical results for the stability ana

sis, verification of the finite element formulation is taken by co
sidering the free vibration problem of a spinning disk with a co
stant spin rate subjected to a stationary concentrated edge lo
the radial direction. According to Chen’s study@10#, the maximum
number of nodal diametersJ in Eq. ~9! and the number of ele
ments in the radial direction are chosen to be 3 and 6, respecti
Figure 2 shows the natural frequencies of the zero-nodal-ci
modes of a spinning disk with a constant spin rate subjected
conservative, concentrated and compressive edge loadFc . There
are two sets of curves in this figure. The light curves are
results for the freely spinning disk, while the heavy curves are

Fig. 2 The natural frequencies of the zero-nodal-circle modes
of a spinning disk with a constant spin rate subjected to a con-
servative, concentrated and compressive edge load. aÕbÄ0.5,
nÄ0.27. Heavy line: Fcb 2ÕDÄ3.5, light line: Fcb 2ÕDÄ0.
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results for the disk subjected to an edge loadFcb
2/D53.5. In this

figure,n f , nb, andnr denote the forward, backward and reflect
modes with n nodal diameters, respectively. It is observed fr
the figure that the compressive edge load tends to decreas
natural frequencies of the forward and backward modes bu
increase the natural frequencies of the reflected modes. Fur
more, the conservative, compressive edge load induce
divergence-type instability~an unstable mode with a zero natur
frequency! before the critical speed, the speed at which a natu
frequency of a freely spinning disk becomes zero, and a flut
type instability~two unstable modes having the same natural f
quency! beyond the critical speed when the 3r reflected mode
meets the 2b backward mode. At the intersection point betwe
two light curves, i.e., the degenerate modes of a freely spinn
disk, the natural frequencies will be separated upon the app
tion of the edge load. One of the natural frequencies rema
unchanged, while the other lowers. Note that the results in Fig
are identical to those obtained previously by Chen@10#, which
proves that the finite element formulation in this work is corre
The natural frequencies of the one-nodal-circle modes are sev
times higher than those of the zero-nodal-circle modes. Since
lowest few modes are relatively important in vibration, we w
focus on the zero-nodal-circle modes hereafter.

As an example of application of the general solutions obtain
in this work, the speed perturbationV1(t) is taken asV1(t)
5k cosbt, wherek is assumed to be small as compared with t
average spin rateVo , andb is the nondimensionalized perturba
tion frequency. Hence, the small parametere appearing in the
perturbation technique is defined ase5k/Vo . Figure 3 presents
the width parameters W of unstable regions of an undamp
freely spinning disk with a harmonically varying spin rate. Th

width parameterW is defined asALpqL̄qp for sum-type reso-
nances orALpqLqp for difference-type resonances. In this figur
solid curves represent sum-type resonances, while a dash c
represents a difference-type resonance. It is found that comb
tion resonances will not take place between modes having di
ent nodal diameters. This can be explained as follows: Recall
all the matrices except@Ke# in Eq. ~11! have block-diagonal
forms, and coupling is caused by the initial stresses induced by
stationary edge load. For a freely spinning disk, the equations
modes having different nodal diameters are mutually independ
Consequently, combination resonances will not occur betw

Fig. 3 The width parameters of unstable regions of a freely
spinning disk with a harmonically varying spin rate. aÕbÄ0.5,
nÄ0.27, aÄ0, Fcb 2ÕDÄ0.
JULY 2004, Vol. 71 Õ 455
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modes with different nodal diameters in the absence of the
tionary edge load. In addition, sum-type resonances occur
tween forward and backward modes, while difference-type re
nances occur between forward and reflected modes. The w
parameters of sum-type and difference-type resonances rise
increasing spin rates, but the width parameters of main resona
(b52vn) are always 0.

Figure 4 depicts the width parametersW of some specific un-
stable regions of an undamped, spinning disk with a harmonic
varying spin rate subjected to a conservative, concentrated
compressive edge load. Again six solid curves represent the s
type resonances between the 3f mode and the 2f , 1f , 0, 1b, 2b,
and 3b modes, respectively, while the dash curve represents
difference-type resonance between the 3f mode and 3r mode. In
this figure, there are two protrusions, where the width param
tends to infinity. The left one corresponds to a divergence-t
instability, and the right one corresponds to a flutter-type insta
ity. Compared with Fig. 3, one discovers that the envelope
these seven curves is closely related to but somewhat higher
the (3f 13b) and (3f 23r ) curve in Fig. 3. This is attributed to
the fact that the 3b mode of the freely spinning disk resolves in
parts of the 2f , 1f , 0, 1b, 2b, and 3b modes of the disk sub
jected to the edge load, as shown in Fig. 2, and the disk is de
bilizing when subjected to compressive edge loads. Similar p
nomena can also be observed between the 2f mode and the 1b,
2b, and 3b modes, the 1f mode and the 0, 1b, and 2b modes,
and the 0 mode and the 0, 1b, and 2b modes. The maximum
width parameters of all other resonances are relatively small.

The central frequencies of unstable regions of a spinning d
with a harmonically varying spin rate subjected to a conservat
concentrated and compressive edge load are illustrated in Fi
In this figure, heavy solid curves, light solid curves and da
curves denote main resonances, sum-type resonances
difference-type resonances, respectively. The figure shows
sum-type resonances occur between two modes being both
flected or both nonreflected modes, while difference-type re
nances take place between one reflected and one nonrefl
modes. This phenomenon was also observed previously by C
@11# when he studied the problem of a spinning disk under spa
fixed pulsating edge loads. It is evident that whether sum-typ

Fig. 4 The width parameters of specific unstable regions of a
spinning disk with a harmonically varying spin rate subjected
to a conservative, concentrated and compressive edge load.
aÕbÄ0.5, nÄ0.27, aÄ0, Fcb 2ÕDÄ1.0.
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difference-type resonances will come about is decided by
characteristics of each mode of the disk but not by the charac
istics of the excitation.

Figure 6 presents the lowest few unstable regions of a spinn
disk with a harmonically varying spin rate subjected to a cons
vative, uniformly distributed and compressive edge load of int
sity f cb

3/D53.5. In this figure, the average spin rateVo is equal
to half of the lowest natural frequency of the corresponding fr
nonrotating disk. According to Fig. 4, the maximum width para
eters of the unstable regions shown in this figure are relativ
small as compared with those of the sum-type resonances bet
the 3f mode and the 3b, 2b, 1b modes, etc. Fortunately, thos
unstable regions with larger maximum width parameters belon
the higher frequency domain. Looking into~a! through ~c!, one
finds that the unstable regions, which lie within a pair of stabil
boundaries, enlarge initially as the load distribution angle
creases and reach maximum as the edge load distributed ove
a circle. A further increase in the load distribution angle will ge
erally reduce their size. However, the unstable regions co
sponding to the sum-type resonances between the 3f mode and
the 3b, 2b, 1b modes, etc., will still enlarge for a further increas
in the load distribution angle. The reason is that the envelope
the width parameter curves of these resonances will rise once
load distribution widens because the total edge load applied
creases also. As the edge load distributed over the whole ci
the natural frequency curves look like the light curves shown
Fig. 2 for the freely spinning disk, and the unstable regions sho
in this figure will disappear, leaving only unstable regions of co
bination resonances between modes having the same nodal d
eter, like the case of the freely spinning disk. In addition,
unstable regions shift toward the lower frequency domain as
load distribution widens.

Conclusions
Dynamic stability of a disk with a periodically varying spin ra

subjected to a stationary in-plane edge load has been studied
analytically and numerically. Due to the complexity of the pro
lem, only the first order approximation was presented, an
simple perturbation function was considered to provide numer

Fig. 5 The central frequencies of unstable regions of a spin-
ning disk with a harmonically varying spin rate subjected to a
conservative, concentrated and compressive edge load. aÕb
Ä0.5, nÄ0.27, aÄ0, Fcb 2ÕDÄ3.5.
Transactions of the ASME
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Fig. 6 Effects of the distribution angle of a conservative, uniformly distributed and compressive
edge load on the stability boundaries of a spinning disk with a harmonically varying spin rate.
aÕbÄ0.5, f cb 3ÕDÄ3.5, VoArhb 4ÕDÄ5.6372.
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illustrations of the general solutions. However, solutions for m
general periodic functions can be easily generated for the first
approximations.

From the above numerical results, the following conclusio
can be drawn:

1. For a freely spinning disk with a harmonically varying sp
rate, combination resonances will not take place betw
modes having different nodal diameters; moreover, sum-t
resonances occur between forward and backward mo
while difference-type resonances occur between forward
reflected modes.

2. When the stationary in-plane edge load is applied, comb
tion resonances may occur between modes having diffe
nodal diameters; sum-type resonances come about betw
two modes being both reflected or both nonreflected, wh
difference-type resonances come about between one
flected and one nonreflected modes.

3. The envelope of the width parameter curves of combina
resonances between the forward mode and the modes w
portions constitute the corresponding backward mode of
freely spinning disk is closely related to the width parame
curve of the combination resonance between the mode
the freely spinning disk having the same nodal diameter. T
maximum width parameters of all other resonances are r
tively small.

4. Generally speaking, when the stationary in-plane edge
is uniformly distributed, the lowest few unstable region
whose maximum width parameters are relatively small, te
to enlarge at first as the load distribution widens and to re
maximum as the load distributed over half a circle. A furth
increase in the load distribution angle tends to reduce
lowest few unstable regions.
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Influence of Surface Roughness
on Shear Flow
The local planar flow of incompressible fluid past an obstacle of semi-circular c
section is considered, the obstacle being mounted on a long flat surface. The fa
motion is one of uniform shear. Direct numerical solutions of the Navier-Stokes equa
are described over a range of Reynolds numbers. The downstream eddy length a
stream position of maximum pressure gradient are found to agree with increased Rey
number theory; in particular the agreement for the former quantity is close for Reyn
numbers above about 50.@DOI: 10.1115/1.1767842#
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Introduction
A distribution of roughness elements along an otherw

smooth wall boundary surface can significantly alter the dyna
process of the flow. It is also connected with turbulence promo
located on a surface for the sake of mass transfer enhancem
The fluid flow past a roughness or roughnesses on an other
smooth solid surface is of concern in several physical setti
such as atmospheric boundary layer over hills, wind over wa
uneven terrain and buildings in the atmospheric boundary laye
is also of concern in external aerodynamics, turbomachinary fl
and physiological flows. Flow past a surface mounted obstac
further relevant to a variety of engineering problems such as fl
past excrescences in pipes, the Gurney-flap device placed o
airfoil or blade, chips mounted on a PC-board in electronic equ
ment and so on.

The surface mounted blunt obstacle provokes both a separ
upstream and a large eddy downstream of the obstacle. Flow s
ration has a considerable impact on the flow structure and
been the subject of intensive study for many years. A numbe
experimental and computational studies on flow past large-s
obstacle have been made experimentally as well as computa
ally. One striking phenomenon is the upstream appearance of
nificant three-dimensional separation, due to inviscid feedbac
pressure, along with so-called necklace vortices which then s
around the extreme spanwise edges or wing-tips of the obs
before trailing downstream; near the outer boundary of the
stream separation bubble in two dimension, an adverse pres
gradient exists in the flow in the sense that there is increa
pressure in the direction of the main flow. The form of the u
stream recirculating eddy and the parameters which influence
upstream separation were studied extensively by Smith and W
ton @1# and later by Bhattacharyya et al.@2#. There it was shown
through theoretical analysis using nonlinear reasoning and d
computation on the Navier-Stokes equations that the upstr
separation distance elongates with increasing Reynolds numb

A number of experimental and computational studies of bou
ary layer flows~either external or internal! over surface-mounted
obstacles have focused on the overall features of the flow, suc
velocity, downstream reattachment length and surface pres
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distribution, e.g., Durst and Loy@3#, Williams and Baker@4#,
Chang and Sheu@5#, and Giguere@6# has shown through experi
ment that, by placing a tiny normal flap~a so-called Gurney flap!
near the trailing edge of an airfoil or blade, an increase in lift a
reduction in drag could be produced. Recently Smith@7# and oth-
ers have studied the advantages of a flap being buried within
trailing-edge boundary layer.

Martinuzzi and Tropea@8# studied experimentally the flow field
around surface-mounted prismatic obstacle. There they obse
that the flow in the recirculation region upstream of the obsta
develops a cellular structure and passes over the obstacle a
preferred paths. The turbulent flow structure and distribution
the heat transfer coefficient of a wall-mounted cube in a spati
periodic matrix flow were studied experimentally by Meinde
and Hanjalic@9#.

In this study, we consider the steady planar flow past an
stacle so small and close to the flat surface that the surroun
fluid motion, that is the far-field flow as far as the obstacle
concerned may be viewed as uniform shear flow. The shape o
obstacle considered is semi-circular. The obstacle is mounte
a fixed surface and surface is infinitely long. The fluid occup
the semi-infinite region above the surface. A prime reason
addressing this problem is that, although Bhattacharyya et al@2#
showed good agreement with theory in the case of partic
straight-sided obstacles in the shape of a normal flap or recta
lar block, the theory is supposedly valid for any shape; hence
present focus on a fundamental curved shape, the semi-circ
direct numerical simulation of the Navier-Stokes equations is
dertaken below to compute the flow fields at various Reyno
numbers, following which comparisons are made with the th
retical analysis.

Formulation and Mathematical Equations
We consider a surface lying along thex-axis and supporting an

obstacle in the form of a semi-circle of radiusR with center at the
origin ~Fig. 1!. The viscous incompressible fluid occupies t
semi-infinite regiony.0. A polar coordinate system is used su
that (x,y)5(r cosu,r sinu) with y50 as the initial line. Introduc-
ing the stream functionC such that

v r5
1

r

]C

]u
, vu52

]C

]r
. (1)

The two momentum equations can be combined to form the v
ticity transport equation as

1;
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Fig. 1 Sketch of the flow configuration in nondimensional terms
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where the vorticityv is given by

v52¹2C (3)

and

¹25
]2

]r 2
1

1

r

]

]r
1

1

r 2

]2

]u2
. (4)

These are subject to the boundary conditions

u5v50

on the obstacle and flat plate,

u;y, v50 as x21y2→`.

The form of the obstacle is taken to be x21y25R2. In order to
achieve a more accurate numerical solution, it is essential to h
a finer grid near the obstacle. This can be accomplished by us
the log-polar coordinate transformation given by

r

R
5exp~aj!, u5ah,

wherea is the transformation parameter which is equal top in this
study. This log-polar coordinate transformation allows us to h
a uniform grid in a transformed rectangular domain.

Using the shear to define the Reynolds number as her
equivalent to defining the Reynolds number based on a he
typical of the roughness element height, and the shear-layer
locity at the former height, as the normalizing length and veloc
respectively. The nondimensional variables are defined as

c5
C

RU
, z5

vR

U
, t5

tU

R
, Re5

RU

n
.

The vorticity transport equation in its dimensionless form th
reads

g~j!
]z

]t
1

]c

]h

]z

]j
2

]c

]j

]z

]h
5

1

ReS ]2z

]j2
1

]2z

]h2D (5)

g~j!z52S ]2c

]j2
1

]2c

]h2D (6)

whereg(j)5a2 exp(2aj).
The boundary conditions are given by
460 Õ Vol. 71, JULY 2004
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u5v50 at j50, 0<h<1,

on the obstacle

u5v50 at h50 and h51, 0,j,`

u;exp~aj!sin~ah!, v50 as j→`.

We define the surface pressure coefficient asCp5(p
2p`)/rU2, wherep` is the pressure at the far-field andr is the
density of the fluid.

Computational Method
The vorticity transport Eq.~5! and the Poisson equation for th

stream function~6! are solved using an upwind spatial differen
scheme and the ADI scheme for the time derivative discretizat

Flows that are dominated by convection as here suffer fo
numerical instability at high values of the Reynolds number.
suppress such instability upwind differencing in the convect
terms can be employed. The artificial dissipation introduced
the upwind difference scheme stabilizes the numerical solutio
high values of the Reynolds numbers. The following quasiline
ization is used for the convective terms:

@uzx#
n115un@zx#

n11, (7)

with the superscriptn represents the time step. The spatial deriv
tives in ~7! are approximated as

ui , j
n @zx#

n115ui , j
n $z i 12,j

n11 22z i 11,j
n11 19z i , j

n11210z i 21,j
n11

12z i 22,j
n11 %/~6dx! for ui , j

n positive, (8)

and

ui , j
n $22z i 12,j

n11 110z i 11,j
n11 29z i , j

n1112z i 21,j
n11

2z i 22,j
n11 %/~6dx! for ui , j

n negative. (9)

The truncation error of this scheme is given by

1

4
~dx!3Fui , j

n
]4z

]x4
G .

The diffusion terms~second-order derivatives! are discretized
through the central difference scheme. At every fractional ti
step the Poisson Eq.~6! for the stream function is solved itera
tively using SOR technique.
Transactions of the ASME
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Fig. 2 Influences of the grid sizes on the wall shear zw along the flat surface for
ReÄ50
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To check the grid dependency of the numerical solutions, nu
ber of grids were made to range between 50350 and 90390 at
Reynolds number 50. Figure 2 shows the effects of grid size
the wall vorticity zw . The effects of gird size on the solution a
found to be minimal. We found that a nonuniform grid size .01
3.0167 near the obstacle produces the optimal solution at Re550.
For higher Re we chose a much finer grid so as to reduce the
size near the far-field in the physical domain. The time step w
taken as 0.001 originally but was increased in subsequ
time t.

Results and Discussions
Solutions were obtained for various values of Reynolds num

~Re<400! withs the obstacle taken as a semi-circle mounted o
flat surface. In the upstream part of the flow a viscous wall la
close to the flat surface must be produced, for increased
echanics
m-

on
e
59

grid
as
ent

ber
n a
er
Re

values. This boundary layer separates at an upstream position
joins to the thinner boundary layer on the obstacle itself. This t
boundary layer proceeds downstream through a second separ
from the obstacle to form a thin free-shear layer. The free-sh
layer then emerges almost horizontally atop the long eddy
downstream. Closure of that downstream eddy and a flo
reattachment process to the surface then take place on a m
longer length scale.

Figure 3 shows the streamlines for Reynolds number 400.
found the presence of a downstream eddy even at smaller R
nolds numbers of 5 and less. According to Dean-Moffatt lo
analysis both downstream and upstream eddy exist in the St
limit of zero Re for a blunt two-dimensional roughness elemen
a shear flow. The length of the downstream large-scale separa
eddy increases in size with an increase of Reynolds number
increase in Re means that~for example! the velocity increases and
it makes the separated flow regions expand and the separated
Fig. 3 Streamlines at Re Ä400
JULY 2004, Vol. 71 Õ 461
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Fig. 4 Vorticity contours at Re Ä300
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strength increased. It is clear from the figures that the center o
eddy shifts away from the obstacle as Re increases. The la
scale separation itself is a sudden localized process involvin
relatively abrupt adverse pressure gradient.

The streamline patterns show the appearance of an upst
recirculation region very close to the obstacle. The upstream s
ration point x1 lies between21.17,x1,21.13 at Re5100
which shifts towards upstream to21.28,x1,21.25 at Re5400.
Part of the high-inertia fluid flow is deflected on the front face
the obstacle back upstream in a jet adjacent to the wall. This fl
moves with the pressure gradient. As the flow there loses ene
it rolls up to from recirculating zones. We found that the upstre
separation length is small and remains almost invariant un
variations in the Reynolds number.

Figure 4 gives the vorticity contours for Re5300. In the above
figure we have presented the equi-vorticity lines. The decay of
vortex strength in the transverse direction is rather fast comp
2004
the
rge-
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eam
pa-

of
uid
rgy,
m

der

the
red

with that in the stream wise direction. Within the recirculatio
regions the value of the vorticity changes sign when one follow
closed streamline. Other numerical results not presented
show that an increase in Reynolds number leads to an increa
vortex strength. This is basically because an increase in Reyn
number reduces the boundary layer thickness on the obs
which results in a higher vorticity distribution in the separat
region.

The surface vorticity distributions are presented in Fig. 5 for
of 100, 200, 300, 400. The wall vorticity on the upstream fl
surface near the obstacle rapidly passes through zero and cha
sign, compared with the more gradual development over the
of the surface.

The effect on the downstream separation length (x2) due to
variations of Reynolds number is presented in Fig. 6. The do
stream separation length increases as the Reynolds numbe
creases. A near-linear variation of the downstream separa
Fig. 5 Effects of Reynolds number on surface vorticity zw along the flat surface
Transactions of the ASME
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Fig. 6 Effects of Reynolds number on downstream reattachment point x 2 ;—theoretically
predicted results
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length with Reynolds number is evident from the figure, ov
almost all Reynolds numbers. This observation is in agreem
with the theoretical prediction of Smith and Daniels@10#. Further,
the eddy length tends to a finite nonzero value as Re tends to
as in the flow studied by Dennis and Smith@11#.

The distribution of surface pressure along the obstacle is
sented in Fig. 7. The maximum pressure occurs at or near
point where the flow separates from the obstacle.

The pressure distribution on the flat surface both upstream
downstream is presented on Fig. 8 at Re of 100, 200, 300,
There is not much change in pressure in the upstream portio
the flow. In the downstream position the surface pressure is q
high. The downstream surface pressure alters with a variatio
Reynolds number. This difference in pressure distribution
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associated with the variation of the distance required for vor
formation behind the obstacle and the strength of the formed
tices, as described earlier in this section.

Finally, it is worth pointing out that the theory above also pr
dicts a gradual increase of upstream eddy length with Re. Ind
at all Reynolds numbers there must be eddies, if only very sm
ones, sufficiently close to the geometrical corners, according
the Dean-Moffatt local analysis. It appears that significant grow
of the upstream eddy with Re is delayed for the present se
circular obstacle, which makes physical sense when comp
with the blunt noncurved cases studied previously. The cl
agreement, however, on downstream eddy length for Reyn
numbers above approximately 50 and on the position of maxim
pressure gradient is an encouraging feature in the current set
Fig. 7 Surface pressure distribution Cp along the semi-circular obstacle at different Re
JULY 2004, Vol. 71 Õ 463
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Fig. 8 Pressure distribution along the flat surface at different Re
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The Near-Tip Stress Intensity
Factor for a Crack Partially
Penetrating an Inclusion
When a crack is lodged in an inclusion, the difference between the elastic modulus
inclusion and matrix material will cause the near-tip stress intensity factor to be gre
or less than that prevailing in a homogeneous material. A method is derived for calc
tion of the near-tip stress intensity factor for the inclusion with arbitrary shape. T
derivation of the fundamental formula is based on the transformation toughening th
The equivalent transformation strain contributed from modulus difference between i
sion and matrix is calculated from Eshelby equivalent inclusion approach. As validate
numerical examples, the developed formula has excellent accuracy.
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1 Introduction
In two-phase materials, the crack-tip may be lodged within

second-phase particle. Depending on the geometry and mod
difference between the inclusion and matrix material, the crack
stress intensity factor~SIF! may be increased~stress amplifica-
tion! or decreased~stress shielding or toughening!. Hence, the
analysis of stress state for the crack-tip within an inclusion is
importance in understanding the fracture behavior of compo
materials and has received considerable attention,@1–4#. Another
motivation for studying this problem is microcrack toughening
brittle materials,@1,5,6#, where the microcracking process zon
was treated as a particle with reduction in moduli resulting fr
the microcracking.

By using the techniques from complex variable elasticity
gether with numerical computation, the near-tip SIF for a circu
inclusion centered at the tip of a semi-infinite crack can be ca
lated for arbitrary differences in the sets of moduli,@2#. For an
inclusion with arbitrary shape, a closed-form solution to the lo
est order effect of the modulus difference is given by Hutchins
@1#. In this study, we will formulate a method for calculation
the SIF for the crack-tip within an inclusion of arbitrary shap
This method is based on transformation toughening theory
Esbelby equivalent inclusion approach. The accuracy of the s
tion is validated by numerical examples.

2 Mode and Formulation
As shown in Fig. 1~a!, the crack-tip is partially penetrating a

inclusion, which may have an arbitrary shape, but is assume
be symmetrical with respect to the crack plane. The Youn
modulus and Poisson’s ratio of the inclusion,EI and n I , differ
from those of the matrix material,EM andnM . It is assumed that
the size of the inclusion is small compared with crack length a
other dimensions of the crack body. Therefore, the inclusion
within applied remoteK-field and the near-tip fields are assum
to have the same classical form, denoted byK tip :

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Oct. 1
2001; final revision, Sept. 19, 2003. Associate Editor: B. M. Moran. Discussion
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineering
versity of California–Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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s i j 5
K

A2pr
s̃ i j ~u! r→` (2.1)

s i j 5
K tip

A2pr
s̃ i j ~u! r→0. (2.2)

Now, we consider a differential elementdA within the inclu-
sion, which sustains an applied strain fieldeA, exerted by the
remote stress intensityK. The equivalent transformation strain i
dA, eT, is given by

eT5@~CI2CM !S1CM#21~CM2CI !e
A (2.3)

according to Eshelby equivalent inclusion approach,@7,8#, where
S is the Eshelby tensor, dependent solely upon the inclusion sh
and the Poisson’s ratio of the matrix.CI and CM are the elastic
tensors of the inclusion and matrix, respectively. As shown
~2.3!, the equivalent transformation straineT in dA varies with the
applied straineA, and is not zero for an inhomogeneous inclusi
(CIÞCM).

The Eshelby approach is mathematically rigorous for an infin
matrix containing a single ellipsoidal inclusion. When the incl
sion undergoes a uniform stress-free transformation strain,
stress and strain within the inclusion are uniform. However,
order to utilize the approach in more realistic situations, there
been considerable activity in extending Eshelby approach to v
ous problems, such as the interaction of two ellipsoidal inclusio
@9#, the behavior of hybrid composite,@10#, and short fiber-
reinforced composites,@8#, the calculation of the stress fields in
side a nonellipsoidal inclusion which are not uniform,@11#, to cite
only a few examples. In the present study, we extend the Esh
approach to the case of an inclusion with arbitrary shape emb
ded in a crack-tip field. Either the nonellipsoidal shape of t
inclusion considered or the singular crack-tip field will result in
nonuniform stress-strain field within the inclusion. However, w
assume that the Eshelby theory can be used to each differe
element within the inclusion, which undergoes uniform transf
mation strain determined by~2.3! and the resultant stresses
which are uniform. Then a nonuniform transformation strai
therefore also the stresses, inside the inclusion, can be obtaine
integrating~2.3! in the domain of the inclusion.

For simplicity, it is assumed in the present paper that the inc
sion and matrix material are elastic and isotropic and their P
son’s ratios are the same, denoted byn. Then we have

CI5aCM (2.4)

where
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Combining~2.3! and ~2.4!, it gives

eT5LeA (2.6)

where

L5@~a21!S1I #21~12a!. (2.7)

Here,I is the identity tensor. Thus, the tensorL relates the equiva-
lent transformation straineT in the inclusion to the applied strain
eA without going into the details of the form of theCI and CM
tensors. According to transformation toughening theory,@12,13#,
the increment in SIF due to the differential element with transf
mation straineT defined in~2.6! is given by

dKtip
0 5

1

2A2p

EM

12v2
r 23/2V~eab

T ,u!dA (2.8)

for a plane-strain mode I crack, where

V~eab
T ,u!5~e11

T 1e22
T !cos

3u

2
13e12

T cos
5u

2
sinu

1
3

2
~e22

T 2e11
T !sinu sin

5u

2
. (2.9)

It is essential to note that Eq.~2.8! is derived for the case tha
the transformation area have the same moduli with its surrou
ing. Therefore, the elastic modulusEM used in~2.8!, and theK tip

0

is the stress intensify factor for the crack-tip within a medium
same moduli as matrix materials, not the desired factorK tip for the
case shown in Fig. 1~a!.

Fig. 1 Definitions of auxiliary problems „b… and „c… and their
use in construction of the solution to the primary problem „a…
466 Õ Vol. 71, JULY 2004
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To obtain theK tip /K solution for the primary problem in Fig
1~a!, we adopt the method developed by Hutchinson@1#. The
solution is constructed using solutions to two auxiliary proble
denoted by~b! and ~c! in Fig. 1. Once the solutions to the tw
auxiliary problems are in hand, the ratio of the stress intens
factors sought is given by

K tip

K
5S K tip

0

K D Y S K tip
0

K tip
D (2.10)

whereK tip
0 /K is the ratio of the near-tip to remote intensity fact

in the auxiliary problem~b!, and K tip
0 /K tip is the corresponding

ratio in the auxiliary problem~c!.
The solution to the auxiliary problem~b! can be written down

immediately using~2.8!

K tip
0

K
511

EM

2A2p~12n2!K
E

A
r 23/2V~eab

T ,u!dA (2.11)

where the area integral extends over the upper half ofAC , exclud-
ing the inner circular region.

To generate the solution to the auxiliary problem~c!, Hutchin-
son@1# exploited a special regionAC for which K tip /K is known.
The special regionAC is the infinite strip with a centered sem
infinite crack shown in Fig. 2. From a simple energy argument
application of the J-integral~seen~3.15! in the next section for the
case ofn I5nM) the following relation holds:

K tip

K
5Aa (2.12)

exactly for this problem. Then by evaluatingK tip
0 /K for this spe-

cial mode, one can ‘‘back out’’ the desired universal res
K tip

0 /K tip for the auxiliary problem~c! used in~2.10!. The details
for evaluatingK tip

0 /K tip for the auxiliary problem~c!, andK tip
0 /K

for the auxiliary problem~b! will be given in the following
section.

3 The Crack-Tip Stress Intensity Factor
Throughout this paper, it is assumed that the size of the in

sion is small compared with the length of the crack. Under t
condition the applied strain field to the inclusion shown in Fig
1~a! and ~b! is that of the mode I crack controlled by the remo
stress intensity factorK

Fig. 2 Spherical geometry used to infer solution to auxiliary
problem „c… shown in Fig. 1
Transactions of the ASME



e11
A 5

K

EMA2pr
~11v !cos

u

2 F ~122v !2sin
u

2
sin

3u

2 G
e22

A 5
K

EMA2pr
~11v !cos

u

2 F ~122v !1sin
u

2
sin

3u

2 G
e12

A 5
K

EMA2pr
~11v !cos

u

2
sin

u

2
cos

3u

2

e33
A 5e13

A 5e23
A 50 for plane strain

6 .

(3.1)

For a differential element with circular section insideAC , the
components of the Esbelby tensor are given by,@14#,

S11115S11225
524n

8~12n!
, S11225S22115

4n21

8~12n!

S11335S22335
n

2~12n!
, S12125

324n

4~12n!

S13135S23235
1

2
,

6 (3.2)
e

-
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and other components are zero. Substituting~3.2! into ~2.7!, it
gives

L11115L22225
~12a!~12n!~324n15a24na!

~11a22n!~113a24na!

L11225L221152
~12a!2~12n!~124n!

~11a22n!~113a24na!

L11335L22335
~12a!2n

~11a22n!
, L33335~12a!

L12125
4~12a!~12n!

~113a24na!
, L13135L23235

2~12a!

11a

6 ,

(3.3)

and other components of theL tensor are zero.
The transformation strains used in~2.9! are determined by~2.6!
eaa
T 5~L11111L1122!~e11

A 1e22
A !5

4~12a!~122v !~12v2!K

~11a22v !EMA2pr
cos

u

2

e22
T 2e11

T 5~L11112L1122!~e22
A 2e11

A !5
4~12a!~12v2!K

~113a24va!EMA2pr
sinu sin

3u

2

e12
T 5L1212e12

A 5
2~12a!~12v2!K

~113a24va!EMA2pr
sinu cos

3u

2

6 . (3.4)
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Substituting~3.4! and ~2.9! into ~2.11!, we have

K tip
0

K
511

1

p E
0

p

$ ln@R~u!#2 ln r%

3S C1 cos
u

2
cos

3u

2
1C2 sin2 u cosu Ddu

511b1C11b2C2 (3.5)

where

C15
~12a!~122n!

~11a22n!
(3.6)

C25
3~12a!

2~113a24na!
(3.7)

b15
1

p E
0

p

ln@R~u!#cos
u

2
cos

3u

2
du (3.8)

b25
1

p E
0

p

ln@R~u!#sin2 u cosudu. (3.9)

Since the integral*0
p(C1 cosu/2 cos 3u/21C2 sin2 u cosu)du50

in ~3.5!, the ratio ofK tip
0 /K is independent of the radius of th

inner circular corer. It can be also seen thatb1 and b2 are
unchanged whenR(u) is replaced bylR(u) and are thus depen
dent on the shape, but not on the size of the inclusion. WhenAC
is a circular region centered at the crack tip,b15b250. These
characters of the solution to the auxiliary problem~b! are consis-
tent with those obtained by Hutchison@1#.
We return to the problem shown in Fig. 2. The integral in t
definitions of b1 and b2 are easily evaluated for this geomet
(b150.5, b2520.125). Then, the solution to the auxiliary prob
lem ~c! for this geometry is given by

K tip
0

K
5110.5C120.125C2 (3.10)

from ~3.10! and ~2.12!, one immediately obtains the solution fo
the auxiliary problem~c! shown in Fig. 1~c!.

K tip
0

K tip
5

110.5C120.125C2

Aa
(3.11)

By combining ~3.11! and ~3.5! according to~2.10!, the general
solution for the primary problem shown in Fig. 1~a! can be finally
given by

K tip

K
5

Aa~11b1C11b2C2!

110.5C120.125C2
. (3.12)

To obtain an explicit solution, it was assumed in the previo
derivation that the Poisson’s ratios of the inclusion and matrix
the same. This assumption sets a limit to apply the Eq.~3.12! for
more general case. However, this limitation may be relaxed
introduction a modified factor. The J-integral from integratio
contours that circle the crack tip lying outside inclusion is giv
by

J5~12nM
2 !K2/EM (3.13)

while the J-integral for all such contours lying inside inclusion

Jtip5~12n I
2!Ktip

2 /EI . (3.14)

Then one obtains
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J

~12nM
2 !

~12n I
2!

. (3.15)

for the plane-strain condition.
For the case ofn I5nM , ~3.12! and ~3.15! are identical if the

effect of the inclusion onJ can be neglected. This is true becau
we have assumed that the remote stress-strain field is contr
by K, i.e., the perturbation of the small inclusion on the rem
K-field is neglected. Consequently,~3.12! and ~3.15! leads to a
modified factorA(12nM

2 )/(12n I
2) in ~3.12!,

K tip

K
5C0~11b1C11b2C2! (3.16)

where

C05
1

110.5C120.125C2
Aa~12nM

2 !

~12n I
2!

(3.17)

for the case ofn IÞnM . It should be noted that the Poisson’s rat
used inC1 andC2 is nM becauseC1 andC2 are derived from the
remote stain field. As well be seen in following section, the mo
fied formula gives good approximation for the case ofn IÞnM .

4 Numerical Examples
The accuracy of the fundamental formula~3.12! and the modi-

fied formula~3.16! were examined by three numerical example
An exactly numerical solution to circular inclusion centered

the tip of a semi-infinite crack has been given in@2#, which is
firstly used to measure the accuracy of~3.12!. As shown in Fig. 3,
good agreement between our solution and Steif’s results is fo
For comparison, the lowest order solution and the modified low
order results,@1#, are also plotted in Fig. 3. Though the agreeme
is good for the modified lowest order results whenEI /EM,2, it
fails asEI /EM becomes larger than 2.

Detailed finite element analyses were performed for a cen
cracked plate and a three-point bending specimen under p
strain conditions. Identical circular inclusions are centered
each crack tip for the two calculation models. To calculate theK tip
in the finite element analyses, three J-integral contours within
clusion were set around the crack-tip. TheKtip was calculated by
~3.14! from the mean value of the three contours~note, in fact,
that they nearly have no difference!, Jtip . TheK used to normalize
K tip is calculated for models of the homogeneous matrix mate
at the same applied load. The configuration and size effects on

Fig. 3 A comparison of the selected results for a circular in-
clusion centered at the crack tip
468 Õ Vol. 71, JULY 2004
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K tip /K were analyzed for the two calculation models. It was fou
that there is nearly no specimen configuration and scale effect
K tip /K so long as the specimen sizes are two or three times of
crack length and the ratioR/a of the inclusion radiusR to the
crack lengtha is less than 0.15. The same conclusion was
tained in@4#. In the present finite element analyses, the calculat
models are constructed to be no scale effect onK tip /K, and there-
fore their geometries are unnecessary to specify. The finite
ment results, for a circular inclusion centered at the crack-tip
also plotted in Fig. 3. They are excellent agreement with the ex
solution obtained by Steif@2#. Therefore, the finite element analy
ses can be used to measure the accuracy of~3.12! and ~3.16! for
the inclusion with arbitrary shape.

Figure 4 compares the results calculated from~3.12! and the
modified lowest order solution,@1#, with those obtained from fi-
nite element analyses for a square inclusion. The crack-tip
tially penetrates the inclusion~1/4 edge length!. As shown in Fig.
4, our results are in good agreement with those of the finite
ment analyses.

Fig. 4 A comparison of the results calculated from Eq. „3.12…,
the modified lowest-order solution and finite element analysis
for a square inclusion

Fig. 5 A comparison of the results calculated from the modi-
fied Eq. „3.16… and finite element analyses for a circular inclu-
sion in which both elastic modulus and Poisson’s ratio differ
from those of matrix material
Transactions of the ASME



n

i
r

d
f

s
n

le

lar

ack

th

m-

on

oi-

of
etal

by

es
.

he
pl.

for-

um
ds
In Fig. 5, the values ofKtip /K for a circular inclusion centered
at the crack-tip predicted from the modified formula~3.16! are
compared with the results of finite element analyses for the c
wheren I andnM are different, and good agreement can be fou

5 Conclusions and Discussions
When a crack is lodged in an inhomogeneous inclusion

near-tip field will be changed by the modulus difference betwe
inclusion and matrix material. A closed-form solution for predic
ing the K tip-field is derived based on transformation toughen
theory and Eshelby equivalent inclusion approach. The nume
examples for different inclusion shape and modulus ratio betw
inclusion and matrix provide compelling evidence that the fun
mental formula is satisfactory in accuracy. The fundamental
mula ~3.12! and its modified form~3.16! provide a quick estimate
for the effects of shape, location, and stiffness of an inclus
surrounding crack-tip on the crack-tip field.

The limitation of the fundamental formula is that the remo
appliedK field was used to calculate the equivalent transformat
strain of the inclusion. Hence, the size of the inclusion must
small compared with the length of crack and other dimension
the cracked body. Consequently, the derived equations are i
pendent of the geometry configurations of the mode I crack.
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Brittle to Plastic Transition in the
Dynamic Mechanical Behavior of
Partially Saturated Granular
Materials
The effect of liquid viscosity, surface tension and strain rate on the deformation beh
of partially saturated granular material was studied over a ten order of magnitude ra
of capillary number (the ratio of viscous to capillary forces). Glass spheres of ave
size 35 microns were used to make pellets of 35% porosity and 70% liquid saturatio
the capillary number increased, the failure mode changed from brittle cracking to du
plastic flow. This change coincided with the transition from strain-rate independent
stress to strain-rate dependent flow stress noted previously [Iveson, S. M., Beathe,
and Page, N. W., 2002, ‘‘The Dynamic Strength of Partially Saturated Powder Comp
The Effect of Liquid Properties,’’ Powder Technol.,127, pp. 149–161]. This change in
failure mode is somewhat counter-intuitive, because it is the opposite of that observ
fully saturated slurries and pastes, which usually change from plastic to brittle w
increasing strain rate. A model is proposed which predicts the functional dependen
flow stress on capillary number and also explains why the flow behavior changes.
capillary forces dominate, the material behaves like a dry powder: Strain occur
localized shear planes resulting in brittle failure. However, when viscous forces domi
the material behaves like a liquid: Shear strain becomes distributed over a finite s
zone, the size of which increases with strain rate. This results in less strain in
individual layer of material, which promotes plastic deformation without the formation
cracks. This model also explains why the power-law dependency of stress on strai
was significantly less than the value of 1.0 that might have been expected given th
interstitial liquids used were Newtonian.@DOI: 10.1115/1.1753269#
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1 Introduction
The mechanical behavior of wet granular material is of inter

in a number of fields, including agitated wet agglomeration, h
dling of filter cakes, extrusion and pumping of pastes, soil m
chanics, and shape forming of ceramic parts,@1–6#. High strain
rate deformation is involved in many cases. For example, h
impact speeds and viscous binders are frequently present in
tated granulation. However, traditionally most research on
granule strength has been performed at low and invariant s
rates with relatively nonviscous binders,@7–9#. Saturated paste
have been found to have some strain-rate dependency, but o
limited range of strain rates has been studied,@10,11#. Dynamic
effects have also received some attention in the soil mecha
and slurry pumping literature due to the phenomena of vibratio
liquefaction, but this work is restricted to saturated systems w
water as the interstitial fluid, a relatively nonviscous liqu
@12,13#.

Recently, more of an interest has been taken in the dyna
behavior of wet powders with viscous binders. Iveson and Lits
@14# found that using glycerol~a viscous liquid! instead of water
greatly reduced the amount of impact deformation experience
granules. Discrete element simulations of granule impacts h

1Currently at the Department of Chemical Engineering, Universitas Pembang
Nasional ‘‘Veteran’’ Yogyakarta, Jl. SWK 104 Condongcatur Yogyakarta 55283,
donesia. e-mail: ivesonsj@omf.net

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July
2002; final revision, Nov. 20, 2003. Editor: R. M. McMeeking. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineering
versity of California—Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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also predicted that increasing binder viscosity will reduce gran
deformation,@15#. In contrast, at low strain rates~5 mm/min!,
Mills et al. @16# found that the crushing strength of granules ma
with 90–180mm sized sand was unaffected by binder viscos
for four different silicone oils of viscosity ranging from 0.02 t
0.5 Pa•s.

Iveson and co-workers@17–19# have directly measured th
compressive strength of pellets in a high-speed load frame
crosshead speeds ranging from 0.01 to 150 mm/s~equivalent to
bulk strain rates varying from 431024 s21 to 6 s21!. In initial
work they used spherical glass particles with an average sizedp of
35 microns,@17#. The pellet porosity and liquid saturation wer
held constant at 35% and 70%, respectively. Six different liq
binders were used to cover a range of surface tensiong and vis-
cosity m from 0.025 to 0.072 N/m and 0.001 to 60 Pa•s, respec-
tively.

The measured peak flow stressspk results all collapsed onto a
single curve when plotted as the dimensionless flow stress*
versus the capillary number Ca. This curve can be empiric
described by the equation

Str* 5k11k2Can, (1)

where Str* 5spkdp /g cosu, dp is the average particle size,u is
the contact angle,Ca5dpm«̇/(g cosu) and «̇ is the bulk strain
rate~deformation velocity divided by instantaneous pellet lengt!.
Str* is the ratio of peak flow stress to capillary~surface tension!
forces. Ca is the ratio of viscous to capillary forces. The bes
values of the three parameters werek155.360.4, k25280640,
andn50.5860.04. Subsequent work has also varied particle s
and morphology,@18,19#.

From Eq. ~1! it can be seen that at low strain rates the flo
stress was strain-rate independent while at high strain rates
flow stress was proportional to strain rate to the power 0.58. I
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Fig. 1 Photos of pellets after 10 mm deformation at various speeds for „a… 0.01 Pa"s, „b… 1.0 Pa"s, and „c… 60 Pa"s viscosity
silicone oils. Initial pellet aspect ratio 1.25 „25 mmÃf20 mm …. Scale: diameter of bottom platen is 38 mm.
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son et al.@17# commented that this power-law dependence w
less than the value of 1.0 expected when viscous effects domi
They speculated that this might be attributed to the width of
shear zone increasing with strain rate. In this paper, we devel
model based on this hypothesis and also present photograp
the deformed pellets that show a transition from brittle to plas
failure as viscous effects become significant.

2 Experimental
Figure 1 shows photographs of the pellets bound with 0.01,

and 60 Pa•s viscosity silicone oils after a total compressive stra
of 0.4 at strain rates ranging from 431024 s21 to 6 s21 ~full
details of the sample preparation and testing procedures ar
ported in Iveson et al.@17#!. There were two different modes o
failure. At low velocities, all pellets displayed brittle behavior a
failed by large-scale cracking. Several of the recovered specim
displayed the commonly reported ‘‘apple core’’ shape, where p
let failure occurs by shearing along planes at approximately
deg to the direction of the applied load. These specimens fell a
and could not be recovered in one piece. At high velocities, h
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ever, the pellets bound with 1.0 and 60 Pa•s silicone oil showed
no visible cracking~Figs. 1~b! and 1~c!!. These pellets appear t
have failed by uniform plastic flow. They retained their integri
and could be easily removed in one piece after the test.

For the 1.0 and 60 Pa•s silicone oil bound pellets, the failure
mode changed from brittle to plastic as the deformation veloc
increased. Even for the 0.01 Pa•s silicone oil bound pellets~Fig.
1~a!!, the extent of brittle failure appears to become less extre
as the deformation velocity increased. Hence the velocity at wh
the transition from brittle to plastic flow occurred decreased w
increasing liquid viscosity.

These observations suggest that the brittle-to-plastic trans
depends on the relative importance of viscous forces. This is h
lighted in Fig. 2 where schematic drawings of a selection of
deformed pellets are shown above the previously measured
stress data,@17#. The transition from brittle to plastic flow behav
ior occurred at Ca in the range 1024 to 1023. This coincides with
the transition from Region I~strain-rate independent flow stres!
to Region II ~strain-rate dependent flow stress!.

This same pattern of brittle failure at low speeds and pla
JULY 2004, Vol. 71 Õ 471
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failure at high speeds and with viscous binders was also obse
when the platens were lubricated,@17#, and when particle size wa
varied, @18#. This transition was also present, although less p
nounced, with particles of nonspherical shape,@19#. Hence we
believe that this is a general phenomenon. Note that the liq
content was held constant, so the transition to more liquid-
flow at high strain rates is nothing to do with changes in liqu
saturation.

The response of materials to increasing strain rate is mat
dependent. For some metals, high strain rates causes adia
heating which softens the metal and hence promotes ductile fl
In contrast, for most polymers, increasing the strain rate redu
the time available for the long-chain polymer molecules to re
and rearrange. This results in a shift from ductile to brittle beh
ior, @20,21#. Concentrated pastes and suspensions usually ex
shear dilatancy. This causes a reduction in pore pressure. At
strain rates, liquid is unable to flow in fast enough to fill th
dilated regions and cavitation occurs. This results in a transi
from ductile to brittle behavior at high strain rates~e.g., materials
such as Silly Putty™!, @22–24#.

Saturated suspensions closely resemble the partially-satu
granular materials we are studying. Hence, one might expect
the effect of strain rate on both systems would be similar. Ho
ever, the brittle-to-plastic transition seen in Fig. 1 and Fig. 2 is
exact opposite of what is generally observed with saturated
pensions and pastes. We now propose a theory to explain
transition from brittle to plastic flow behavior. This theory als
predicts the lower-than-one power-law dependence of flow st
on strain rate observed in the strain-rate dependent region.

3 Theory
A dry granular material whose strength is determined by in

particle friction will begin to fail along its weakest plane at a
orientation in which the yield criteria is met. Once initiated, fa
ure is generally confined to a narrow shear zone with the res
the bulk material remaining relatively undeformed~Fig. 3~a!!.
This is because inter-particle friction forces are relatively stra
rate independent. Also, the kinematic coefficient of friction is ge
erally lower than the static coefficient and dilation of material
the shearing layer further lowers its strength,@25#.

In contrast, when a Newtonian fluid is sheared under lami
conditions the shear strain is uniformly distributed across the
tire shear zone~Fig. 3~b!!. This is because liquids have a strai
rate dependent shear stress. Hence it is not energetically favo
for all the shear to occur in one thin layer.

Fig. 2 The dimensionless flow stress results of Iveson et al.
†17‡ with added schematics of deformed pellets shown above
selected points. Pellets: 35% porosity, 70% saturation, 35 mi-
cron glass ballotini. Line shows best fit of Eq. „1….
472 Õ Vol. 71, JULY 2004
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This change from single-layer to distributed multilayer defo
mation is similar to the transition observed in Figs. 1 and 2. F
ure in single isolated planes will result in brittle cracking becau
a large amount of strain occurs in the planes of slip~Region I!.
However, when failure occurs over an extended zone, each l
only experiences a small portion of the bulk strain. This inhib
the formation of cracks and results in plastic flow~Region II!.
Hence, we propose that a bulk granular material with intersti
liquid can exhibit yield behavior similar to either a dry bulk sol
or a liquid. Which behavior occurs depends on whether it is stra
rate dependent viscous forces or strain-rate insensitive capi
and friction forces that dominate.

Granular materials in unconfined compression fail by sh
along some plane. In a continuum model there are potentially
infinite number of planes along which the material could fail. T
normals to these planes are inclined at an anglev to the direction
of the imposed compressive force given by

v5
p

4
1

f

2
, (2)

wheref is the material’s internal angle of friction,@25#.
The simplest yield condition is defined by the Mohr-Coulom

criteria

tn5sn tanf1c, (3)

wheretn is the limiting shear stress on that plane once friction
fully activated,sn is the normal stress on the failure plane arisi
from the applied load andc is the internal friction and cohesivity
of the material, @25#. For a cylindrical sample subjected t
uniaxial compression and laterally unrestrained, as shown in
4, a Mohr-Coulomb analysis of the stress conditions on the fail
plane gives

sn5
saz

2
~12sinf! (4a)

and

tn5
saz

2
cosf, (4b)

Fig. 3 Schematic of shear failure modes for „a… dry granular
material and „b… Newtonian liquid in laminar flow

Fig. 4 Schematic of model showing how successive planes
simultaneously fail as applied bulk strain rate increases
Transactions of the ASME
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wheresaz is the compressive stress applied along the axis o
cylinder, @25#.

For a wet granular body, the cohesivity in Eq.~3! arises pre-
dominantly from liquid adhesion forces. Surface tension effe
impose an isostatic normal stress on the granular material (sc).
To a first approximation then

c5sc tanf. (5)

The static cohesive strengthsc of liquid-bound granular materials
arising from the capillary force has been found to be proportio
to the liquid-solid adhesion tensiongLV cosu and inversely pro-
portional to the average particle sizedp , @26#. It is also some
functionC1 of the liquid saturations and particle packing fraction
F, thus

sc5
g cosu

dp
c1~s,F!. (6)

Substituting Eqs.~4a!, ~5!, and ~6! into ~3!, the static limiting
shear stress on the slip plane is

tn5S saz

2
~12sinf!1

g cosu

dp
c1~s,F! D tanf. (7)

Once failure occurs, there will also be a dynamic componen
the shear stress due to viscous forces in the liquid phase. F
continuous liquid film of viscositymv between two plates a dis
tanced apart and sheared at a speed ofu, this viscous shear force
would simply be

tv5mS u

d D . (8)

If we assume that the average gap distance between partic
proportional to the particle size, then we may write a gene
expression for the viscous shear stress for shearing a plane o
granular material as

tv5m
u

dp
C2~s,F!, (9)

wherec2(s,F) is some unknown function of liquid saturation an
packing fraction. The exact form of the functional relationsh
c1(s,F) andc2(s,F) is not important in this work becauses and
F were both held constant in the experiments shown in Figs
and 2.

In this analysis we have assumed the pore pressure is cons
In a saturated granular system, if dilation occurs in respons
shear, then the pore pressure is lowered. This low pore pres
resists particle motion and causes liquid to be sucked into
sheared region~this effect can be seen when walking on wet bea
sand!. At high enough strain rates, cavitation will eventually o
cur. However, in partially saturated granular materials, the p
pressure remains essentially constant because air can flow f
into and out of the assembly. Hence this model does not app
saturated systems.

If the internal friction coefficient used in Eq.~7! was that valid
for sustained shear~critical consolidation! of the granular mate-
rial, then the static component of the shear stress~Eq. ~7!! would
also be valid after yield has been initiated. Then Eqs.~7! and ~9!
can be added to give the total shear stress on the slip plane
yield has been initiated, namely

t t5tn1tv5S saz

2
~12sinf!1

gLV cosu

dp
c1~s,F! D tanf

1
mu

dp
c2~s,F!. (10)

At the onset of slip, the shear stress on the slip plane is give
Eq. ~4b!. Once slip is established, the normal applied stresssaz
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becomes the flow stresss f such that it must overcome both fric
tional and viscous components to maintain flow. Hence from E
~4a! and ~10!

s fdp

g cosu
5@cosf2tanf~12sinf!#21S 2 tan~f!•c1~s,F!

12c2~s,F!
mu

g cosu D , (11)

which is of the form

Str* 5a1bCa1.0, (12)

where

a5@cosf2tanf~12sinf!#21@2 tanf•c1~s,F!#, (12a)

b5@cosf2tanf~12sinf!#21@2c2~s,F!#, (12b)

and

Ca5~mu!~g cosu!21. (12c)

Ca is the capillary number defined in terms of the slip veloc
in a single plane, whereas the capillary numberCa in Eq.~1! is
based on the average bulk strain rate of the pellet. Equation~12!
describes the strength of every potential failure plane. At ste
state~whether static or in failure! the transmitted stress betwee
all these planes of material will be equal.

Equation ~12! has a similar form to Eq.~1!, except that the
exponent of the capillary number is one, whereas the experim
tally fitted exponent wasn50.5860.04. We now introduce an
assumption which allows us to resolve this apparent discrepa
between the expected and observed power-law dependenc
stress on strain rate.

In any granular material there will be a distribution in th
strength of planes due to irregularities in the packing and liq
distribution. Therefore, we shall assume that the magnitude of
static friction coefficienta varies between planes. For simplicit
we shall take the viscous coefficientb of all planes as a constan
In reality b would also vary for the same reasons thata does,
however, this assumption greatly simplifies the analysis that
lows and does not alter the general conclusions of the model.
the plane with the lowest static friction coefficient be known
plane 1. This is the plane in which failure will initiate. Let the ne
weakest plane be plane 2, and so on, such thatai 11.ai for all i.
The shear strength of planei is then given by

Stri* 5ai1bCai
1.0, (13)

where Cai is the layer capillary number in plane i, based on t
slip velocity ui in that plane of material.

When a compressive load is first applied to the material, fail
does not occur until the applied stress exceeds the static stre
of the weakest layer. For Str* .a1 , the material will slip on plane
1, with the applied stress varying with velocity according to E
~13! with i51.

There is a velocity below which failure will remain confined
plane 1. Above this velocity, however, the applied stress will e
ceed the static strength of the second weakest plane, plan
Failure will then start to occur simultaneously in two planes. T
occurs when

Str* 5a11bCa1.a2 , (14a)

or equivalently

Ca1.~a22a1!/b. (14b)

For even higher velocities, a third plane will start failing, and
on. Once more than one plane is slipping, the applied bulk sh
velocity u will be distributed between all failing planes such th

u5(
i

ui . (15)
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Hence, the capillary number based on the overall bulk strain
can be expressed as the sum of the layer capillary numbers in
plane, i.e.,

Ca5(
i

Cai . (16)

Note that once multiple planes are in simultaneous failure,
ther increases inu cause the slip velocity inall of the failing
planes to increase so that a constant transmitted stress is m
tained between each layer i.e.,u1 does not remain at the value
was when plane 2 began slipping.

This model assumes a steady, non-accelerating state of fa
This requires that inertial effects be negligible. This assumptio
partially supported by recent work comparing copper and g
powders which found negligible difference in flow stress for
fourfold increase in solid-phase density,@19#. Liquid densityrL
has not been altered in any experiments to date, so the signific
of inertial effects in the liquid phase has not been establish
However, we may estimate the film Reynolds number in orde
check whether the flow conditions are laminar or turbulent. If
assume the film thickness is of the same magnitude as par
diameter, then for the highest deformation rate studied~water-
bound pellets at 150 mm/s!

Re'
rLudp

m
5

~1000 kg•m23!~0.15 m•s21!~331025 m!

~0.001 Pa•s!

54.5.

This is well within the laminar regime, so inertial effects in th
fluid films between particles should be negligible.

In order to proceed further with this analysis, we need to kn
how the static strength varies between planes. In reality thi
likely to vary in a stochastic fashion, dependent on slight va
tions in packing, particle orientation and shape between pla
within the granular material. For simplicity we will here assum
that each plane is a constant amount,Da, stronger then the pre
vious weakest plane i.e.,ai 115ai1Da. Therefore

an5a11~n21!Da. (17)

Let us consider what happens when plane n is on the verg
starting to slip. This occurs when

Str* 5an5a11~n21!Da. (18)

At this point (n21) planes are already simultaneously slippin
In each of these planes the relationship between Str* and Ca is
given by Eq.~12!. Summing the two sides of Eq.~12! for all
~n21! slipping planes gives

~n21!Str* 5(
i 51

n21

ai1b(
i 51

n21

Cai . (19)

Evaluating the sum of the arithmetic seriesa1 to an21 , dividing
both sides by (n-1) and substituting the global capillary numb
for the sum of the layer capillary numbers~16! gives

Str* 5a11
~n22!Da

2
1b

Ca

~n21!
. (20)

Equating Eqs.~18! and ~20! and rearranging gives

Ca5
n~n21!Da

2b
. (21)

Equations~18! and ~21! give the applied stress and the bulk ca
illary number, respectively, when planen is about to fail.

These results can now be used to interpret the discrepancy
tween the expected and observed power-law dependency of*
on Ca in the viscous controlled regime. When the bulk strain r
is increased, the number of layers in simultaneous failure
creases. Hence the percentage increase of strain rate in indiv
474 Õ Vol. 71, JULY 2004
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layers is less than the overall percentage increase in bulk s
rate because the bulk strain is distributed over a greater numb
layers than previously. In the limit as n→`, Ca}n2 and Str*}n.
Therefore Str* }Ca0.5 at high strain rates. This is illustrated in Fig
5 using arbitrary values for the model parametersa1 , Da andb.
The single failure plane model has a power law exponent of on
the viscous region, whereas the multi-layer model has an expo
of 0.5. This is very close to the experimentally observed value
0.5860.04, which is encouraging given the very simplistic a
sumptions of constantDa and constantb that were made. When
all the strain occurs in single isolated failure planes, cracks
velop. However, when the strain is distributed over a large num
of planes, the actual amount of strain in each plane is lesse
which inhibits crack growth and results in plastic behavior.

4 Discussion and Conclusions
It has been shown that partially saturated liquid-bound gran

material can exhibit the dynamic flow behavior of either a d
bulk solid or a liquid. Which behavior dominates depends on
ratio of liquid viscous forces to capillary forces, which can
represented by the capillary number. Inter-particle friction, co
trolled by the capillary forces, dominates yield behavior at lo
strain rates and results in dry-powder-like brittle behavior. Visco
forces dominate at high strain rates and result in liquid-like pla
flow. In effect, we have identified a strain-rate-dependent ph
transition in the behavior of partially saturated granular system
is noteworthy that this is the opposite of the transition from plas
to brittle behavior with increasing strain rate that is usually seen
fully saturated slurries and pastes.

A model has been proposed to explain the functional role
binder viscosity in influencing the dynamic flow stress and def
mation characteristics of wet granular materials. It is hypothesi
that when viscous forces become significant there are mult
planes of material in simultaneous failure. This model succe
fully explains the observed brittle-to-plastic transition in pel
flow behavior and also shows good qualitative agreement with
experimentally observed dependence of compressive flow s
on the capillary number.

One important practical implication of these findings is th
measurements performed on wet granular material at low st
rates cannot be used to draw conclusions about their streng
mode of failure at high strain rates. A strain sufficient to caus
liquid-bound granule to crack and fall apart at low strain ra
may not cause any breakage at high strain rates. The applied
required to cause a given amount of strain may also be m
higher. Hence, viscous effects must be considered when mode
the deformation and breakage of such material during impact
other high strain rate events.

Fig. 5 Flow stress as a function of capillary number for the
single-failure-plane model, Eq. „12…, and the multiple-failure-
plane model, Eqs. „18… and „21…, using a1Ä1.0, DaÄ0.01, and
bÄ0.1
Transactions of the ASME
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Development of a Finite Element
Cable Model for Use in
Low-Tension Dynamics
Simulation
To accurately simulate the motion of slack marine cables, it is necessary to captur
effects of the cable’s bending and torsional stiffness. In this paper, a computatio
efficient and novel third-order finite element is presented that provides a representat
both the bending and torsional effects and accelerates the convergence of the mo
relatively large element sizes. Using a weighted residual approach, the discretized m
equations for the new cubic element are developed. Applying inter-element cons
equations, we demonstrate how an assembly of these novel elemental equations
significantly reduced to prevent the growth of the system equations normallly assoc
with such higher order elements and allow for faster evaluation of the cable dynami
either taut or low-tension situations.
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1 Introduction
The use of numerical models to simulate the dynamics of

derwater vehicles and moorings has been presented extensiv
existing literature. Numerical models provide a means for
analysis of towed cable dynamics,@1–5#, deep water moorings
@6–8#, and marine risers,@9–14#, prior to the actual developmen
and/or deployment of the system. In addition, accurate dynam
models have proven to be effective mission planning tools, hav
been used to study both towcable management and turning s
egies for towed underwater vehicles,@15–20# and in the design of
systems to provide heave compensation for tethered deep
ROV platforms,@21,22#. An application that has not yet seen si
nificant attention is the time domain simulation of underwa
remotely operated vehicles~ROVs! with slack tethers.

Despite advances in autonomous technology, ROVs are stil
predominant tool for complex intervention tasks. These vehic
typically follow omnidirectional paths during operation and d
ploy a twisted lay of low-tension~or slack! neutrally buoyant
tether, or umbilical cable, along the path. Travel to the limits
the tether, sudden movements of the ROV and/or environme
loads can cause the tether to become taut. During such tensio
the ROV response is dominated by the rate of and direction
tensioning,@23#. Given the complexity of the tasks that are a
tempted using ROVs, the ability to simulate an ROV deploym
a priori is a valuable asset. In order to extend the capabilities
numerical dynamics models to include the simulation of RO
platforms, including the motion of the slack umbilical tether, it
necessary to develop an accurate representation of the highe
der internal effects that contribute significantly to the motion
the slackened tether.

To date, efforts to model underwater vehicles with slack teth
have included a two-dimensional implementation by Grosenba
et al.@24#, and a three-dimensional model formulated by Baner
and Do@25#. Both works provide a representation of the tethe

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 1
2002; final revision, October 8, 2003. Associate Editor: N. Triantafyllidis. Discuss
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Jo
of Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and w
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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bending stiffness. In a previous work, the authors presente
first-order lumped parameter model to simulate a thr
dimensional ROV tether,@26#. By estimating the curvature of the
tether from the nodal positions, bending effects were applied
the linear elements of this model as equivalent transverse n
forces. The experimental results of this work showed the imp
tance of including a bending stiffness model in the slack tet
dynamics. However, the linear elements of this approach, like
methods of@24# and @25#, require a fine spatial discretization o
the tether to capture any rapid variations of curvature along
tether, resulting in a potentially large computational overhead.
alleviate this problem, higher order curvilinear elements could
used to better approximate the twisted lay of a tether with a lar
spatial discretization. To date, third order finite element te
niques have been applied to the analysis of mooring lines, ma
risers, and flexible pipelines,@9–12#. Depending on the particula
element formulation, the state of each finite element presente
these works is defined by a vector of 12 or 13 state variables
compared to the six state variables required for the first-or
lumped parameter elements. This increased number of state
ables detracts from the accuracy of the higher order element,
it is therefore desirable to develop a higher order element wit
reduced number of state variables.

This work develops a novel finite element cable model based
a third-order element with a reduced-order state vector. Follow
the developments of Garret@12# and Nordgren@13,14#, we de-
velop the non-linear motion equations for the continuous tethe
terms of an inertial frame of reference using the Frenet equati
We show how these motion equations can be discretized u
Galerkin’s method of weighted residuals to produce the system
ordinary differential equations, element equations, that govern
motion of the chosen cubic element. We will show how the
elemental equations are assembled to form a global set of e
tions which define the motion of the entire tether. Finally, we w
demonstrate that our particular choice of finite element allows
assembled system of equations to be reduced into a system
has the same dimension as the simpler linear lumped param
model, but yet maintains an accurate and complete represent
of the higher order bending and torsional effects.

2 Equations of Motion
To create a numerical model that includes the desired ben

and torsional effects it is necessary to derive the dynamics e
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tions for a continuous tether, considering the tortuous profile
a tether forms in three-dimensional space. In existing literat
the cable is modeled as a slender flexible rod that sustains e
ronmental, gravitational and buoyancy forces. Of particular
evance to this work was Nordgren’s presentation of the ve
equations of motion for a continuous cable,@13#, ~Figs. 1 and 2!
which are

F81q5S 1

4
pd2rCD r̈ (1)

M81r83F1m50. (2)

whererC is the density of the cable, including the water entrain
in the voids between the strands of the cable armor where ap
priate,d is the diameter of the cable,r(s,t) is a position vector
describing the space curve formed by the center line of the ca
q is the vector of applied forces per unit length,m represents the
applied moment per unit length,F is the vector of internal forces
M is the vector of internal moments,I is a 333 identity matrix,
(8) denotes differentiation with respect tos, the unstretched cur
vilinear coordinate along the cable, and~˙ ! denotes differentiation
with respect to timet. We expressr(s,t) in terms of an inertial
frame of reference (X Y Z), whereX andY point in perpendicu-

Fig. 1 A diagrammatic presentation of the coordinate sys-
tems, the Frenet and body-fixed frames, used to describe the
tether element. The discretized tether is formed from an assem-
bly of cubic elements, with the i th element extending between
the i th and i¿first nodes.

Fig. 2 A close up view of a differential segment of the ROV
tether. The distributed load q contains weight, buoyancy and
hydrodynamic loads. An additional degree-of-freedom, a, de-
fines the orientation of the body-fixed frame relative to the
Frenet frame.
Journal of Applied Mechanics
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lar horizontal directions, andZ is aligned with gravity. The rota-
tional inertia of the cable is considered to be much smaller t
the other terms of Eq.~2!, and is thus neglected,@1#. The dynam-
ics equations are formulated using two local frames of referen
the Frenet frame and a frame of reference oriented with the p
cipal axes of the cable, Fig. 1.

The Frenet frame (t̂ n̂ b̂) is oriented with the space curv
formed by r(s,t). As the curver(s,t) is traced, the changing
orientation of the Frenet frame is quantified by two paramete
the curvature,k, and the torsion,g. Assuming«!1, the base unit
vectors are defined as:t̂5r8, n̂5r9/k, andb̂5r83r9/k and their
gradients are defined ast̂85k•n̂, n̂85g•b̂2k• t̂ , and b̂852g
•n̂. The curvature,k, defines the bend of the cable within a
osculating plane that is formed byt̂ andn̂ at the point considered
Both k andg are defined in terms of the spatial derivatives of t
space curve@27#:

k5~r9•r9!1/2, g5
r8•~r93r-!

r9•r9
.

The torsion of the curve,g, is the spatial rate of change of th
osculating plane’s orientation about the tangent vector, and c
sequently the orientation of the bend, about the tangent vectot̂ .
As such, the torsion represents the twist experienced within
tether due to the shape of the tether profile. However, when c
sidering twist of the tether, one recognizes that torsional coup
applied at the boundaries of a tether section create additiona
gular displacement,a ~the torsion deformation!, throughout the
tether scope. Thus, we introduce the body fixed reference fr
(x y z) which remains aligned with the principal axes of th
tether cross section, as shown in Figs. 1 and 2, and is sepa
from the Frenet frame by an anglea about the tangent direction

As discussed by Love, the internal moment,M, generated at
any point within the tether is proportional to the curvature and
twist observed at the point@28#:

M5EIkb̂1GJt t̂ (3)

where the overall twist,t, of the cable at the point is given by

t5g1a8.

Following @12# and @13#, and assuming that there are no extern
moments applied between the tether boundaries (m50), Eq.~3! is
substituted into Eq.~2! to produce a definition for the vector o
internal forces at any location along the tether

F5T• t̂2EIk8•n̂2EIk•g•b̂1GJt•k•b̂. (4)

The spatial derivativek8 is a nonlinear function of the spatia
coordinates and complicates the finite element procedure to f
low. The second term on the right-hand side of~4! can be ex-
pressed as

EIk8•n̂5~EIk•n̂!82EIk•g•b̂1EIk2
• t̂ (5)

which, eliminatesk8 in ~4!. Thus, substituting Eq.~5! into Eq.~4!
yields

F52~EIkn̂!81~T2EIk2! t̂1GJtkb̂ (6)

where the term2EIk2 is included to cancel the spurious comp
nent of the internal force induced when considering the tangen
component of changingn̂. The internal axial force,T, is defined
using the constitutive relationship

T5EA«1CID «̇, «5@~r8•r8!1/221# (7)

where « is the strain andCID is an internal viscous damping
coefficient. This simple viscous damping model is used to rep
sent the dissipation of energy within the tether via friction b
tween the layers of conductors, armor, and polymer coatings
typical tether. Equation~6! defines the internal force as an explic
function of the tether’s elastic deformation as defined by the a
JULY 2004, Vol. 71 Õ 477
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strain, curvature, and twist. Substituting Eq.~6! into Eq. ~1! re-
duces the two original vector equations of motion to a sin
vector equation that defines the tether’s translational motion
terms of these three elastic deformations, and a scalar cons
equation that defines the variation of the twist along the cable

2~EIr9!91@~T2EIk2!r8#81@GJt~r83r9!#81q

5S 1

4
pd2rCI D r̈

~GJt!850. (8)

In this work, the applied force vector,q, consists of the distrib-
uted weight, buoyancy, and hydrodynamic force, which is defin
using Morison’s well-known approximation. Since the Keulega
Carpenter number of ocean cables is always very large, Moris
approximation is valid.

q5~rC2rW!
p~d!2

4
g21/2rWdL IHF f pCDv p̂1

Av p̂1

2 1v p̂2

2

f pCDv p̂2
Av p̂1

2 1v p̂2

2

f qCDv q̂uv q̂u
G

2L IHMAL IH
T r̈ (9)

whereg5@0 0g#T is the gravitational acceleration,rW is the den-
sity of sea water,L IH is a transformation matrix relating the axe
of a hydrodynamic frame, to be described shortly, to the iner
frame of reference,CD is the normal drag coefficient,MA is the
diagonal added mass matrix, expressed in terms of the hydr
namic frame. The relative velocity of the cable through a wa
column with a currentj is v5L IH

T ( ṙ2 j) wherev p̂1
, v p̂2

, andv q̂

are the components of this velocity in the hydrodynamic frame
reference.

The hydrodynamic frame (p̂1 p̂2 q̂) attached to the cable seg
ment, composed of aq̂ axis that is tangent to the cable, anp̂1 axis
that is normal to the segment and ap̂2 axis that completes the
right-handed coordinate system. The hydrodynamic frame is u
to resolve the relative fluid velocity into components normal a
tangential to the tether such that the hydrodynamic loads ca
calculated based on the loading coefficientsf p and f q . These
coefficients are functions of the incidence angle of the rela
fluid flow on the tether element and account for the nonlin
breakup of drag between normal and tangential directions, res
tively, as discussed by Folb and Nelligan@29#. Since the calcu-
lated hydrodynamic load is transformed back into inertial rep
sentation for application in the motion equation of Eq.~8!, the
particular orientation of thep̂1 and p̂2 axes about the tangen
direction is inconsequential. The transform between the axe
the hydrodynamic and inertial frames,L IH , is formed from a
Z-Y8-X9 ~c u j! set of Euler angles. These successive rotati
bring the inertialZ-axis into alignment with the tangent directio
of the cable segment, and the orientation of thep̂1 and p̂2 axes is
constrained by setting one of the Euler angles, the initialc rota-
tion about the inertialZ-direction, to zero. Thus,

L IH5F cosu sinu sinj sinu cosj

0 cosj 2sinj

2sinu cosu sinj cosu cosj
G

whereu andj can be considered as traditional pitch and roll of t
cable.

The added mass values inMA are zero for flow acceleration
parallel to q̂ and equal to the displaced mass of water for flo
acceleration in thep̂1 and p̂2 directions,@30#.

MA5
1

4
pdC

2 rWF 1 0 0

0 1 0

0 0 0
G
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3 Finite Element Formalization
Equations~8! define the motion of a continuous tether in term

of space,s, and time,t. The true solution to this system of equa
tions is a vector functionr(s,t) and a scalar functiona(s,t) that
are defined over the entire tether scope and the time domain o
modeled ROV maneuver. Because of the tether’s geometric
nonlinear profile, the strong nonlinearities contained in the hyd
dynamic term, and the wide range of tether states that can o
during ROV operation, we look to find an approximation to t
true solution of the differential equations of Eq.~8! using numeri-
cal techniques. The calculation of this approximate solution,
trial solution, using a finite element approach is accomplished
two stages:

1. We consider a small section, or element, of the tether
construct two trial solutions,r i(s,t) anda i(s,t), that are formed
from interpolating polynomials in terms of the spatial coordina
s. These trial solutions apply over the length of this element, a
the coefficients of these polynomials are chosen as the values
spatial derivatives ofr(s,t) and a(s,t) at the end nodes of the
element.

2. We substitute these trial solutions into Eq.~8! and apply an
optimization criterion that transforms the continuous different
equations into a series of algebraic equations that defines the
timum coefficients of these two polynomial approximations.

3.1 Selecting the Trial Solution. As shown in Fig. 1, we
consider the tether to be a contiguous set ofN cubic segments, or
elements, which have the same physical properties as the con
ous cable. The trial solution,r i(s,t), defines the three-dimensiona
profile of thei th, tether element which extends between the no
i 21 andi of the discrete tether:

r~s,t !:sP@s( i 21),s( i )#'r i5(
j 51

p11

si , j~ t !f i , j~s!.

The coefficientssi , j are time-dependent generalized displac
ments,f i , j is a shape function that defines how thej th general-
ized displacement contributes to the shape of thei th tether ele-
ment, andp is the order of the trial solution. In order to ensu
that the concatenation of the elements maintainsC1(s), continuity
or smoothness across the node points,r i is often chosen as a cubi
Hermite interpolating polynomial,@12#. The generalized displace
ments then become the position,r( i 21) and r( i ), and tangent vec-
tors, r8( i 21) and r8( i ), observed at thei 21 and i node points. In
this case, twelve state variables are required to fully define thei th
element: the components ofr( i 21), r8( i 21), r( i ), andr8( i ).

Recalling that we assume no moments are applied along
tether, rather the tether is suspended in the water column an
subject to only distributed weight, buoyancy and hydrodynam
forces, we expect the curvature to vary continuously over
entire scope of the tether. Referring to Eq.~3! we recognize that
this loading scenario produces a tether profile that exhibitsC2(s)
continuity. To replicate this behavior within the finite eleme
model we model the tether with an assembly of finite eleme
that possess an additional degree of continuity relative to the c
Hermite element. The twisted cubic spline element provides
level of continuity,@31#. We define the element profile,r i , as a
twisted cubic spline segment:

si ,15r( i 21) si ,25r9( i 21) si ,35r( i ) si ,45r9( i )

f i ,15
s( i )2s

s( i )2s( i 21) ,f i ,25
1

6
~f i ,1

3 2f i ,1!Li
2,
Transactions of the ASME
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f i ,35
s2s( i 21)

s( i )2s( i 21) ,f i ,45
1

6
~f i ,3

3 2f i ,3!Li
2 (10)

where ( )( i 21) and ( )( i ) represent evaluation at the left and rig
end nodes of elementi , respectively,Li5s( i )2s( i 21) is the un-
stretched length of thei th element. Referring to Eq.~10!, it is
apparent that our trial solution,r i , is formed from a superposition
of a linear component that interpolates the node positions an
cubic refinement that interpolates the curvatures at the node p
and thus ensures second order continuity between the elem
Of course, it remains to ensure that a concatenation of the
ments exhibits smoothness, or first-order continuity. Later we
show how this additional constraint on the element geometr
enforced.

To complete the trial solution, we model the torsional deform
tion within the element as a linearly varying quantity. This a
proach is a standard, and widely accepted, practice in struc
finite element analysis that relies on the premise that the torsi
deformations are limited and not fluctuating rapidly over the bo
@32,33#. Thus, we use thef i ,1(s) and f i ,3(s) shape functions to
define an approximate variation of the torsional deformat
throughout thei th element,a i :

a i5a ( i 21)f i ,1~s!1a ( i )f i ,3~s!.

3.2 Application of the Galerkin Criterion. Given the trial
solution, composed of bothr i anda i , the solution of the dynam-
ics equations given in Eq.~8! over the domain of thei th element
is reduced to the problem of defining the coefficients of these
polynomials at any given instant in time. To transform the par
differential equation of Eq.~8! into a series of algebraic equation
that define these coefficients, we apply Galerkin’s method
weighted residuals,@33,34#. At this point it is important to outline
how the choice of the twisted spline element affects this discr
zation process.

Referring to the vector equation of motion given in Eq.~8!, one
can see that the highest order differential ofr(s,t) is of order four.
The most common approach to the discretization of such a sys
is to integrate this differential equation by parts twice,@34#. This
procedure ensures that the natural boundary conditions~the con-
ditions on the highest derivatives of the element profiler9 andr-)
remain unconstrained, and that the essential boundary condi
~the conditions onr and r8) are constrained by the element
mathematical definition. The benefit of this approach is that o
C1(s) continuity is required of the trial solutionr i , leading to the
use of the cubic Hermite element in prior developments. In th
more conventional developments, the second integration by p
step introduces moment terms in the boundary conditions de
oped for ther 9 derivatives. It is the specification of these m
ments at the element boundaries that provides the unconstra
conditions on the higher order derivatives.

The premise of this work is to take advantage of the fact t
the elastic body being modeled should demonstrate a contin
second derivative,r9, due to the type of loading it is subjected
~distributed environmental loads with no externally applied m
ments along the tether length!. For this reason we have introduce
an element withC2(s) continuity which, through its definition
given in Eq.~24!, provides a constraint on the curvature, or se
ond derivativer9, observed at the element nodes. Therefore
applying Galerkin’s criterion with this new element type, only t
value of the third derivative at the element boundaries,r-, must
remain unconstrained. Thus, we formulate our residual equat
by integrating by parts one time. This produces the following
scalar residual equations:
Journal of Applied Mechanics
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E
s( i 21)

s( i ) S ~EIr i-2@~T2EIk2! ir i8#2@GJt i~r i83r i9!# !f i , j8

1S qi2S 1

4
pd2rCI D r̈ i Df i , j Dds

5@~~EIr i-!2~T2EIk2! ir i82~GJt i~r i83r i9!!!f i , j #us( i 21)
s( i )

,

j 51,2,3,4 (11)

GJE
s( i 21)

s( i )

~g i1a i8!f i , j8 ds5@GJt i #f i , j us( i 21)
s( i )

, j 51,3. (12)

We have assumed that the material properties are constant
the element length. Referring back to Eq.~6!, it can be shown that
the boundary term in Eq.~11! evaluates to

@~~EIr i-!2~T2EIk2! ir i82~GJt i~r i83r i9!!!f i , j #us( i 21)
s( i )

5@~2F i !f i , j #us( i 21)
s( i )

.

From Eq.~11! it is apparent that enforcingC2(s) continuity of
the element, and thus eliminating the second integration by p
step, has eliminated any boundary terms involving moments fr
the analysis. Rather, we are left with boundary loads that are
fined strictly in terms of the internal forces at the node points.

3.3 Evaluation of the Residual Equations. In order to
evaluate Eqs.~11! and~12! numerically, it remains to evaluate th
integrals of Eqs.~11! and ~12! over the spatial domain of thei th
tether element to produce the algebraic form of the residual eq
tions. These integrals contain nonlinear functions of the spa
coordinates and to complete the integration of Eq.~11! and Eq.
~12! it is necessary to approximate these nonlinear terms w
integrable functions. Since most cables are locally stiff in tensi
the rate of change of these spatial functions is small and can
approximated by low-order polynomial functions. We appro
mate the axial force within thei th element as a constant quantit
l i(s):

~T2EIk2! i'l i~s!5~Ti2EI~r9•r 9!( i 2 1/2)! (13)

where (•)( i 21/2) indicates evaluation at the midpoint of thei th
element, and the internal elastic tension and damping for
within the i th element,Ti , are calculated following Eq.~7! using
average values of strain and strain rate over the element,« i and
«̇ i , respectively. To evaluate the average strain of thei th curvi-
linear element, a Romberg integration algorithm presented in@35#
is adapted to approximate the integral expression:

« i5

S E
s( i 21)

s( i )

r i8•ds2Li D
Li

.

To complete the calculation of the internal damping effects,
time rate of change of the element strain is calculated using
two end node velocities. The average element velocity,vRB

i , is
subtracted from the velocities of thei 21th andi th node points
leaving only the velocity components which create change in
element shape. The quantity«̇ i is calculated by finding the portion
of the remaining velocity vectors that lie in the tangential dire
tion at each node and determining the net axial stretch tha
induced. That is
JULY 2004, Vol. 71 Õ 479
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Li
.

The hydrodynamic component of the distributed load vectorqi ,
hi , is approximated as

hi'hi~s!5h( i 21)f i ,11h( i )f i ,3 ,

h( j )521/2rWdS L IHF f pCDv p̂1
Av p̂1

2 1v p̂2

2

f pCDv p̂2
Av p̂1

2 1v p̂2

2

f qCDv q̂uv q̂u
G D ( j )

. (14)

Following the approach of Huang@3# and Buckham et al.@19#,
we represent the added mass effects as an additional inertia w
the added mass component of the distributed loadq is removed,
and the tether element’s mass is increased to reproduce the a
mass forces. The added mass attributed to thei th element is ap-
proximated as the average of the added masses calculated
boundingi 21th andi th nodes.

M i5S 1

4
pdC

2 rCI D1
1

2
~L IHMAL IH

T !( i 21)1
1

2
~L IHMAL IH

T !( i ).

(15)

To facilitate evaluation of Eq.~12!, we must approximate the
torsion over thei th element,g i . Having selected a linear form fo
the trial solutiona i , we recognize that thea8 term in Eq.~12!
will evaluate to a constant quantity over the element. To main
this level of approximation within Eq.~12! we model the torsion
of the element with the constant quantityg i :

g i'g ( i 2 1/2)5S r i8•~r i93r i-!

r i9•r i9
D ( i 2 1/2)

. (16)

Equation~16! thus allows the twist within thei th element to be
modeled by

t i5g i1a i8 . (17)

Substituting Eqs.~13!–~17! into Eq. ~11!, we evaluate the residu
als to yield

~@KB# i1@KA# i1@K t# i !Xi1Wi1H i1Bi5@Me# iẌi . (18)
480 Õ Vol. 71, JULY 2004
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The 12312 system matrices@KB# i , @KA# i , and @K t# i embody
generalized bending, axial, and torsional forces, respectively,
are applied at the element nodes and result from the curva
axial strain, and twist experienced throughout the cable elem
The generalized load vectorsWi , H i , and Bi define the weight
and buoyancy, hydrodynamic, and boundary forces respectiv

and the 1231 vector,Xi5$r i
( i 21)T r9 i ( i 21)T r i

( i )T r9 i ( i )T
%T, defines

the element trial solution,r i . The element mass matrix,@Me# i , is
a full 12312 matrix constructed from multiples of the 333 mass
matrix, M i :

@Me# i5Li3
1

3
M i

21

45
Li

2M i

1

6
M i

27

360
Li

2M i

2

945
Li

4M i

27

360
Li

2M i

31

15120
Li

4M i

1

3
M i

21

45
Li

2M i

SYM
2

945
Li

4M i

4 .

The stiffness matrices@KB# i and @KA# i are the following 12
312 element matrices:

@KB# i5
EI

Li F 0 I 0 2I

0 0 0 0

0 2I 0 I

0 0 0 0

G (19)

@KA# i53
2

l i

L i
I 0

l i

L i
I 0

2
l i

45
Li

3I 0 2
7l i

360
Li

3I

2
l i

L i
I 0

SYM 2
l i

45
Li

3I

4 . (20)

Due to the cross product within the torsional term of the
sidual equation, the generalized forces produced by the twis
the element are non-linear expressions. To express the tors
effects in first-order form, we choose the following factorizatio
for @K t# i :
@K t# i5
GJt i

L i 3
1

2
~Q( i 21)1Q( i )! 2

Li
2

24
Q( i ) 2

1

2
~Q( i 21)1Q( i )!

Li
2

24
Q( i 21)

Li
2

24
~Q( i 21)2Q( i )!

Li
4

120
Q( i ) 2

Li
2

24
~Q( i 21)2Q( i )!

7Li
4

720
Q( i 21)

2
1

2
~Q( i 21)1Q( i )!

Li
2

24
Q( i )

1

2
~Q( i 21)1Q( i )! 2

Li
2

24
Q( i 21)

Li
2

24
~Q( i 21)2Q( i )!

7Li
4

720
Q( i ) 2

Li
2

24
~Q( i 21)2Q( i )!

Li
4

120
Q( i 21)

4 (21)
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where Q( i ) represents the 333 skew symmetric cross produc
matrix constructed from the components of the vectorr 9( i ). The
load vectorsWi , H i , andBi take the following form:

H i5Li

¦

S 1

3
h( i 21)1

1

6
h( i )D

S 2
1

45
h( i 21)2

7

360
h( i )DLi

2

S 1

6
h( i 21)1

1

3
h( i )D

S 2
7

360
h( i 21)2

1

45
h( i )DLi

2

§
,

Wi5Li

pd2

4

¦

1

2
~rcg2rwg!

2Li
2

24
~rcg2rwg!

1

2
~rcg2rwg!

2Li
2

24
~rcg2rwg!

§
, (22)

Bi5H 2F i
( i 21)

0
F i

( i )

0
J .

Substituting Eq.~16! into Eq. ~12!, yields additional 232 system
of equations that defines the torsional deformation,a i , over the
element

GJ

Li
F 1 21

21 1 G Ha ( i 21)

a ( i ) J 5GJH g i

2g i
J 1H 2GJt i

( i 21)

GJt i
( i ) J (23)

where the boundary termsGJt i
( i 21) andGJt i

( i ) represent the in-
ternal restoring torque at the boundaries of the element.

4 Forming the Reduced Element Equations
The element equations given by Eq.~18! and Eq.~23!, provide

relationships between the observed state of a tether elemen
fined byXi anda i , and the resulting motion of that element,
defined by,Ẍi a 631 vector. The components ofẌi are the accel-
eration of thei 21th andi th node points, which quantify the tem
poral change of the linear portion of the element shape, and
temporal change of the node curvatures, which quantify
changing curvilinear profile of the element between thei 21 andi
node points. Applying the explicit solution scheme of@19,21,26#
to this higher-order formulation, the model will be advanced
time by solving for the node accelerations,r̈( i ), and the second-
order time differentials of the curvature vectors,r̈ 9( i ), and inte-
grating these quantities to produce the updated generalized
placement values at the next time step. Thus, the discrete ele
motion equations are a 12312 linear system: double the size o
the conventional lumped mass motion equations.

Earlier, we demonstrated the second order continuity of
twisted spline element. Now, we will show that by enforcing fi
order continuity of the elements, or smoothness, across n
points, we can reduce the number of variables required to de
the element state, and correspondingly the element motion, to
matching that of conventional lumped mass approaches.

4.1 Enforcing First-Order Continuity. In order to enforce
smoothness, orC1(s) continuity, of the twisted spline element
across the node points, the curvature vectors observed at the
Journal of Applied Mechanics
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points,r9( i )u i 50
N , must satisfy a series of constraint equations d

fined over the scope of the concatenated twisted spline elem
@35#. For a cable withN elements that are concatenated to exte
between nodes 0 andN, these constraint equations take the for

3
L1

3
I

L1

6
I 0 0 0

L1

6
I

L11L2

3
I

L2

6
I 0 0

0 � � � 0

0 0
LN21

6
I

LN211LN

3
I

LN

6
I

0 0 0
L

6
I

LN

3
I

4 F r9(0)

r9(1)

]

r9(N21)

r9(N)

G

53
r(1)2r(0)

L1

r(2)2r(1)

L2
2

r(1)2r(0)

L1

]

r(N)2r(N21)

LN
2

r(N21)2r(N22)

LN21

2
r(N)2r(N21)

LN

4 1F 2r8(0)

0
]

0
r8(N)

G . (24)

The solution of Eq.~24! requires the specification of boundar
conditions. If the orientation of the tether at nodes 0 orN is
constrained by a clamped termination to a vehicle or a station
platform, this orientation must be specified throughr8(0) or, re-
spectively. Conversely, in the case of a boundary idealized a
spherical joint, or a free boundary, at node 0 orN, r9(0)50 or
r9(N)50. For terminations that only partially constrain the teth
orientation, a combination of the free and clamped conditions
be applied across theX, Y, andZ dimensions at the boundary i
question.

Equation~24! defines ther9( i ) values directly in terms of the
node positions,r i u i 50

N , and the element unstretched length
Li u i 51

N . Thus, for any given set of node positions and prescrib
boundary conditions, there is a unique set of curvature vectors
produce a smoothC2(s) continuous tether between the teth
ends. Thus, an assembly of the twisted cubic spline elements
requires specification of the node positions to fully define
profile of the cubic elements.

We choose to use the unstretched element lengths in the c
ficient matrix of Eq.~24! to calculate the curvature vectors so th
the coefficient matrix can be calculated prior to the simulatio
This, however, introduces an error factor of (11«)2 in the calcu-
lated curvatures, a factor which is significant only in high tens
situations. However, in such circumstances, the magnitude of
tensile forces dominate the tether dynamics and dwarf any be
ing and torsional effects based on the third order component of
tether profile. Thus, the use of the unstretched lengths in Eq.~24!
is expected to be acceptable in instances of both slack and
tether. Another consequence of the low-tension assumption in
~24! is that the clamped boundary conditions are complet
specified by the orientations,t̂ (0) and t̂ (N) since r8( i )' t̂ ( i ) when
the axial strain is very small.

4.2 Reduction of the Elemental Motion Equations. The
system of smoothness constraint equations Eq.~24! transforms
disturbances in the tether profile, given as changes in the serie
node positions, into changes in the curvatures observed at
nodes of the assembled system. The resulting curvatures en
JULY 2004, Vol. 71 Õ 481
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the twisted cubic spline fit through the resulting node configu
tion retains the desired smoothness and second-order contin
The symbolic form of Eq.~24! is

R95K1R1K2r8(0)1K3r8(N) (25)

whereR5$r (0)T r (1)T
¯ r (N)T

%T and the entries of the 3(N11)
33(N11) linear transformationK1 and the 3(N11)33 trans-
forms K2 and K3 are functions of the element lengths,Li u i 51

N .
Considering a case in which the element lengths are constan
K1 , K2 , andK3 transformations map, respectively, time rates
change of the node positions, the top boundary conditions, and
bottom boundary conditions over the evolving nodal curvatur
Differentiating ~25! twice with respects to time in the case co
sidered:

R̈95K1R̈1K2r̈8(0)1K3r̈8(N) (26)

Examining the structure of Eq.~24!, it is apparent that theK1
matrix has no zero entries, reflecting the dependence of the a
eration of thei th curvature vector, and the corresponding chan
in the ith element’s curvilinear profile, on the acceleration of a
node in the assembled system. Thus for thei th element, it is
necessary to use Eq.~26! to replacer̈ 9( i 21) and r̈ 9( i ) in Eq. ~18!
with linear combinations of the node accelerations,r̈( i )u i 50

N , and
boundary terms,r̈8(0) and r̈8(N), to ensure the evolving curvature
maintain the smoothness of the discrete cable.

This coupling of the element states goes against the premis
a finite element method. Conventionally, the state of thei th ele-
ment would be defined strictly in terms of variables possessin
physical association with only thei th element. Element definition
following this rule ensure sparsity in the resulting element eq
tions. However, due to a synergy between the twisted spline
ment and a lumped mass approximation to the cable continuu
is possible to express Eq.~18! strictly in terms of node accelera
tions while maintaining the desired independence between th
ements of the assembled. We first compress the element m
equations down to two vector equations by pre-multiplying b
sides of Eq.~18! by Pi where

Pi5F 1
1

Li
2 I 0 0

0 0 I
1

Li
2 I
G

The result is a reduced form of the motion equation for thei th
element:

Pi@~@KB# i1@KA# i1@K t# i !Xi1Wi1H i1Bi #

5LiFM i 0

0 M i
GS F 14

45
I

53

360
I

53

360
I

14

45
I
G H r̈ ( i 21)

r̈ ( i ) J

2Li
2F 19

945
I

263

15120
I

263

15120
I

19

945
I
G H r̈ 9( i 21)

r̈ 9( i ) J D . (27)

The term in parentheses on the right-hand side of Eq.~27!
describes how the mass of the tether element has been asso
with the possible modes of element motion. The first matrix in
parentheses of Eq.~27! quantifies the mass of the element, co
sisting of both tether mass and added mass, that must be ac
ated as the element’s nodes, nodesi 21 andi , accelerate to pro-
duce translation or rotation of the element in the water colum
The second matrix in the parentheses quantifies mass within
482 Õ Vol. 71, JULY 2004
ra-
uity.

, the
of
the

es.
-

cel-
es

ny

s

e of

g a

a-
ele-

, it
-

el-
tion
th

iated
he
n-
eler-

n.
the

i th element that is accelerated as curvature changes at nodi
21 and i produce a temporal variation of the higher order co
ponent of the element profile.

4.3 The Lumped Mass Approximation. Drawing on the
results of previous developments in the area of cable dynam
modeling, one can argue that the added degree of complexity
duced by the inclusion of ther̈ 9( i 21) andr̈ 9( i ) terms in Eq.~27! is
not warranted. Since its introduction by Walton and Polacheck@8#
the success of the lumped mass approximation in the stud
various underwater cable dynamics problems has been well d
mented, @2,3,5,7,16,19–21,25,26#. A detailed analysis of the
lumped mass approach was presented by Huang in@3# which
showed that the lumped mass approximation is consistent with
dynamics of an actual highly flexible cable in the limit of diffe
ential element size. Kamman and Huston rationalized the us
the lumped mass approach through its superior computational
formance, and equivalent accuracy, compared to more com
cated methods that used a more distributed representation o
cable mass,@16#.

The premise of the lumped mass approach is a redistributio
the cable element’s mass such that it is concentrated at the
points. The consequence of this approximation is that change
the higher order shape of the element profile, caused by chan
curvature at the element end nodes, do not accelerate any c
mass. Rather, only inertia associated with the acceleration of
node points is considered. The justification for this redistribut
of the cable inertia is based on physical and heuristic reason
Since the ROV tether is a slender body, there is a limit to
amount of mass that is being shifted, and hence a limit to the e
this shift incurs in the evaluation of the motion equations. S
ondly, the lumped mass approximation serves to decouple the
tion of the node points and this ensures computational simpli
in the solution of the resulting motion equations. The lump
mass approximation to the cable dynamics is realized by a di
manipulation of the inertial terms of Eq.~27!. Using the lumped
mass approximation the complete element motion equations
be given by

Pi@~@KB# i1@KA# i1@K t# i !Xi1Wi1H i1Bi #

5LiF 1

2
M i 0

0
1

2
M i

G H r̈ ( i 21)

r̈ ( i ) J . (28)

The aforementioned synergy between the lumped mass app
mation and the twisted spline elements is evident when consi
ing Eq.~24! and Eq.~28!. Given that the curvature vectors, whic
completely define the curvilinear element profile and thus aff
calculation of the bending and torsional effects, are an exp
function of the collection of node points, it is necessary to in
grate only the time rates of change of the node positions to cap
the complete tether state, including internal twist, at the next
stant in time. Thus, the lumped mass motion equations, Eq.~28!,
are in terms of only six state variables—the node positions. Si
the curvatures are calculated at each time step, the only co
quence of eliminating the curvature time differentials from t
element motion equations is the error associated with the heur
mass redistribution.

5 Solution Procedure
The reduced motion equations, given by Eq.~28!, and the tor-

sional constraint equations for the element, Eq.~23!, form the
final element equations that are to be used in calculating the
namic response of the ROV tether to changing boundary co
tions. The tether is approximated by a series of the cubic ca
elements and a global system of dynamics equations, that re
sent the behavior of the entire tether, is assembled from the
element equations. We will now illustrate the solution procedu
Transactions of the ASME
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5.1 Assembly of the Discrete Tether Model. To create a
discrete representation of an ROV tether, we concatenate a s
of the twisted cubic spline elements. This process, referred t
assembly, is represented mathematically by the application of
~28! and Eq.~23! for i 51,2, . . . ,N. This assembly process form
the global system of motion equations:

@@KB#G1@KA#G1@K t#G#$r(0)Tr9(0)Tr(1)T
¯r9(N21)Tr(N)T

r9(N)T
%T

1HG1WG1BG5@M #GR̈ (29)
Journal of Applied Mechanics
eries
as

Eq.
s

where@KB#G , @KA#G , and @K t#G are the global bending, axial
and torsional stiffness matrices, respectively;HG is the global
vector of hydrodynamic forces acting at the node points of
assembled model;WG is the assembly of weight and buoyanc
forces; andBG defines the boundary loads applied over the
sembled tether. For example, accounting for the pre-multiplica
of each elemental hydrodynamic force vector byPi , the global
vector of hydrodynamic forces is given by
the

ode points

al

. These

ass matrix

e

HG5

¦

14

45
L1h(0)1

53

360
L1h(1)

53

360
L1h(0)1S 14

45
L11

14

45
L2Dh(1)1

53

360
L2h(2)

]

53

360
LN21h(N22)1S 14

45
LN211

14

45
LNDh(N21)1

53

360
LNh(N)

53

360
LNh(N21)1

14

45
LNh(N)

§

Previously, in Eq.~22!, we expressed the boundary loads for thei th element in terms of the internal forces experienced at
boundaries of the element.

To define the global vector of boundary loads, we recognize that instantaneous changes of the internal force across the n
are created by external forces applied at the node points. At nodei

F i
( i )2F i 11

( i ) 5fa
( i )

wherefa
( i ) is an external force applied at nodei of the assembled tether,F0

(0)50, andFN11
(N) 50. Using these substitutions, the glob

vector of boundary loads is given by

BG5$f a
(0)Tf a

(1)T
¯f a

(N)T%T.

The global boundary load vector facilitates the application of external forces at any node point of the assembled system
applied loads provide unconstrained boundary conditions on the third derivative of the tether profile,r-.

The inertial terms on the right-hand side of the equation consist of the global mass matrix that is formed by tiling theN instances of
the element mass matrices and the vector of node accelerations. For instance, using the lumped mass assumption the global m
takes the form

@M #G53
1

2
L1M1 0 0 0 0

0
1

2
L1M11

1

2
L2M2 0 0 0

0 0 � 0 0

0 0 0
1

2
LN21MN211

1

2
LNMN 0

0 0 0 0
1

2
LNMN

4
In addition to the global system of motion equations, the torsional constraint equations given by Eq.~23! are assembled to produc

a global system of constraint equations that define the torsional deformation throughout the tether:
JULY 2004, Vol. 71 Õ 483
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0 0 2
1
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1

1

LN
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1

LN

0 0 0 2
1

LN
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LN

4 5 a (0)

a (1)

]

a (N21)

a (N)
6 5GJ5

g1

g22g1

]

gN2gN21

2gN

6 15
T(0)

0
0
0

T(N)
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where T(0)52GJt1
(0) and T(N)5GJtN

(N) are external torsiona
couples applied at the boundaries of the assembled tether. In
ing Eq. ~30! we have assumed that no torsional couples are
plied at the interior nodes of the assembled system of eleme

5.2 Solution of the Initial Value Problem. Recalling that
the node curvatures are an explicit function of the node positio
the left-hand side of Eq.~29! is seen to be an explicit function o
the node positions and, through the hydrodynamic terms, n
velocities. The series of global motion equations in Eq.~29! thus
forms a series of 3(N11) second-order differential equations
the form

F~R,Ṙ!5@M #GR̈. (31)

Equation~31! is a classic initial value problem that defines t
motion of the assembled tether nodes,r( i )u i 50

N , during a ROV
maneuver. To advance the model in time using an integration
tine, the initial value problem is recast as a series of 6N first-order
differential equations by introducing the node velocities,ṙ( i )u i 50

N ,
as additional state variables to be included in the integration
cess. Thus, given an initial state of the tether,Y(t0)

Y~ t0!5$r(0)T~ t0! ṙ(0)T~ t0! r(1)T~ t0! ¯ ṙ(N21)T~ t0!

r(N)T
~ t0! ṙ(N)T

~ t0!%T,

the integration scheme producesY(t1), Y(t2), . . . ,Y(tk),
Y(tk11), . . . ,Y(t f), wheret f is the duration of the simulation. To
advance the model each time step we propose an explicit
proach. For thekth step advancing the model from the stateY(tk)
at time tk to tk11 , the following sequence of calculations pro
duces the next state,Y(tk11):

1. Using the node positions of the current tether state,r( i )u i 50
N ,

and given conditions at the tether boundaries, one ofr8(0) or r9(0)

and one ofr8(N) or r9(N), Eq. ~24! is evaluated to produce the s
of curvature vectors,r9( i )u i 50

N . This defines the profile of eac
element in the assembly.

2. Using the element profiles, the torsion within each of
elements,g i u i 50

N , is calculated according to Eq.~16!. Applying the
torsion values in Eq.~30! and the given boundary conditions, on
of a (0) or GJt (0) and one ofa (N) or GJt (N), the torsional defor-
mation throughout the discrete tether,a ( i )u i 50

N , is calculated.
3. The axial internal forces at the node points,l ( i )u i 50

N are cal-
culated using Eq.~13!, and the element stiffness matrices@KB# i ,
@KA# i , and @K t# i are calculated according to Eqs.~19!–~21! re-
spectively, and then premultiplied byP.

4. The element mass matrices,M i u i 50
N , are calculated accord

ing to Eq.~15!.
5. The hydrodynamic loads at the node pointsh( i )u i 50

N are cal-
culated using Eq.~14!, and the generalized load vectorsWi u i 51

N

andH i u i 51
N are calculated according to Eq.~22!, and premultiplied

by P.
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6. The global system of equations is assembled. Specifying
boundary conditions, one ofF(0) or r(0) and one ofF(N) or r(N),
Eq. ~31! is solved for the node accelerations,r̈( i )u i 50

N .
7. The node accelerations are augmented with the velocitie

the current tether state to form the time derivative of the st
vector Ẏ(tk), which is integrated to generate the next state of
cable,Y(tk11).

6 Conclusions
We have presented a cubic cable element that provides a m

compact representation of low-tension cable motion than exis
finite element models. Rather than the 12 or 13 state varia
defining the cubic elements of these more conventional finite
ement approaches, the state of this new cubic element is defin
any instant by six variables: the positions of the end nodes. T
reduction in the number of required state variables is achieved
choosing an element form that enforces second-order continuit
the cable profile. This choice of element reflects the fact tha
ROV maneuvers, and in many other tethered systems where
tension dynamics are likely, the tether is not subject to extern
applied moments. The chosen element form allows the elem
motion equations to be formed strictly in terms of the forces a
ing on the node points and the resulting translation of the nod
The ability of the model to capture the dynamics of slack cable
three dimensions while maintaining the advantages of simpler
ear finite element approaches, makes it suitable for solvin
much wider variety of undersea cable dynamics problems than
predecessors. The model’s ability to capture long periods of lo
tension cable motion makes it a desirable tool, not only in tethe
ROV applications, but in any application that involves alternati
taut and low-tension regimes.
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Collinear and Periodic
Electrode-Ceramic Interfacial
Cracks in Piezoelectric
Bimaterials
Field singularities of collinear and collinear periodic interface cracks between an e
trode and a piezoelectric matrix are studied in terms of the Stroh formalism for m
boundary conditions. In contrast to the relevant work done previously on this subjec
problem is solved based on the assumption that the upper and lower planes embe
the electrode consist of two arbitrary piezoelectric materials, and the cracks are ass
to be permeable. The problem is reduced to an interfacial crack problem equivale
that in purely elastic media. Explicit expressions are presented for the complex pote
and field intensity factors. All the field variables exhibit oscillatory singularities, and th
intensities are dependent on the material properties and the applied mechanical load
not on the applied electric loads.@DOI: 10.1115/1.1767168#
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1 Introduction

Piezoelectric ceramics have been widely used in actuators,
sors and other components. In these devices, the most
efficient geometry is that of the cofired multilayer actuators w
metal electrodes,@1#. Due to the different mechanical and elect
cal behavior of electrodes and ceramics, the field variables c
centrate around the electrode edges. The nonuniform local
induces crack initiation and crack growth and finally leads to
failure of the device. Thus, with increasingly wide application
ceramic multilayer actuators made of piezoelectric materials,
problems of local fields near electrodes have received much a
tion in the recent decade.

Some important results have been presented by Yang and
@2#, Hao et al.@3#, Shindo et al.@4#, Ye and He@5#, and Dos
Santos e Lucato et al.@6# for the cases of electrodes in a hom
geneous material, and also Deng and Meguid@7# and Ru@8# for
the case of interface electrodes between two dissimilar piezoe
tric materials. These cited works are focused on the cases wit
cracks. In fact, experiments have demonstrated,@9,10#, that cracks
are formed preferentially at the interface between the electr
and the matrix. Thus, it is of both theoretical and practical imp
tance to study the fracture problems of electrode-matrix interf
cracks. On this subject, several analytical results have been
tained by Ru@11#. Recently, Wang and Shen@12# have developed
a general treatment for generalized two-dimensional problem
anisotropic piezoelectric bimaterial with interface defects.

In the present work we study the generalized two-dimensio
problem of collinear electrode-ceramic interface cracks in pie
electric bimaterials. The solution of a single crack is included a
special case as well. The piezoelectric media located at the
sides of the electrode layer are assumed to be generally a
tropic, and the cracks to be permeable.

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, October
2002; final revision, January 30, 2004. Associate Editor: K. Ravi-Chandar. Dis
sion on the paper should be addressed to the Editor, Prof. Robert M. McMee
Journal of Applied Mechanics, Department of Mechanical and Environmental E
neering, University of California–Santa Barbara, Santa Barbara, CA 93106-5
and will be accepted until four months after final publication in the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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The assumption of collinear cracks based on the considera
that they may exist before a main crack emerges. The assump
of permeable cracks will be explained later.

Section 2 outlines the Stroh formalism. In Section 3 we der
the general expression for the complex potentials, in Sectio
several solutions of field intensity factors at the crack tips
given, and in Section 5 we specify numerical examples. Sectio
concludes the paper.

2 Stroh Formalism for Mixed Boundary Value Prob-
lem

In a fixed rectangular coordinate systemxi ( i 51,2,3), we iden-
tify the displacement byui , the electric potential byw, the stress
by s i j , the strain byg i j , the electric displacement byD j and the
electric field byEi . The basic equations for a linear piezoelect
solid can be expressed as,@11#,

s i j , j50, Di ,i50 (1)

g i j 5
1

2
~ui , j1uj ,i !, Ei52w ,i (2)

s i j 5Ci jkl gkl2eki jEk , Dk5eki jg i j 1«klEl (3)

whereCi jkl , ei jk , and« i j are the elastic constants, the piezoele
tric constants, and the dielectric constants, respectively.

For a generalized two-dimensional problem~all the field vari-
ables are independent ofx3) a displacement vectoru can be in-
troduced as,@13#,

u5@u1 u2 u3 w#T5af ~x11px2! (4)

where the superscript T represents the transpose,f (x11px2) is an
analytic function,p is a constant, anda a constant four-elemen
column. Equations~1!, ~2!, and ~3! are satisfied by~4! for arbi-
trary f (x11px2) if

@T1p~R1RT!1p2W#a50 (5)

where the~4,4! matricesT, R, andW are given by

T5FCi1k1 e11i

e11i
T 2«11

G , R5FCi1k2 e21i

e12i
T 2«12

G ,

7,
us-
ing,
gi-
70,
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W5FCi2k2 e22i

e22i
T 2«22

G , i ,k51,2,3.

The condition for nontrivial solutions of~5! requires uT1p(R
1RT)1p2Wu50. The eight eigenvalues consist of four distin
conjugate pairs with positive imaginary parts,@13#, such thatpa ,
pa145Pa with Im pa.0, a51 . . . 4.Thus, the general solution
of u is

u5(
a51

4

@aa f a~za!1aa f a~za!# with za5x11pax2 . (6)

The associate stresses and electric displacement can be ob
by inserting~6! and ~2! into ~3!, such that

@s2 j ,D2#T5(
a51

4

@ba f a8 ~za!1b̄a f a8 ~za!#, j 51,2,3 (7)

@s1 j ,D1#T52(
a51

4

@bapa f a8 ~za!1b̄ap̄a f a8 ~za!#, j 51,2,3

(8)

whereba are determined by

ba5~RT1paW!aa52
1

pa
~T1paR!aa , a51 . . . 4. (9)

From ~6!, ~7!, and~8! we have

u5Af ~za!1Āf~za! (10)

f5Bf~za!1B̄f~za! (11)

where

A5@a1 a2 a3 a4#, B5@b1 b2 b3 b4#,

f~za!5@ f 1~z1! f 2~z2! f 3~z3! f 4~z4!#T,

f,15@s2 j D2#T, and 2f,25@s1 j D1#T.

To simplify the solution of problems with permeable cracks~this
corresponds to a mixed boundary value problem!, we define two
appropriate vectors as

û5@u1 u2 u3 f4# and f̂5@f1 f2 f3 w#

whereû andf̂ can be expressed as

û5Iuu1I tf and f̂5I tu1Iuf (12)

with the diagonal matrices Iu5diag(1 1 1 0) and I t
5diag(0 0 0 1). Note, for general mixed boundary value pro
lems Iu and I t would be any diagonal matrices, whose eleme
are either 1 or 0 and satisfyIu1I t5I , Iu•I t50.

Substituting~10! and ~11! into ~12! leads to

û5Âf~za!1 Â̄f~za! and f̂5Âf~za!1 B̂̄f~za! (13)

where

Â5IuA1I iB and B̂5I tA1IuB. (14)

The nature ofÂ andB̂ was studied by Ting and Wang@14#, Wang
et al. @15#, Homulka and Keer@16# for the case of purely aniso
tropic media, and also by Ha¨usler and Balke@17#, and Wang and
Shen@12# for the case of piezoelectric materials. It is found th
these matrices have a similar nature to that ofA andB, e.g., they
are nonsingular and moreover satisfy for a proper normaliza
of aa andba the following relation:

F B̂T ÂT

B̂̄T Â̄T
GF Â Â̄

B̂ B̂̄
G5F I 0

0 I G (15)
Journal of Applied Mechanics
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whereI is a ~4,4! unit matrix.

3 Complex Potentials
As shown in Fig. 1, we consider an electrode layer between

dissimilar piezoelectric half-infinite bodies distinguished bys1

and s2. Assume that these two bodies coexist in the state
generalized two-dimensional deformation under the mechani
electric loads (s2 j

` ,D2
`) at infinity, containing collinear interfacia

cracks between the electrode ands1 denoted byLc . The un-
cracked part along thex1-axis is represented byLb .

Since the electrode layer is commonly much thinner than
matrix, its mechanical properties will be neglected.

The cracks are assumed to be permeable. That means tha
electric potentialw is continuous across the crack faces (w1

5w2, @13,18#!. We should like to mention besides that because
the electrode layer, the electric potential is not only continuo
across the crack faces but also constant inside the cracks. Th
just the condition for conducting cracks. Therefore, the rea
may refer the considered cracks to conducting cracks. This ma
no difference in solving the problem.

In @19#, Balke et al. modeled fracture tests of compact tens
and three point bending specimens~performed by Park and Sun
@20#! by means of finite element method. In their numerical c
culation they compare the total energy release rates for three
ferent types of cracks that are impermeable, permeable, and
ited permeable cracks,@21#. From their work one can realize tha
‘‘the cracks behave more like permeable cracks, than like imp
meable cracks.’’ Additionally in@22#, Schneider et al. study an
indentation crack in a homogeneous PZT ceramic using Ke
probe microscopy and atomic force microscopy. They determ
the dielectric constant of the crack interior to be about 40, wh
is significantly higher than 1, which is expected for a crack fill
with air. Schneider et al. state as one possible explanation for
high dielectric constant that ‘‘ . . . the potential difference across
the crack is reduced due to charge compensation at the c
surfaces. This would reduce the electric field interior to the cra
leading to an elevated apparent permittivity.’’ In the case
electrode-ceramic interfacial cracks the presence of the elect
layer will support this effect. Furthermore, Schneider et al. illu
trated the consequence of this elevated permittivity for a Grif
crack. They point out that ‘‘The theoretically predicted effect
an applied electric field in retarding crack growth decreases
nificantly with increasing permittivity. In practical situations i
terms of crack length, applied electric load, and electric fi

Fig. 1 Arbitrary collinear electrode-ceramic interfacial cracks
JULY 2004, Vol. 71 Õ 487
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level, the retardation of crack growth is negligible when the
electric constant of the crack interior is higher than 20.’’ So
believe the studied permeable electrode-ceramic interfacial cr
are physically justified.

In consideration of the aforesaid assumptions the follow
boundary conditions hold:

E1
15E1

250, s2 j
1 5s2 j

2 50, x1PLc (16)

E1
15E1

250, uj
15uj

2 , s2 j
1 5s2 j

2 , x1PLb . (17)

Because of these boundary conditions and owing to the confi
ration of the problem, the one-complex-variable method int
duced in @23# is appropriate. Eachza from the function vector
f(za) has to be substituted by a common complex variablez
5x11zx2 where the imaginary part ofz is positive. Instead of
f(za) we can writef(z) henceforth. After the solution off(z) has
been determined theza have to be resubstituted to compute fie
quantities.

From ~13! we have

û,15ÂF~z!1 Â̄F~z! (18)

f̂,15B̂F~z!1B̂F~z! (19)

whereF(z)5df(z)/dz.
For the present problem,F(z) has the form

Fk~z!5ck
`1Fk0~z!, k51,2 (20)

where ck
` is a constant vector;Fk0(z) is an unknown function

vector ins1 (k51) or in s2 (k52), andFk0(`)50.
First let us determineck

` . It is obvious thatck
` is the complex

potential corresponding to two completely bonded half-pla
subjected to the applied uniform loads at infinity. For the subpr
lem, the continuity of deformation and stress on the entirex1-axis
requires~cf. ~18! and ~19!!

Â1c1
`1 Â̄1c1

`5Â2c2
`1 Â̄2c2

`5«̂1
` (21)

B̂1c1
`1 B̂̄1c1

`5B̂2c2
`1 B̂̄2c2

`5ŝ2
` (22)

where

«̂1
`5@0 0 0 D2

`#T, ŝ2
`5@s21

` s22
` s23

` 0#T.

With respect to~15!, from ~21! and ~22! we achieve

ck
`5B̂k

T«̂1
`1Âk

Tŝ2
`5Ak

T@s21
` s22

` s23
` D2

`#T, ~k51,2!.
(23)

The remaining task is to findFk0(z). Using ~16! and ~17! it
follows

f̂,1~x1
1!5f̂,1~x1

2!, 2`,x1,`. (24)

Substituting~19! and ~20! into ~24!, together with~21! and ~22!,
leads to

B̂1F10~x1
1!1 B̂̄1F̄10~x1

2!5B̂2F20~x1
2!1 B̂̄2F̄20~x1

1!,

2`,x1,`. (25)

Equation~25! expresses that,@24#,

B̂1F10~z!2 B̂̄2F̄20~z!50, zPs1 (26)

B̂2F20~z!2 B̂̄1F̄10~z!50, zPs2 . (27)

Based on~18!, we introduce a jump function:

iDû,15 i @ û,1~x1
1!2û,1~x1

2!#

5 i @Â1F1~x1
1!1 Â̄F1~x1

1!#2 i @Â2F2~x1
2!1 Â̄2F2~x1

2!#.

(28)
488 Õ Vol. 71, JULY 2004
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To rewrite Eqs.~19! and~28!, we use~20!, ~21!, ~22!, ~26!, and
~27!:

iDû,15g~x1
1!2g~x1

2! (29)

f̂,1~x1!5ŝ2
`1Ĥ21g~x1

1!1 Ĥ̄21g~x1
2! (30)

where

g~z!5H ĤB̂1F10~z!, zPs1

ĤB̄B̂2F20~z!, zPs2
(31)

Ĥ5Ŷ11 Ŷ̄2 , Ŷk5 i ÂkB̂k
21. (32)

It can be shown thatŶk andĤ are positive definite,@25#.
The continuity of the displacement onLb and the jump of the

displacement across the cracks give

@ iDû,1~x1!# j H 50,x1PLb

Þ0,x1PLc
, j 51,2,3. (33)

Substituting~29! into ~33! leads to

gj~x1
1!5gj~x1

2!, j 51,2,3, x1PLb (34)

which means that thegj (z) are analytical in the entirez-plane
except on the cracks.

Writing out the components of~30!, we have

f̂ i ,1~x1!5ŝ2i
` 1(

j 51

4

hi j gj~x1
1!1(

j 51

4

hi j gj~x1
2!, i 51,2,3

(35)

f̂4,1~x1!5(
j 51

4

h4 jgj~x1
1!1(

j 51

4

h4 jgj~x1
2!50, 2`,x1,1`

(36)

whereh5Ĥ21.
Multiplying both sides of~36! with 1/2p i *2`

1`dx1/(x12z) , and
using Cauchy integration theory,@24#, we obtain

(
j 51

4

h4 jgj~z!50, zPs1 (37)

(
j 51

4

h4 jgj~z!50, zPs2. (38)

Hence,

g4~z!55 2
1

h44
(
j 51

3

h4 jgj~z!, zPs1

2
1

h44
(
j 51

3

h4 jgj~z!, zPs2

(39)

whereh44 is real and greater than zero.
Inserting~39! into ~35! gives

f̂ i ,1~x1!5ŝ2i
` 1(

j 51

3

L i j gj~x1
1!1(

j 51

3

L i j gj~x1
2! (40)

where

L i j 5hi j 2
hi4

h44
h4 j , i , j 51,2,3. (41)

It can be shown that the~3,3! matrix L5@L i j # is positive defi-
nite and is equivalent to (Ĥ33)

21, in which Ĥ33 is the upper left
~3,3! hand block ofĤ.

With
Transactions of the ASME
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fs,15@f̂1,1 f̂2,1 f̂3,1#
T, s2

`5@s21
` s22

` s23
` #T,

and gs5@g1 g2 g3#T

~40! reads in matrix notation as

fs,1~x1!5s2
`1Lgs

11L̄gs
2 . (42)

On the crack faces the stress boundary condition is

fs,1~x1!50, x1PLc . (43)

Substituting~43! into ~42! results in

Lgs
11L̄gs

252s2
` , x1PLc . (44)

To determine the complete solution of~44! we have to consider
the condition of unambiguous displacement. This requires

E
Lc

@Dû,1~x1!# jdx150, j 51,2,3. (45)

Because the cracks are permeable, the electric potential is a
matically unambiguous, unlike the displacement. Inserting~29!
into ~45! leads to

E
Lc

@g1~x1!2g2~x1!# jdx150, j 51,2,3. (46)

Up to here, the problem has been reduced to an interfacial c
problem equivalent to that in purely elastic media. It can be sol
according to traditional methods~e.g., Muskhelishvili@24#, Suo
@23#, and Boniface and Banks-Sills@26#!.

4 Field Intensity Factors and Energy Release Rate
Now, as an example, the solution of~44! will be derived for the

case of an infinite number of collinear periodical interfacial crac
with equal length 2a and equal interval 2b (b.a) as shown in
Fig. 2. In order to get the solution of~44! for an other system of
collinear cracks we refer to the discussion in paragraph 6 of@23#.

Equation~44! can be transformed into

gs
15L21L̄gs

252L21s2
` , x1PLc . (47)

For convenience, we introduce

Q21L21L̄Q5diag~e2p« e22p« 1!5diag~e2p«a! (48)

where Q is a constant matrix. The positive and real constan«
depends on the material properties and characterizes the os
tory singularities@27#.

Fig. 2 Collinear periodic electrode-ceramic interfacial cracks
Journal of Applied Mechanics
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The general solution of~47! is

Q21gs~z!52diagS 1

11e2p«aDR01diagS Xa~z!Xa
21~`!

11e2p«a
DR0

(49)

where

Xa
21~`!Xa~z!5

sinF p

2b
~z22ia«a!Gsec

pa

2b
sec

pz

2b

Atg2
pz

2b
2tg2

pa

2b

3F tg
pz

2b
2tg

pa

2b

tg
pz

2b
1tg

pa

2b

G2 i«a

,

R05@LQ#21s2
` .

The derivation of the formula~49! is given in the Appendix.
In order to calculate the field intensity factors we define a v

tor as,@28#,

ks5 lim
r→0

A2pr @LQ#diag~r i«a!@LQ#21s2~r ! (50)

wherer means the distance from the crack-tip ands2(r ) stands
for the stress vectors2(x1) ahead of the crack tip for a coordinat
system moved to any right crack tip.

Noting ~34!, it results from~42! that

@LQ#21s2~r !5diag~11e2p«a!Q21gs~r !1R0 ,

r 5x12a22nbPLb . (51)

Substituting~51! with respect to~49! into ~50! yields

ks5Apa@LQ#diag~~2a! i«ava!@LQ#21s2
` (52)

where

va5sec
pa

2b
sinFpa

2b
~122i«a!G S pa

2b D 2 i«a21/2S tg
pa

2b D i«a21/2

.

(53)

The bimaterial intensity factors are following from Eq.~52! by
multiplying it with @LQ#21 ~cf. @13,23#!:

@LQ#21ks5k5Apa diag~~2a! i«ava!R0 , R05@LQ#21s2
` .
(54)

The relations between the components of the vectorsk
5@K1 K2 K3#T and R05@R01 R02 R03#

T, respectively, will be
given below.

If b→`, from ~53! it follows that

va5122i«a (55)

and thus~54! becomes

k5Apa diag~~2a! i«a~122i«a!!R0 (56)

which is the corresponding solution of a single electrode-cera
interface crack. In addition,~54! and~56! show thatk is indepen-
dent of the applied electric load.

If b→a, from ~53! by settingb5a1c andc!a we have

k5Apa diagS ~2a! i«aS p

2 D 2~112i«a!

ei«a ln a/cAa

cDR0 . (57)

Here we additionally assumed«!1, which holds normally. It can
be seen that the amount of the intensity factors increases rap
by Aa/c while the complex intensity factors are rotated by t
angle«a ln a/c if the crack tips get closer to each other.
JULY 2004, Vol. 71 Õ 489
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Further, for«→0 ~as in a homogeneous material! we obtain

k5A2b

pa
tg

pa

2b
ApaR0 and ks5A2b

pa
tg

pa

2b
Apas2

` ,

respectively. The latter is the known solution of a periodical ar
of cracks in a homogeneous material.

The intensity factors are related as follows. From@LQ#R0

5s2
` and~48! it can be seen thatQR05Q̄ diag(e22p«a)R̄0 . Since

Q5@ q̄ q q3#, whereq3 can be chosen real,@23#,

Q̄5QF 0 1 0

1 0 0

0 0 1
G

applies and thus

R015e2p«R̄02 R035R̄03 and K15e2p«K̄2 K35K̄3 . (58)

Because the cracks are permeable, the energy release rat
lows from the purely mechanical crack closure integral,@23#.
From it we obtain

G5
e2p«qT~L1L̄!q̄KK̄

4 cosh2 p«
1

1

8
q3

T~L1L̄!q3K3
2 (59)

whereK5K2 . The Eq.~58! shows thatG is always greater than
zero except forK5K350.

Below a short outlook is given to interfacial fracture mechani
In consideration of~58! we can unambiguously define a mixe
mode anglec as

c5tan21S Im~Kl i«!

Re~Kl i«! D , (60)

wherel is a reference length, whose choice is discussed in@29#. A
second mixed mode angle, introduced by Suo@@25#, Section 11#,
can be defined as

f5tan21S uKl i«u
K3

D . (61)

According to@25#, in terms ofc, l, andf we propose a criterion
for the initiation of crack advance in the interface in form ofG
5G(c,l ,f), whereG is the toughness of the interface.

For the most important situation in practical applications, wh
the poling directions of the~transversal isotropic! piezoelectric
materials are in plane and no antiplane load exists (s23

` 50), K3
50 applies. For it the energy release rate is given by

G5
e2p«qT~L1L̄!q̄KK̄

4 cosh2 p«
. (62)

Consequently, a criterion for initiation of crack advance in t
interface can be stated as

G5L~c,l ! (63)

analogous to the criterion for the initiation of crack advance in
interface of two~isotropic! elastic materials,@29#.

The toughness of the interfaceG(c,l ,f) and G(c,l ), respec-
tively, must be determined by experiments. As our results sh
for permeable electrode-ceramic interfacial cracks, these ex
ments can be purely mechanical experiments. Nevertheless,
finite structural component the piezoelectric coupling could p
duce stress due to the influence of the boundaries or due t
applied inhomogeneous electric field. This stress could cause
intensity factors. For this reason the electrical loads can’t be
glected a priori in a finite structural component.
490 Õ Vol. 71, JULY 2004
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5 Numerical Examples
In the following numerical examples transversely isotropic

ezoelectric materials are considered. The poling direction is
sumed to be parallel to thex2-axis so that the matrices of Eq.~5!
yield to ~note that Voigt notation is used here!

T5F c11 0 0 0

0 c44 0 e15

0 0
c112c12

2
0

0 e15 0 2«11

G ,

(64)

R5F 0 c13 0 e31

c44 0 0 0

0 0 0 0

e15 0 0 0

G , and W5F c44 0 0 0

0 c33 0 e33

0 0 c44 0

0 e33 0 2«33

G .

In the numerical calculation we use for the material in the up
half-plane PZT4 and for the material in the lower half-pla
PZT5H. The material properties are given in Table 1.

The numerical solution of~5! with respect to~9!, ~14!, ~32!,
~41!, and~48! provides

L5F 24425.0 1312.7i 0

21312.7i 23189.0 0

0 0 15630.5
G N

mm2 ,

Q5F 0.5 0.5 0

0.513152i 20.513152i 0

0 0 1
G diag~c1 c2 c3!, (65)

Q21L21L̄Q5diag~1.11675 0.895455 1!

with «50.0175745. The constantsci ( i 51,2,3) are arbitrary ex-
cept zero. As mentioned above, because of the in-plane-polin
the transversely piezoelectric materials, the fields in x3-direction
decouple from the in-plane fields.

For comparison, without an internal electrode layer we wo
have

L5F 27748.8 1629.7i 0

21629.7i 23219.3 0

0 0 15630.5
G N

mm2 ,

Q5F 0.5 0.5 0

0.546598i 20.546598i 0

0 0 1
G diag~c1 c2 c3!, (66)

Q21L21L̄Q5diag~1.13722 0.879339 1!

with «50.0204649 as shown in@30#. Note, although the structure
of the results for interfacial cracks with and without an intern

Table 1 Material properties of PZT4 and PZT5H „c ij in
104 NÕmm2, eij in 103 nAs Õmm2, and « i j in 103 nAs ÕMV mm …

c11 c12 c13 c33 c44
PZT4 13.9 7.78 7.74 11.3 2.56
PZT5H 12.6 5.50 5.30 11.7 3.53

e31 e33 e15 «11 «33
PZT4 26.98 13.84 13.44 6.00 5.47
PZT5H 26.50 23.30 17.00 15.1 13.0
Transactions of the ASME
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electrode layer are identical~cf. @@30#, Eq. ~34!# and ~44!!, the
ways of solving the problems and the involved matrices are
ferent.

On the other hand, without an piezoelectric effect by sett
ei j 50, as for~permeable! interfacial cracks in anisotropic elastic
dielectric bimaterials with or without an internal electrode lay
the matrices are given by

L5F 22939.0 391.15i 0

2391.15i 21303.4 0

0 0 15630.5
G N

mm2 ,

Q5F 0.5 0.5 0

0.518839i 20.518839i 0

0 0 1
G diag~c1 c2 c3!, (67)

Q21L21L̄Q5diag~1.03603 0.965227 1!

with «50.0056328.
For a single interface crack (b→`) the field intensity factor

K25K is given by Eq.~56!. With the use of the matrices from
Eqs. ~65!, ~66!, and ~67! (c1 ,c251) and only considering the
in-plane loadss21

` 5s̃21N/mm2 and s22
` 5s̃22N/mm2, it follows

that

PZT4/EI./PZT5H K5Apa~2a!2 i«~112i«!~0.38802s̃21

1 i0.39822s̃221024

PZT4/PZT5H K5Apa~2a!2 i«~112i«!~0.33863s̃21

1 i0.37019ŝ221024

ei j 50 K5Apa~2a!2 i«~112i«!~0.42836s̃21

1 i0.44450s̃221024, (68)

respectively. Settinga5ã mm the corresponding energy relea
rates are given by~62!

PZT4/EI./PZT5H G5ã~0.35954s̃21
2 10.37870s̃22

2 !1024
N

mm

PZT4/PZT5H G5ã~0.32242s̃21
2 10.38531s̃22

2 !1024
N

mm
(69)

ei j 50 G5ã~0.35476s̃21
2 10.38200s̃22

2 !1024
N

mm
.

It can be seen that the electrical boundary condition in the
terface as well as the piezoelectric performance of the mate
influences the field intensity factors and the energy release r
The energy release rates with and without an internal electr
layer differ about 12%, considering the terms of~69! which con-
tain s̃21

2 . However, the difference between the energy release r
is only about 1% for the case of an internal electrode layer co
pared to the caseei j 50.

6 Conclusions
We studied a generalized two-dimensional problem of collin

~periodic! electrode-ceramic interfacial cracks in piezoelectric
materials. Based on the Stroh formalism for mixed boundary c
ditions, the problem is reduced to an interfacial crack probl
equivalent to that in purely elastic media. The solutions of
field intensity factors are obtained in very explicit form. It
found that the field intensity factors and the energy release rate
dependent on the material properties and the mechanical fi
but not directly on the electric fields.
Journal of Applied Mechanics
if-

ng
-
r,

e

in-
ials
tes.

ode

tes
m-

ar
i-

on-
m

he
s
are
lds,

Acknowledgments
The authors would like to express their gratitude for the supp

of the German Research Foundation and the Alexander von H
boldt Foundation~Germany!.

Appendix

The Derivation of Eq. „49…. Multiplying both sides of~47!
by Q21 and using~48! we have

R1~x1!1diag~e2p«a!R2~x1!52R0 (A1)

whereR(z) is a function vector andR0 is a constant vector, which
are defined as

R~z!5Q21gs~z!, R05Q21L21s2
` .

Writing the components of (A1) in separate equations results

Ra
1~x1!1e2p«aRa

2~x1!52Ra0 , a51,2,3. (A2)

The general solution of (A2) is, @24#,

Ra~z!5
2Ra0

11e2p«a
1FXa~z!Xa

21~`!

11e2p«a
GRa01Xa~z!Pa~z!

(A3)

whereXa
21(`) stands for the principle part ofXa

21(z) at infinity,
Pa(z) is a polynomial, and

Xa~z!5 )
n52`

`

@~z22nb!2a#21/22 i«a@~z22nb!1a#21/21 i«a,

(A4)

Xa
21~`!5 )

n52`

`

@z22nb22ia«a#.

For the present case it can be shown that

Pa~z!50. (A5)

Thus, (A3) reads in vector notation as

Q21gs~z!52diagS 1

11e2p«aDR01diagS Xa~z!Xa
21~`!

11e2p«a
DR0 .

(A6)

Using the identity

sinpz5pz)
n51

` S 12
z2

n2D
we have

Xa
21~`!Xa~z!

5
)n52`

` @z22nb22ia«a#)n52`
` @~z22nb!2a#21/22 i«a

)n52`
` @~z22nb!1a#1/22 i«a

5sinFp~z22ia«a!

2b G H sinFp~z2a!

2b G J 21/22 i«a

3H sinFp~z1a!

2b G J 21/21 i«a

. (A7)

Using

sinFp~z6a!

2b G5sin
pz

2b
cos

pa

2b
6cos

pz

2b
sin

pa

2b

Eq. (A7) can be transformed into
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Xa
21~`!Xa~z!5

sinF p

2b
~z22ia«a!Gsec

pa

2b
sec

pz

2b

Atg2
pz

2b
2tg2

pa

2b

3F tg
pz

2b
2tg

pa

2b

tg
pz

2b
1tg

pa

2b

G 2 i«a

. (A8)

This concludes the derivation of~49!.
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A Definition of Particle Rolling
in a Granular Assembly in Terms
of Particle Translations and
Rotations
The paper presents a definition of particle rolling for the interactions of two and th
dimensional particles of arbitrary shape, in case of infinitesimal particle translations
rotations. The definition is based on a purely kinematical analysis, and it is show
satisfy the objectivity condition.@DOI: 10.1115/1.1755693#
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1 Introduction
Granular assemblies consist of individual particles, each hav

its own translational and rotational degrees-of-freedom. In a
tion to elastic deformations, the particles are able to slide as
as to roll across each other, and both mechanisms have their
in the global deformation of the assembly. The meaning of con
deformation and sliding is unambiguous, but this is not the c
for the concept ofrolling. The aim of this paper is to give a
general definition of rolling between particles.

We shall consider particles whose stiffness is large enoug
ensure that the particles retain their shapes except in the s
vicinity of their contacts. It will also be assumed that the cont
surfaces are so small that in their geometrical description,
contacts can be modeled as points.

When two particles are in contact, and move relative to e
other, a wide range of mechanical phenomena may occur a
contact point. If the two contacting particles move in such a w
that the distance between any arbitrarily chosen points on the
particles remain constant during the motion, then the particle
performs arigid-body motion. Otherwise, two types of phenom
ena may occur in the contact:deformationand rolling.

~1.! Contact deformation
The neighborhoods of the two particles around the contact p
may be deformed. From a kinematical point of view, contact
formations, whether elastic or dissipative, are usually separ
into relative translations~both normal and tangential! andrelative
rotations ~both bending and twisting!.

These deformation types are well known and are widely app
in distinct element simulations for the description of contact
havior.

~2.! Rolling
Two particles mayroll across each other without energy dissip
tion or storage. This possibility provides for extra degrees of fr
dom for a granular assembly. In extreme situations assemb
may be deformed without any~or, at least, with very small! en-
ergy investment, due to the ability of particles to roll along ea
other. The effect is also present in general cases, making the o

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, October
2002; final revision, November 25, 2003. Editor: R. M. Meeking. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and w
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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all response much softer than it would be without the possibi
of rolling motions~Iwashita and Oda@1#!. Consequently, particle
rolling plays a fundamental role in the deformation of granu
assemblies.

Most of the literature related to particle rotations and to rolli
phenomena focuses on assemblies of ideal circles or spheres
since the extension of the results is questionable for real situat
with nonideal particle shape, we only consider those studies
apply to more realistic particle shapes.

The effects of particle rotations and contact rolling—taking in
account noncircular or nonspherical particle shapes—have
been analyzed by several authors. These studies have been
formed on two-dimensional assemblies, through physical exp
ments~Oda, Konishi, and Nemat-Nasser@2#! as well as by com-
puter simulations~Rothenburg and Bathurst@3#, Ting et al. @4#,
and Matsushima and Konagai@5#!. The literature also includes a
few studies of three-dimensional numerical simulation results~for
example, Lin and Ng@6#!. The importance of rolling as a defor
mation mechanism has been clearly identified in these invest
tions, and the fact that the particle shape strongly influences
material behavior has also become clear.

In spite of all these experimental or numerical results, there
been no general definition of what is meant by a ‘‘rolling displac
ment’’ of two arbitrarily shaped, possibly three-dimensional p
ticles. Different researchers may think of different phenome
when using the expression ‘‘rolling displacement.’’ Sometimes
is interpreted as the relocation of the contact point on the
touching surfaces, which requires principles of differential geo
etry to describe the local surface shapes~Montana @7#!. Some-
times it is simply understood as the tangential component of
difference between the rotation vectors of the two particles. T
rolling displacement can also be that part of the common tran
tion of the contact point which originates from the particle ro
tions ~Iwashita and Oda@1#!.

We do not think that there is a unique way to define the rolli
displacement. On the contrary: all of these~or other! approaches
to define a rolling displacement may be correct and useful
certain applications, provided that the definition is given in
exact, mathematically clear manner.

We present a version of rolling displacement that can direc
be expressed in terms of the translations of particle centroids
of the rotations of the particles about their centroids. In this w
we derive a microlevel kinematical variable—assigned to
contacts—that can easily be applied in numerical or real exp
ments to analyze deformation mechanisms, and that can be
basis for defining a global kinematical state variable for rolling
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l of
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To find such a definition of the rolling displacement, we exte
the concept that was suggested by Oda et al.@2# and by Iwashita
and Oda@1# for special situations, and develop a general definit
for particles having any smooth convex or concave shape in b
two dimensions and three dimensions. This general definition
rolling displacement will have the following three properties:

1. It is objective, and as a result of objectivity, its magnitude
unaffected by the common rigid-body-like motion of th
analyzed particle pair.

2. It produces no tangential or normal deformation~sliding or
indentation! at the contact in the sense that the two partic
can move in a manner that produces rolling but no relat
translation at the contact.

3. It reduces to the definition of rolling given by Iwashita an
Oda in @1# when the two particles are circular discs.

We apply an incremental approach: the incremental rolling d
placements belonging to a contact will be expressed in term
the incremental rotations of the particles about their centroids
their incremental translations. In Section 2 we analyze the spe
two-dimensional case of circular particles and suggest a defin
of what will be termed ‘‘Iwashita-Oda rolling.’’ A generalization
for arbitrary two-dimensional particles will follow in Section 3
Finally, in Section 4, we introduce a definition for the gene
three-dimensional situation.

The usual Cartesian coordinates will be used. All formulas w
be written in tensorial notations, with vectors and higher-or
tensors denoted by bold characters, and scalars denote
normal-weight characters. The scalar product of two vectors
be denoted by ‘•’ and the vector product by ‘3’:

c5a•b for the scalar product,

and

c5a3b for the vector product.

Figure 1 illustrates the two particles, ‘‘p’’ and ‘‘q’’ forming a
point-like contact ‘‘c’’ in a general three-dimensional situatio
The incremental translations of the particle centroids are dup and
duq, and the incremental rotations of the particles about their c
troids are du p and du q. Vector n denotes the unit normal of th
common tangent plane at ‘‘c,’’ directed outward from partic
‘‘p.’’ The triplet of unit vectors~n,t,w! is assigned to the contac
and form a right-hand system, with

n3t5w; t3w5n; wÃn5t. (1)

In the case of two-dimensional analysis, the tangent vectort will
lie in the plane of the particles and is directed counterclockw
from n around ‘‘c,’’ andw is perpendicular to the same plane. F
three-dimensional analysis,t and w are arbitrarily specified unit
vectors satisfying~1!.

In the derivations and proofs the following identities will b
used:

Fig. 1
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Identity 1 a•~b3c!5b•~c3a!5c•~a3b!

Identity 2 ~a3b!3c5~a•c!b2a~b•c!

Identity 3 ~a3b!•~c3d!5~a•c!~b•d!2~a•d!~b•c!

Identity 4 ~w3b!~c•n!2~w3c!~b•n!

5n~~b•n!~c•t!2~c•n!~b"t!!,

assuming that the triplet of unit vectors~n,t,w! satisfies~1!.

2 Two Circular Particles

2.1 The Definition of Rolling Displacement. In this sec-
tion we analyze the rolling displacements of two circular particl
‘‘p’’ and ‘‘q,’’ forming a contact ‘‘c’’ ~Fig. 2!. The infinitesimally
small neighborhood of ‘‘p’’ around ‘‘c’’ will be denoted as ‘‘pc’’~a
material point attached to ‘‘p’’ and moving together with it!. Simi-
larly, the material point ‘‘qc’’ denotes a small neighborhood o
particle ‘‘q’’ around ‘‘c.’’ Vectors rp and rq point from the cen-
troids of ‘‘p’’ and ‘‘q’’ to the contact, and the unit vectors~n,t,w!
are the same as those defined in~1!: n and t are shown, andw is
perpendicular to the plane of analysis. The translations of the
ticle centroids, dup and duq, take place in the~n,t! plane, and the
particle rotation vectors, du p and du q, are perpendicular to tha
plane and are parallel tow. The displacement of any point o
either particle can be computed from the translation of the part
centroid and its rotation. In this section we consider t
t-directional translations only.

The t-directional components of the particle translations will
denoted by dup,t and duq,t, with directiont and magnitudes

dup,t5dup
•t and duq,t5duq

•t. (2)

The magnitudes of particle rotations will be denoted by dup and
duq, and since in two dimensions the particle rotation vectors
parallel with the unit vectorw,

du p5dup
•w and du q5duq

•w. (3)

Though before the incremental motions of the two particles
two material points ‘‘pc’’ and ‘‘qc’’ have the same position, thi
might not be the case after the particle motions. Using the n
tions defined in~2! and ~3!, their t-directional translations can b
expressed as

dupc
•t5dup

•t1~du p3rp!•t5dup,t1dup~rp
•n! (4a)

duqc
•t5duq

•t1~du q3rq!•t5duq,t1duq~rq
•n!. (4b)

The four scalars dup,t, duq,t, dup, duq uniquely determine the
t-directional translations of any point. But the following four a
ternative quantities will be more useful in characterizing the t
gential contact motions:

~1! the t-directional rigid-body translation of the contact poin
defined as

Fig. 2
Transactions of the ASME
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duc,t-rigid
ª

rp
•n

~rp2rq!•n
duq,t2

rq
•n

~rp2rq!•n
dup,t. (5)

~2! the rigid-bodyt-rotation of the particle pair:

db t
ª

duq,t2dup,t

~rp2rq!•n
and db t

ªdb t
•w (6)

~3! the ‘‘excess’’ rotation of particle ‘‘p’’:

dup,excess
ªdup2db t and du p,excess

ªdu p2db t (7a)

~4! the ‘‘excess’’ rotation of particle ‘‘q’’:

duq,excess
ªduq2db t and du q,excess

ªdu q2db t. (7b)

The dup,t, duq,t, dup, duq displacements can be uniquely calc
lated from these four displacements in the following way:

dup,t5duc,t-rigid2db t~rp
•n![duc,t-rigid2~db t3rp!•t (8a)

duq,t5duc,t-rigid2db t~rq
•n![duc,t-rigid2~db t3rq!•t (8b)

dup5db t1dup,excess (9a)

duq5db t1duq,excess, (9b)

so that we can change the variables in~2a! and ~2b!, to give an
alternative expression for thet-directional displacements of th
contact point:

dupc
•t5duc,t-rigid1dup,excess~rp

•n![duc,t-rigid1~du p,excess3rp!•t
(10a)

duqc
•t5duc,t-rigid1duq,excess~rq

•n![duc,t-rigid1~du q,excess3rq!•t.
(10b)

To illustrate the meaning of the displacements duc,t-rigid, db t,
dup,excessand duq,excess, two elementary cases are now discuss
~Figs. 3 and 4!.

Fig. 3

Fig. 4
Journal of Applied Mechanics
-

ed

Elementary case 1: rigid-body displacements in regard
t-directional translations

If the excess rotations dup,excessand duq,excessare both zero, the
two particles translate and rotate together as a single rigid bod
least in regard to theirt-directional translations~Fig. 3!. In this
special case thet-directional translations of the contact point o
the two particles are equal:

dupc
•t5duqc

•t5duc,t-rigid. (11)

Elementary case 2: pure particle rotations
If the translation duc,t-rigid and the rotation db t are both zero, the

particles rotate about their centroids without translating in
t-direction ~Fig. 4!

dup5dup,excess (12a)

duq5duq,excess, (12b)

and thet-directional translations of the contact point are

dupc
•t5dup,excess~rp

•n![~du p,excess3rp!•t (13a)

duqc
•t5duq,excess~rq

•n![~du q,excess3rq!•t. (13b)

If these two translations, dupc
•t and duqc

•t, are equal and non-
zero, the two particles move together in a gear-like fashion
contact ‘‘c,’’ a situation of pure rolling. However, if the two trans
lations are not equal, we can calculate their difference, duc,t-def:

duc,t-def5duqc
•t2dupc

•t (14)

which is the tangential deformation of the contact; and their av
age, duc,t-avr:

duc,t-avr5
1

2
~duqc

•t1dupc
•t!. (15)

This average is the ‘‘common’’ motion of the contact point on ‘‘p
and ‘‘q,’’ hence this motion can be considered as a rolling d
placement:

duc,t-roll5
1

2
~~du q,excess3rq!•t1~du p,excess3rp!•t!. (16)

The general case:

A general system of particle displacements dup,t, duq,t, dup, duq

can be uniquely expressed in terms of duc,t-rigid, db t, dup,excess, and
duq,excess. Any general system of particle displacements can, the
fore, be considered as the superposition of a rigid-body displa
ment in regard to thet-directional translations plus the ‘‘excess
rotations of the particles. To define thet-directional rolling dis-
placement for the general case of two circles, we release the
strictions of elementary case 2, and give the following definiti
for the general case:

duc,t-roll
ª

1

2
~du p,excess3rp1du q,excess3rq!•t (17)

which can also be expressed using~8! as

duc,t-roll5duc,t-avr2duc,t-rigid (18)

or in terms of the particle displacements, applying~4! and ~5!:

duc,t-roll5
1

2 Fdu p3rp1du q3rq2
~rp1rq!•n

~rp2rq!•n
~duq2dup!G•t.

(19)

We now show that our suggested expression of rolling
equivalent to the Iwashita-Oda@1# rolling. Denote the particle
radii with the positive scalarsRp andRq; evidently,Rp5rp"n and
Rq52rq"n. Now ~19! can be written as
JULY 2004, Vol. 71 Õ 495
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duc,t-roll5
1

2 F ~dupw!3~Rpn!2~duqw!3~Rqn!

2
Rp2Rq

Rp1Rq
~duq2dup!G•t (20)

and because of~1!, this is equal to

duc,t-roll5
1

2 FdupRp2duqRq2
Rp2Rq

Rp1Rq
~duq2dup)•tG (21)

which is the same as the Iwashita-Oda rolling.

2.2 Objectivity. We now show that thet-directional rolling
displacement isobjective, meaning that

~a! If the observer ‘O’—located at the origin of the coordinat
system—undergoes an incremental movement duO and du O

~where du O5duOw), the observer will measure the sam
t-directional rolling displacement of the contact as if the obser
was stationary, regardless of the displacements duO and du O.

~b! If the coordinate system is relocated~with the observer
resting in its origin! anywhere in the plane by a finite translatio
and rotation, the observer will measure the samet-directional roll-
ing displacement of the contact.

Objectivity ~a!
An arbitrary point ‘A’, located atxA, whose displacements ar

duA and du A (du A5duAw), is seen by the moving observer a
making the displacements

dûA5duA2duO2du O3xA (22)

dû A5du A2du O. (23)

The t-directional rolling displacement in~19!, as seen by the mov
ing observer, is

dûc,t-roll5
1

2 Fdû p3rp1dû q3rq2
~rp1rq!•n

~rp2rq!•n
~dûq2dûp!G•t.

(24)

Substituting~22! and ~23! into ~24!, we find that

dûc,t-roll5
1

2 F ~du p2du O!3rp1~du q2du O!3rq

2
~rp1rq!•n

~rp2rq!•n
~~duq2duO2duO3xq!

2~dup2duO2du O3xp!!G•t. (25)

Noting thatxq2xp5rp2rq, and substituting~19!,

dûc,t-roll5duc,t-roll2
1

2

duO

~rp2rq!•n
@~~w3~rp1rq!!~~rp2rq!•n!!

2~~w3~rp2rq!!~~rp1rq!•n!!#•t. (26)

The expression in brackets is a vector parallel ton ~see Identity
4!, and hence it is perpendicular tot. Consequently,

dûc,t-roll5duc,t-roll

and the objectivity~a! is shown.
Objectivity ~b!
According to Identity 1, the definition~19! can be written as
496 Õ Vol. 71, JULY 2004
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duc,t-roll5
1

2 Fdup~rp
•n!1duq~rq

•n!

2
~rp1rq!•n

~rp2rq!•n
~~duq2dup!•t!G . (27)

On the right side of Eq.~27! we find scalar products of vector
whose lengths and whose angle with each other do not cha
during the rigid-body-like translations and rotations of the coor
nate frame. Consequently, the whole right side remains
changed. Objectivity~b! is shown.

3 Two Arbitrary Two-Dimensional Particles
In this section we extend the definition of rolling given in Se

tion 2 to arbitrarily shaped~but smooth! two-dimensional particles
~see the illustration in Fig. 5!.

The t-directional rolling displacement in Eqs.~17!, ~18!, and
~19! apply to any pair of two-dimensional particles, provided th

~rp2rq!•nÞ0. (28)

A counter-example is shown in Fig. 6, where the (rp2rq) vector is
perpendicular ton, so that thet-directional rolling displacemen
does not exist~see also Section 5!.

As with circular particles, the scalar value duc,t-roll is objective
for noncircular particles, since the derivations in Section 2.2
not impose any relationship among the two-dimensional vec
rp, rq, andn.

In the case of generally shaped particles we have no reaso
restrict ourselves to the analysis oft-directional translations. As-
suming that

~rp2rq!•tÞ0, (29)

we can define ann-directional rolling displacement, duc,n-roll, in
an analogous way:

duc,n-roll5
1
2 ~dupc1duqc!•n2duc,n-rigid, (30)

Fig. 5

Fig. 6
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duc,n-rigid
ª

rp"t

~rp2rq!•t
~duq"n!2

rq
•t

~rp2rq!•t
~dup

•n!. (31)

This rolling motion can also be expressed in terms of part
displacements:

duc,n-roll5
1

2 Fdu p3rp1du q3rq2
~rp1rq!•t

~rp2rq!•t
~duq2dup!G•n.

(32)

If the branch vector (rp2rq) is perpendicular tot ~for instance, if
the two particles are circles!, the n-directional rolling displace-
ment does not exist. Another example of this situation is show
Fig. 7.

The objectivity of duc,n-roll can similarly be checked in the man
ner of Section 2.2, so we shall not repeat the arguments here

4 Two Arbitrary Three-Dimensional Particles

4.1 Definition of t-Directional Rolling Displacement in
Three Dimensions. In this section we focus on the displac
ments of two arbitrary three-dimensional particles, ‘‘p’’ and ‘‘q
forming contact ‘‘c.’’ The triplet of unit vectors~n,t,w! is assigned
to the pair, as was explained in Sections 1 and 2.1~Fig. 8!. We
shall first analyze thet-directional translations of the contact poi
on ‘‘p’’ and ‘‘q,’’ leaving the definition of n and w-directional
rolling to Section 4.3.

In the two-dimensional case~Section 2.1, and Eq.~20!!, we
separated the averaget-directional contact displacement duc,t-avr

into a part duc,t-roll corresponding to rolling, and another pa
duc,t-rigid corresponding to a rigid-body-like motion. A similar lin
of thought will be followed here. Since the displacements in th
dimensions are more complex, to define thet-directional rolling
displacement, we first introduce a triplet of unit vectors that w
help to separate those displacement components that produce

Fig. 7

Fig. 8
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ing and those that do not. This triplet will be denoted as (lt,t,zt)
and defined with the help of the branch vector,l5rp2rq ~Fig. 9!.

Now we separate the branch vector into two components:
parallel tot:

lt5~~rp2rq!•t!t (33)

and the other one perpendicular tot ~see Fig. 9!:

l't5 l2 lt[~rp2rq!2~~rp2rq!•t!t, (34)

whose magnitude is

l't5Al't"l't. (35)

Provided thatl'tÞ0, the vectorlt is defined as the unit vecto
pointing in the direction ofl't:

lt
ª

l't

l't
(36)

~obviously, l't5 l"lt), and the vectorzt is

zt
ªlt3t. (37)

The vectors (lt,t,zt) form a right-handed system with

tªzt3lt and lt
ªt3zt, (38)

as illustrated in Fig. 9.
We can decompose the particle translations into theirt, zt, and

lt-directional components. Since thezt andlt-directional transla-
tions do not lead tot-directional translations of the contact poin
they will be excluded from the analysis. We need to consider
t-directional translations only:

dup,t5dup
•t and duq,t5duq

•t. (39)

The particle rotation vectors du p and du q can also be decompose
into their t, zt, andlt-directional components:

du p5dup,tt1dup,ztzt1dup,l t
lt and

du q5duq,tt1duq,ztzt1duq,l t
lt, (40)

where

dup,t5du p
•t duq,t5du q

•t

dup,zt5du p
•zt and duq,zt5du q

•zt (41)

dup,l t
5du p

•lt duq,l t
5du q

•lt.

We now analyze their contributions to the averaget-directional
displacement of the contact point.

Fig. 9
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1 Particle rotations aboutt:

The rotation vectors (dup,tt) and (duq,tt) do not produce any
t-directional translation at ‘‘c,’’ so we can exclude them from t
analysis.

2 Particle rotations aboutzt:

The rotation vectors (dup,ztzt) and (duq,ztzt) produce translations
whose direction is parallel to thet-lt–plane~shaded in Fig. 10!,
and the correspondingt-directional translations of the materia
points are

dupc,t-in
ª~~dup,ztzt!3rp!•t5dup,zt~rp

•lt! (42a)

and

duqc,t-in5~~duq,ztzt!3rq!•t5duq,zt~rq
•lt!. (42b)

Their average, caused by these ‘‘in-plane rotations,’’ will be d
noted as duc,t-in and calculated as

dut,in5
1
2 ~dupc,t-in1duqc,t-in!5

1
2 ~dup,zt~rp

•lt!1duq,zt~rq
•lt!!.

(43)
l. 71, JULY 2004
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Note that if the other rotation components and the particle tra
lations are both zero, this situation is analogous to elemen
case 2. in Section 2, and duc,t-in is the same as thet-directional
rolling displacement of that case.

3 Particle rotations aboutlt:

The rotation vectors (dup,l t
lt) and (duq,l t

lt) are parallel to the
shadedt-lt–plane in Fig. 11 and rotate the particles about t
directionlt. If the contact point is not located in the shaded pla
in Fig. 11~a!, these rotations causet-directional translations of the
material points:

dupc,t-out5~~dup,l t
lt!3rp!•t52dup,l t

~rp"zt! (44a)

and

duqc,t-out5~~duq,l t
lt!3rq!•t52duq,l t

~rq"zt!. (44b)

The average of these two translations will be denoted as duc,t-out:

duc,t-out5
1
2 ~dupc,t-out1duqc,t-out!

5
1
2 ~2dup,l t

~rp"zt!2duq,l t
~rq"zt!!. (45)
Fig. 11
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This component does not exist in a two-dimensional analysis.
displacement duc,t-out is not a rolling motion, but as is seen in Fig
11~b!, is the effect of the common rotation of the two particle
and it is made possible only by the out-of-the plane location of
contact point.

Following the approach in Section 2, we identify the part of t
in-plane displacements that corresponds to a rigid-body-like
tion of the pair. This rotation, denoted as db tzt or dbt, can be
calculated from thet-directional translations of the two particle
dup,t and duq,t, where dup,t5dup,tt and duq,t5duq,tt ~Fig. 12!:

db t
ª

duq,t2dup,t

l't
. (46)

The t-directional translation caused by this rotation in the cont
point is

duc,t-rigid
ª~dup1dbt3rp!•t[~duq1dbt3rq!•t. (47)

The displacement duc,t-rigid can also be expressed in terms of t
particle translations:

duc,t-rigid
ª

1

l't
~~rp

•lt!duq,t2~rq
•lt!dup,t!. (48)

We now give the definition oft-directional rolling displacemen
by considering the excess in-plane rotations of the particles:

duc,t-roll
ª

1
2 ~~dup,zt2db t!~rp

•lt!1~duq,zt2db t!~rq
•lt!!

(49)

which equals

duc,t-roll5duc,t-in2
1

2
db t~~rp1rq!•lt!. (50)

With the use of Identities 1 and 2 and Eq.~15!, the t-directional
rolling displacement can also be written as

duc,t-roll5duc,t-avr2duc,t-out2duc,t-rigid, (51)

an expression similar to that in Eq.~18! for the two-dimensional
situation, but which contains the new term duc,t-out that does not
exist in two dimensions. In terms of the particles’ displaceme
the t-directional rolling displacement is

Fig. 12
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he
.
s,
the

e
o-

s

ct

e

ts,

duc,t-roll5
1

2 F ~du p
•zt!~rp

•lt!1~du q
•zt!~rq

•lt!

2
~~rp1rq!•lt!

~~rp2rq!•lt!
~~duq2dup!•t!G , (52)

provided thatl'tÞ0. If l't is zero, then thet-directional rolling
displacement does not exist~a situation analogous to the one i
lustrated in Fig. 6 and discussed in Section 5!.

4.2 Definition of the n and w-Directional Rolling Displace-
ment in Three Dimensions. The n and w-directional rolling
displacements can be analogously defined. Forn-directional roll-
ing, we decompose the branch vectorl into two components: one
that is aligned in then-direction, and one~denoted byl'n) that is
perpendicular ton. We can then identify the unit vectorsln andzn

that are analogous to~36! and ~37!. The triplet (ln,n,zn) forms a
right-handed system. Then-directional rolling displacement~as-
suming thatl'nÞ0) is

duc,n-roll5duc,n-avr2duc,n-out2duc,n-rigid

5
1

2 F ~du p
•zn!~rp

•ln!1~du q
•zn!~rq

•ln!

2
~~rp1rq!•ln!

~~rp2rq!•ln!
~~duq2dup!•n!G . (53)

We can also determine a vectorl'w and, if l'wÞ0, the associated
unit vectorslw andzw. Thew-directional rolling displacement is

duc,w-roll5duc,w-avr2duc,w-out2duc,w-rigid

5
1

2 F ~du p
•zw!~rp

•lw!1~du q
•zw!~rq

•lw!

2
~~rp1rq!•lw!

~~rp2rq!•lw!
~~duq2dup!•w!G . (54)

4.3 Objectivity. To demonstrate the objectivity of duc,t-roll,
we must show that~a! an observer that is located at the origin
the coordinate system and undergoes arbitrary duO and duO incre-
mental displacements will measure the same rolling displacem
as if it was stationary; and that~b! regardless of where the coor
dinate frame is located, the observer at its origin will always m
sure the same rolling displacement. For simplicity, we shall o
deal with thet-directional rolling displacement, since the oth
rolling displacements can analogously be checked.

Objectivity ~a!
An observer with displacements duO and duO measures the

following particle displacements:

dûp5dup2duO2duO3xp; dû p5du p2duO (55)

dûq5duq2duO2duO3xq; dû q5du q2duO. (56)

After substituting these expressions into~52!, the t-directional
rolling displacement measured by the observer is

dûc,t-roll5duc,t-roll1
1

2
@2~duO

•zt!~rp"lt!2~duO
•zt!~rq

•lt!#2

2
1

2

1

l't
@~~2duO3~xq2xp!!•t!~~rp1rq!•lt!#, (57)

where duc,t-roll is the ‘‘reference’’ rolling that would be measure
by a stationary observer. Identity~1! gives

~duO3~xq2xp!!•t5duO
•~~xq2xp!3t! (58)
JULY 2004, Vol. 71 Õ 499
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and sincexq2xp5 l, Eqs.~36! and ~37! imply that

~xq2xp!3t5 l'tzt, (59)

and hence

~duO3~xq2xp!!•t5 l'tduO
•zt. (60)

Applying these substitutions to~57! gives

dûc,t-roll5duc,t-roll1
1

2
@2~du O

•zt!~~rp1rq!•lt!#

1
1

2

1

l't
@ l't~du O

•zt!~~rp1rq!•lt!] (61)

or

dûc,t-roll5duc,t-roll, (62)

and the objectivity~a! is shown.
Objectivity ~b!

Since the scalar products in~49! do not change with finite rigid-
body translations and rotations of the coordinate system,
t-directional rolling displacement remains unchanged.

5 Discussion: Special Cases
In this section we shall discuss a few special situations, wh

should give a clearer understanding of this definition of rolli
displacements.

Situations when the rolling displacement in a certain direct
does not exist

The vectorsl't, l'n, or l'w ~generally denoted asl'(•)) are used
for determining the unit vectorsl(•) in ~31!. If the branch vectorl
is aligned with any one ofn, t, or w, then the corresponding
length l'(•) will be zero, and the~•!-directional rolling displace-
ment cannot be defined. The most likely instance of such a si
tion is when l is aligned with the contact normal,n. This will
happen, for instance, in case of two spherical particles; since
theml'n is always zero, and then-directional rolling displacemen
does not exist.

If l'(•) is zero for a certain direction from amongn, t, or w, it
cannot be zero for the other two directions~the branch vector can
be aligned only with one of the three perpendicular direction!.
Consequently we cannot find more than one direction for wh
the rolling displacement does not exist.

The unit vectorst and w were chosen at the beginning of th
analysis to be perpendicular to each other andn, satisfying~1! but
otherwise arbitrarily. If the branch vector is perpendicular ton
~see, for example, the situation in Fig. 6!, we can always definet
and w such as one of them~let us sayw! would not exist, by
simply aligningw with the branch vector, so thatl'w will be zero.

Two-dimensional analysis as a special case of the general th
dimensional definition

In two dimensions the unit vectorw is perpendicular to the
plane of analysis~Section 1!. The l'(•) lengths and thel(•) and
z(•) vectors for determining then, t, and w-directional rolling
displacements are

l'n52t"l; ln52t; zn5w (63)

l't5n"l; lt5n; zt5w (64)

l'w5 l ; lw5
l

l
; zw5lw3w, (65)

where l is the length of the branch vector:l 5Al"l. If all the dis-
placements take place in the~n,t! plane, then by applying~52!,
~53!, and~54! the rolling displacements are
500 Õ Vol. 71, JULY 2004
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duc,t-roll5
1

2 F ~du p"w!~rp"n!1~du q"w!~rq"n!

2
~rp1rq!•n

l"n
~~duq2dup!•t!G (66)

duc,n-roll5
1

2 F ~du p"w!~rp
•~2t!!1~du q"w!~rq

•~2t!!

2
~rp1rq!•~2t!

l•~2t!
~~duq2dup!•n!G (67)

duc,w-roll50. (68)

Because of Identity 3, expression~66! is identical to~19!, and~67!
is the same as~32!, which means thatthe general two-dimensiona
situation is a special case of three-dimensional analysis. Further-
more, if the two particles are circles with radii Rp5rp"n and Rq

52rq"n, the n-directional rolling displacement does not exi
and ~66! becomes identical to~21!: the Iwashita-Oda rolling is a
special case of the general three-dimensional definition.

Situations when a rolling displacement vector can be de

The definitions of the scalar quantities duc,t-roll, duc,n-roll, and
duc,w-roll may have given the reader an impression that these
lars are thet, n andw-coordinates of a single vector duc,roll. This
is not true, as such a duc,roll vector does not exist in genera
Instead of~52!, ~53!, and~54!, we can write the general form of a
v-directional rolling displacement as

duc,v-roll5
1

2 F ~du p3rp1du q3rq!2~~du p
•lv!~rp3lv!

1~du q
•lv!~rq3lv!!2

~rp1rq!•lv

~rp2rq!•lv
~duq2dup)G•v.

(69)

Both the second and third terms in the brackets will change wi
changing direction ofv, so the quantity in the brackets is no
independent of directionv. This means that~in general! the scalar
duc,v-roll cannot be considered as thev-directional projection of a
single vector duc-roll.

But as a special case, if the branch vectorl5(rp2rq) is aligned
with either oft, n, or w, the situation is somewhat different. Let u
consider, for instance, thelin case~the other two cases, i.e.,lit
and liw, can analogously be analyzed!. Now the duc,n-roll rolling
displacement does not exist, and

lt5lw5n (70)

zt5w; zw52t. (71)

After some algebra,~52! and ~54! gives

duc,t-roll5
1

2 F ~du p3n!~rp
•n!1~du q3n!~rq

•n!

2
~~rp1rq!•n!

~~rp2rq!•n!
~duq2dup!G•t (72)

duc,w-roll5
1

2 F ~du p3n!~rp
•n!1~du q3n!~rq

•n!

2
~~rp1rq!•n!

~~rp2rq!•n!
~duq2dup!G•w. (73)

The expression in brackets in~72! is the same as in~73!. More
generally, we can consider a unit vectorv in the ~t,w! plane~v is
perpendicular to the branch vector, but otherwise arbitrary!. The
v-directional rolling displacement is
Transactions of the ASME
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duc,v-roll5
1

2 F ~du p3n!~rp
•n!1~du q3n!~rq

•n!

2
~~rp1rq!•n!

~~rp2rq!•n!
~duq2dup!G•v. (74)

The bracket contains the same vector as in~72! or ~73!, indepen-
dently of the direction ofv. To summarize, in the speciallin case
when then-directional rolling displacement does not exist, a ta
gential rolling displacement vector can be defined as

dûc,roll5
1

2 F ~du p3n!~rp"n!1~du q3n!~rq
•n!

2
~~rp1rq!•n!

~~rp2rq!•n!
~duq2dup!G , (75)

whoset andw-directional components are duc,t-roll and duc,w-roll:

duc,t-roll5dûc,roll
•t; duc,w-roll5dûc,roll

•w; (76)

and

dûc,roll5duc,t-roll
•t1duc,w-roll

•w. (77)

The special case ofrpin and rqin
In this case it is easy to derive an expression for the roll

displacement vector dûc,roll in terms of the relative translations an
rotations at the contact. We can writerp and rq as

rp5Rpn and rq52Rqn (78)

where Rp and Rq are the distance of the contact point from t
reference points of particles ‘‘p’’ and ‘‘q.’’ Sincelin, the relations
~70! and ~71! are still valid, and

l't5 l'w5Rp1Rq. (79)

The tangential rolling displacement vector in~75! can be written
as

dûc,roll5
1

2 F22
RpRq

Rp1Rq
~du q2du p)3n)2

Rp2Rq

Rp1Rq
~duqc2dupc)G .

(80)
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From this expression, duc,t-roll and duc,w-roll are calculated by~76!.

Conclusions
We have presented a general definition of rolling displacem

for the interactions of two and three-dimensional particles of
bitrary shape. The defined rolling displacement is shown to
objective, and reduces to that of Iwashita and Oda@1# when the
two particles are circular disks. The type of rolling in this paper
not based on following the trail that the contact point would tra
across the surfaces of the two particles, but instead provide
independent definition of rolling by analyzing the displaceme
of the material points that form the contact. The proposed defi
tion can either be easily implemented in particle simulation co
puter codes to investigate the relative importance and effec
rolling, or serve as a microlevel kinematical state variable in or
to develop a global state variable for the characterization of r
ing phenomena during the deformation of granular materials.
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Three-Dimensional Vibration
Analysis of Thick, Complete
Conical Shells
A three-dimensional (3D) method of analysis is presented for determining the free v
tion frequencies and mode shapes of thick, complete (not truncated) conical she
revolution. Unlike conventional shell theories, which are mathematically two-dimensi
(2D), the present method is based upon the 3D dynamic equations of elasticity. Disp
ment components ur , uz , and uu in the radial, axial, and circumferential directions
respectively, are taken to be sinusoidal in time, periodic inu, and algebraic polynomials
in the r and z-directions. Potential (strain) and kinetic energies of the conical shells
formulated, the Ritz method is used to solve the eigenvalue problem, thus yielding
bound values of the frequencies by minimizing the frequencies. As the degree
polynomials is increased, frequencies converge to the exact values. Convergence t
digit exactitude is demonstrated for the first five frequencies of the conical shells. N
numerical results are presented for thick, complete conical shells of revolution based
the 3D theory. Comparisons are also made between the frequencies from the prese
Ritz method and a 2D thin shell theory.@DOI: 10.1115/1.1767843#
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1 Introduction

The literature that addresses the free vibration ofthick conical
shells based upon 3D analyses is quite limited. Most of the ex
ing literature describes the vibration analysis forthin conical
shells and based upon a thin shell or membrane type of 2D s
theory, @1#. Among the literature on the thin conical shells, t
vast majority of numerical results for the free vibrations deal w
truncatedconical shells mainly because of singularities occurr
at the vertex of acomplete~not truncated! conical shell.

The first contribution to the 3D analysis of conical shells w
by Leissa and So@2# applying the Ritz method. Buchanan@3# and
Buchanan and Wong@4# analyzed conical shells by a 3D finit
element method. The present authors,@5,6#, gave numerical re-
sults for shells having linearly varying wall thickness. Howev
all the above literature related to 3D analyses is limited totrun-
catedconical shells. A search of the literature has revealed no
analysis ofcompleteconical shells of revolution.

In recent research,@2–6#, on vibrations of thicktruncatedconi-
cal shells using 3D methods a conical coordinate system has
used, whose original introduction was made by Leissa and So@2#.
In the present analysis, a cylindrical coordinate system is app
instead of the conical one, to avoid some complications in ev
ating energy integrals in the vicinity of the vertex.

In the present 3D analysis, the Ritz method is used to ob
accurate frequencies. Although the method itself does not y
exact solutions, proper use of displacement components in
form of algebraic polynomials permits one to obtain frequen
upper bounds that are as close to the exact values as de
Frequencies presented in this work are thus obtained that are
accurate, being exact to four significant figures.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, December
2002; final revision, October 16, 2003. Associate Editor: O. O’Reilly. Discussion
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and w
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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2 Method of Analysis
A representative cross section of a thick, complete conical s

of revolution with the vertex half-anglea, the radius of bottom
circle of the cone R, and the uniform wall thicknessh
(5H sina), whereH is the vertical slant thickness, is shown
Fig. 1. The cylindrical coordinate system (r ,z,u), also shown in
the figure, is used in the analysis. The axes ofr, z, andu are the
radial, axial, and circumferential coordinates, respectively. T
origin of the (r ,z) coordinates is located at the vertex of th
midplane of the conical shell. Thus the ranges of the coordina
are given for the conical shell by

0<r<R, r cota2H/2<z<r cota1H/2, 0<u<2p.
(1)

Utilizing tensor analysis,@7#, the three equations of motion in
the coordinate system (r ,z,u) are found to be~see also@8#, p.
184!:

s rr ,r1s rz,z1
1

r
~s rr 2suu1s ru,u!5rür , (2a)

s rz,r1szz,z1
1

r
~s rz1szu,u!5rüz , (2b)

s ru,r1szu,z1
1

r
~2s ru1suu,u!5rüu , (2c)

where thes i j are the normal (i 5 j ) and shear (iÞ j ) stress com-
ponents;ur , uz , anduu are the displacement components in ther,
z, andu directions, respectively;r is mass density per unit vol
ume; the commas indicate spatial derivatives; and the dots de
time derivatives.

The well-known relationships between the tensorial stress (s i j )
and tensorial strain (« i j ) of isotropic, linear elasticity are

s i j 5l«d i j 12G« i j , (3)

wherel and G are the Lame´ parameters, expressed in terms
Young’s modulus~E! and Poisson’s ratio~n! for an isotropic solid
as

l5
En

~11n!~122n!
, G5

E

2~11n!
, (4)

4,
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al of
ing,
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E
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«[« rr 1«zz1«uu is the trace of the strain tensor, andd i j is Kro-
necker’s delta.

The three-dimensional tensorial strains are found to be rel
to the three displacementsur , uz , anduu , by, @7,8#,

« rr 5ur ,r , «zz5uz,z , «uu5
ur1uu,u

r
, (5a)

« rz5
1

2
~ur ,z1uz,r !, « ru5

1

2 Fuu,r1
ur ,u2uu

r G ,
«zu5

1

2 Fuu,z1
uz,u

r G . (5b)

Substituting Eqs.~3! and~5! into Eqs.~2!, one obtains a set o
second-order partial differential equations inur , uz , anduu gov-
erning free vibrations. However, exact solutions of these equat
are intractable because the independent variables are not all
rable ~that is,u and t separate out, butr and z remain coupled!,
and also because of the variable coefficients that appear in m
terms. Alternatively, one may approach the problem from an
ergy perspective.

Because the strains are related to the displacement compo
by Eqs.~5!, unacceptable strain singularities may be encounte
exactly atr 50 due to the term 1/r . Such singularities may be
avoided by numerically integrating at Gauss-Legendre po
within the volume of the body such thatrÞ0 ~for example,
1025<r /R<1 instead of 0<r /R<1).

During vibratory deformation of the body, its strain~potential!
energy (V) is the integral over the domain~V!:

V5
1

2 EV
~s rr « rr 1szz«zz1suu«uu12s rz« rz12s ru« ru

12szu«zu!r dr dz du. (6)

Substituting Eqs.~3! and ~5! into Eq. ~6! yields the strain en-
ergy in terms of the three displacements:

Fig. 1 A cross section of thick conical shell and the cylindrical
coordinate system „r ,z,u…
Journal of Applied Mechanics
ted

ons
epa-
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red

nts

V5
1

2 EV
@l~« rr 1«zz1«uu!212G$« rr

2 1«zz
2 1«uu

2

12~« rz
2 1«zu

2 1« ru
2 !%#r dr dz du, (7)

where the tensorial strains« i j are expressed in terms of the thre
displacements by Eqs.~5!.

The kinetic energy~T! is simply

T5
1

2 EV
r~ u̇r

21u̇z
21u̇u

2!r dr dz du. (8)

For convenience, the radialr and axialz coordinates are made
dimensionless asc[r /R and z[z/H. Thus the ranges of the
nondimensional cylindrical coordinates~c,z,u! are given by

0,c<1, d1<z<d2 , 0<u<2p, (9)

where

d1[
R

H
c cota2

1

2
, d2[

R

H
c cota1

1

2
. (10)

For the free, undamped vibration, the time~t! response of the
three displacements is sinusoidal and, moreover, the circular s
metry of the conical shell allows the displacements to be
pressed by

ur~c,z,u,t !5Ur~c,z!cosnu sin~vt1a!, (11a)

uz~c,z,u,t !5Uz~c,z!cosnu sin~vt1a!, (11b)

uu~c,z,u,t !5Uu~c,z!sinnu sin~vt1a!, (11c)

whereUr , Uz , andUu are displacement functions ofc andz, v
is a natural frequency, anda is an arbitrary phase angle dete
mined by the initial conditions. The circumferential wave numb
is taken to be an integer (n50,1,2,3, . . . ,̀ ), to ensure periodic-
ity in u. Then Eqs.~11! account for all free vibration modes ex
cept for the torsional ones. Torsional modes arise from an alte
tive set of solutions which are the same as Eqs.~11!, except that
cosnu and sinnu are interchanged. Forn.0, this set duplicates
the solutions of Eqs.~11!, with the symmetry axes of the mod
shapes being rotated. But forn50 the alternative set reduces t
ur5uz50, uu5Uu* sin(vt1a), which corresponds to the torsiona
modes. The displacements uncouple by circumferential w
number~n!, leaving only coupling inr andz.

The Ritz method uses the maximum potential~strain! energy
(Vmax) and the maximum kinetic energy (Tmax) functionals in a
cycle of vibratory motion. The functionals are obtained by sett
sin2(vt1a) and cos2(vt1a) equal to unity in Eqs.~7! and~8! after
the displacements~11! are substituted, and by using the nond
mensional coordinatesc andz as follows:

Vmax5
GR2

2H E
0

1E
d1

d2F H l

G
~k11k21k3!2

12~k1
21k2

21k3
2!1k4

2J G11~k5
21k6

2!G2Gcdzdc,

(12)

Tmax5
rv2R2H

2 E
0

1E
d1

d2

@~Ur
21Uz

2!G11Uu
2G2#cdzdc,

(13)

where

k1[
H

R

Ur1nUu

c
, k2[

H

R
Ur ,c , k3[Uz,z , (14a)
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k4[Ur ,z1
H

R
Uz,c , k5[Uu,z2

H

R

nUz

c
,

k6[
H

R FUu,c2
nUr1Uu

c G , (14b)

andG1 andG2 are constants, defined by

G1[E
0

2p

cos2 nudu5H 2p if n50

p if n>1
,

G2[E
0

2p

sin2 nudu5H 0 if n50

p if n>1
. (15

It should be mentioned here that theconstantlimits of integration
d1 andd2 in Eqs.~12! and ~13! correspond to the cone edgesr
5R) shown in Fig. 1. For other edges, including ones norma
the cone surfaces,d1 andd2 would be variables. From Eqs.~4! it
is seen that the the nondimensional constantl/G in Eq. ~12!
involves onlyn; i.e.,

l

G
5

2n

122n
. (16)

The displacement functionsUr , Uz , andUu in Eqs. ~11! are
further assumed as algebraic polynomials,

Ur~c,z!5h r(
i 50

I

(
j 50

J

Ai j c
iz j (17a)

Uz~c,z!5hz(
k50

K

(
l 50

L

Bklc
kz l (17b)

Uu~c,z!5hu (
m50

M

(
n50

N

Cmnc
mzn (17c)

and similarly forUu* , wherei, j, k, l, m, andn are integers;I, J, K,
L, M, andN are the highest degrees taken in the polynomial ter
Ai j , Bkl , andCmn are arbitrary coefficients to be determined, a
the h are functions depending upon the geometric boundary c
ditions to be enforced. For example:

1. completely free:h r5hz5hu51,
2. the bottom edge (r 5R or c51! fixed:

h r5hz5hu5(c21)2.

The functions ofh shown above, impose only the necessary g
metric constraints such as displacement and slope boundary
ditions. Together with the algebraic polynomials in Eqs.~17!, they
form function sets which are mathematically complete~Kantorov-
ich and Krylov @9#, pp. 266–268!. Thus, the function sets ar
capable of representing any 3D motion of the plate with incre
ing accuracy as the indicesI, J, . . . ,N are increased. In the limit
as sufficient terms are taken, all internal kinematic constra
vanish, and the functions~17! will approach the exact solution a
closely as desired.

The eigenvalue problem is formulated by minimizing the fr
vibration frequencies with respect to the arbitrary coefficientsAi j ,
Bkl , andCmn , thereby minimizing the effects of the internal co
straints present, when the function sets are finite. This corresp
to the equations@10#:

]

]Ai j
~Vmax2Tmax!50, ~ i 50,1,2, . . . ,I ; j 50,1,2, . . . ,J!

(18a)

]

]Bkl
~Vmax2Tmax!50, ~k50,1,2, . . . ,K; l 50,1,2, . . . ,L !

(18b)
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]

]Cmn
~Vmax2Tmax!50, ~m50,1,2, . . . ,M ;n50,1,2, . . . ,N!.

(18c)

Equations ~18! yield a set of (I 11)(J11)1(K11)(L11)
1(M11)(N11) linear, homogeneous, algebraic equations in
unknownsAi j , Bkl , andCmn . For a nontrivial solution, the de-
terminant of the coefficient matrix is set equal to zero, whi
yields the frequencies~eigenvalues!. These frequencies are uppe
bounds on the exact values. The mode shape~eigenfunction! cor-
responding to each frequency is obtained, in the usual manne
substituting eachv back into the set of algebraic equations, an
solving for the ratios of coefficients.

3 Convergence Studies
To guarantee the accuracy of frequencies obtained by the

cedure described above, it is necessary to conduct some con
gence studies to determine the number of terms required in
power series of Eqs.~17!. A convergence study is based upon th
fact that all the frequencies obtained by the Ritz method sho
converge to their exact values, when the displacement functi
~17! are used, and in an upper bound manner. If the results do
converge properly, or converge too slowly, it is likely that th
assumed displacements may be poor ones, or be missing s
functions from a minimal complete set of polynomials.

Table 1 is such a study for a completely free, conical shell
revolution with asmall vertex half-angle~a515 deg! and h/R

Table 1 Convergence of frequencies in vRArÕG of a com-
pletely free, complete conical shell of revolution for the five
lowest axisymmetric modes „nÄ0… with aÄ15 deg and h ÕR
Ä0.3 for nÄ0.3
Transactions of the ASME
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Fig. 2 Cross sections of conical shells with h ÕRÄ0.3

Table 2 Convergence of frequencies in vRArÕG of a com-
pletely free, complete conical shell of revolution for the five
lowest bending modes for nÄ2 with aÄ75 deg and h ÕRÄ0.1 for
nÄ0.3
Journal of Applied Mechanics
50.3 ~see Fig. 2! for n50.3. The table lists the first five nondi
mensional frequencies invRAr/G for the axisymmetric modes
(n50).

To make the study of convergence less complicated, equal n
bers of polynomial terms were taken in both ther ~or c! coordi-
nate~i.e., I 5K5M ) andz ~or z! coordinate~i.e., J5L5N), al-
though some computational optimization could be obtained
some configurations and some mode shapes by using une
number of polynomial terms. The symbolsTZ andTR in the table
indicate the total numbers of polynomial terms used in thez ~or z!
and r ~or c! directions, respectively. Note that the frequency d
terminant orderDET is related toTZ andTR as follows:

DET5H TZÃTR for torsional modes~n50!

23TZÃTR for axisymmetric modes~n50!

33TZÃTR for general modes~n>1!
J .

(19)

Table 1 shows the monotonic convergence of all five frequ
cies asTZ (5J11, L11, andN11 in Eqs.~17!! are increased,
as well asTS (5I 11, K11, andM11 in Eqs.~17!!. One sees,
for example, that the fundamental~i.e., lowest! nondimensional
frequencyvRAr/G converges to four digits~1.427! when 23~7
34!556 terms are used, which results inDET556. Moreover,
this accuracy requires using at least seven terms in the axia
ordinate~TZ57! and four in the radial coordinate~TR54!. Num-
bers in underlined, boldface type in Table 1 are the most accu
values~i.e., least upper bounds! achieved with the smallest dete
minant sizes.

Table 2 is a similar convergence study for a completely fr
conical shell of revolution with alarge vertex half-angle~a575
deg! andh/R50.1 ~see Fig. 3! for n50.3. One sees that the fun
damental frequency~0.2575! requires using at least~TZ ,TR!
5~4,8! for the exactitude to four significant figures. It was notic
that as the vertex half-angle~a! becomes larger, more terms inr
~or c! are needed to yield the converged values.

4 Numerical Results and Discussion
Tables 3 and 4 present the nondimensional frequencies

vRAr/G of completely free, very thick (h/R50.3) and moder-
ately thick (h/R50.1), complete conical shells of revolution, re
spectively, with the vertex half-angles ofa515 deg, 30 deg, 45

Fig. 3 Cross sections of conical shells with h ÕRÄ0.1
JULY 2004, Vol. 71 Õ 505
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Table 3 Nondimensional frequencies in vRArÕG of com-
pletely free, conical shells with h ÕRÄ0.3 for nÄ0.3

Table 4 Nondimensional frequencies in vRArÕG of com-
pletely free, conical shells with h ÕRÄ0.1 for nÄ0.3
deg, 60 deg, and 75 deg forn50.3. Tables 3 and 4 correspond t
Figs. 2 and 3, respectively. Thirty frequencies are given for e
configuration, which arise from six circumferential wave numbe
(n50T,0A,1,2,3,4) and the first five modes (s51,2,3,4,5) for
each value ofn, where the superscriptsT andA indicate torsional
and axisymmetric modes, respectively. The numbers in paren
ses identify the first five frequencies for each configuration. T
zero frequencies of rigid body modes are omitted from the tab

It is seen from Tables 3 and 4 that the fundamental~lowest!
frequencies of all the configurations are for modes having t
(n52) circumferential waves irrespective of the thickness ra
(h/R) and the vertex half-angle~a!. Tables 3 and 4 show that th
torsional mode (n50T) frequencies are all higher ones.

The numbers of polynomial terms of~TZ ,TR! used for Tables 3
and 4 were~8,6!, ~7,7!, ~6,8!, ~5,10!, and~4,12! for a515 deg, 30
deg, 45 deg, 60 deg, and 75 deg, respectively.

Numerically integrating the energy integrals~12! and~13! over
1025<c<1, instead 0<c<1, to avoid singularities encountere
exactly atc50, corresponds to leaving an extremely small cyli
drical hole at the vertex. Table 5 shows the change in the low
frequencies with five digits for eachn for the shell~a515 deg,
h/R50.3) of Table 3, as the hole radius~a! is diminished (a/R
50.2,1021,1022,1023,1024,1025) to essentially vanish. That is, a
very small hole has essentially no effect upon the frequencies

5 Comparison With 2D Shell Theory
Dreher and Leissa@11,12# used the Donnell-Mushtari thin she

theory and the exact solution procedure involving expansion
the displacements in terms of power series to study the axis
metric (n50) free vibrations of completely free, complete conic
shells of revolution.
506 Õ Vol. 71, JULY 2004
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Comparison of the present 3D Ritz method~3DR! is made in
Table 6 for the nondimensional frequencies invRAr/G with the
2D shell theory~2DS! for the lowest four axisymmetric mode
(n50) with the stiffness parameter K[12(12n2)
3(h/R)22/(tan4 a•cos2 a)510000 andn50.3. The parameterK
is converted to the thickness ratio (h/R) for each of thea shown
in Table 6. This shows that the corresponding shells range f
being moderately thick (h/R50.151, fora515 deg! to very thin
(h/R50.00290, fora575 deg!. The percent difference in fre
quencies obtained by the two analyses is given by

difference~%!5
2DS23DR

3DR
3100. (20)

It is observed that the 3D Ritz method yields lower frequenc
than the 2D thin shell results in all the frequencies irrespective

Table 5 Variation of vRArÕG for the shell „aÄ15 deg, h ÕR
Ä0.3… of Table 3 with a small cylindrical hole of radius rÄa at
its vertex „lowest frequencies for each n …
Transactions of the ASME
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Table 6 Comparisons of nondimensional frequencies in vRArÕG from the 3D
and 2D methods of completely free, complete conical shells of revolution for the
first four axisymmetric modes „nÄ0… with the stiffness parameter KÆ12„1
Àn2

…„h ÕR…

À2Õ„tan4 a"cos 2 a…Ä100,000 for nÄ0.3
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thickness parameter (h/R) and half-angle of vertex~a! as ex-
pected, except for the fourth (s54) mode for (a,h/R)5~75
deg,0.00290!. An accurate 3D analysis should typically yie
lower frequencies than those 2D thin shell theory, mainly beca
shear deformation and rotary inertia effects are accounted for
3D analysis, but not in 2D, thin shell theory. It is noticed that t
frequencies by the 2D shell theory are accurate within 10% er
when the thickness parameter (h/R) is less than 0.04. The result
show also the great inaccuracy of using a thin shell theory for
moderately thick shell (h/R50.151).

6 Conclusions
A three-dimensional method of analysis has been presente

determining the free vibration frequencies and mode shape
complete, conical shells of revolution. The analysis is based u
the equations of circular cylindrical shells, not conical ones. T
3D equations of the theory of elasticity are used in their gen
forms for isotropic, homogeneous materials. They are only limi
to small strains. No other constraints are placed upon the displ
ments.

Numerical results for frequencies were presented for sev
completely free conical shells of revolution. The frequencies
exact up to four significant figures for the lower frequencies, bu
greater accuracy is needed, especially for the higher frequen
larger determinants would be required. Nevertheless, these d
minant sizes are at least one order of magnitude less than t
that would be required for equivalent accuracy by finite elem
analysis.
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Results were presented for completely free shells. Howeve
described in Sec. 2, the procedure could also be used for the s
having the bottom (r 5R) fixed.
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On the Acoustic Nonlinearity of
Solid-Solid Contact With
Pressure-Dependent Interface
Stiffness
Nonlinear interaction between elastic wave and contact interface, known to result in
so-called contact acoustic nonlinearity, is examined in a one-dimensional theore
framework. The present analysis is based on a nonlinear interface stiffness model
the stiffness property of the contact interface is described as a function of the no
contact pressure. The transmission/reflection coefficients for a normally incident
monic wave, and the amplitudes of second harmonics as well as DC components a
at the contact interface are derived in terms of the interface stiffness properties and
relevant acoustic parameters. Implications of power-law relations between the li
interface stiffness and the contact pressure are examined in detail regarding the l
and nonlinear acoustic responses of the contact interface. Also, a plausible range
relevant power-law exponent is provided from considerations based on the rough-su
contact mechanics. The analysis clarifies the qualitative contact-pressure depende
various nonlinearity parameters based on different definitions. A particular power la
identified from existing experimental data for aluminum-aluminum contact, for w
some explicit nonlinear characteristics are demonstrated. The theoretical con
pressure dependence of the second harmonic generation at the contact interface is
to be in qualitative agreement with previous measurements.@DOI: 10.1115/1.1767169#
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1 Introduction
Transmission and reflection characteristics of ultrasonic wa

propagating through contact interface between solid bodies h
long been known to be sensitive to the contact conditions suc
the contact pressure and the true area of contact, and used
experimental tool in contact mechanics and adhesion techno
@1–5#. Such effects can be explained by the fact that at an in
face between two solids in contact, the load is supported by
face asperities. With increased load, more asperities come
contact while each asperity undergoes flattening deformation.
to the change of the contact asperity configuration with vary
contact pressure, the mechanical response of the contact inte
involves certain nonlinear behavior. As a consequence, secon
higher-order harmonics are generated when a wave interacts
the contact interface, which constitutes a relatively new area
study called contact acoustic nonlinearity,@6–8#. Several investi-
gators, @6–10#, have experimentally demonstrated the conta
pressure dependence of the second or higher-order harmoni
ultrasonic waves transmitted through or reflected from vari
contact interfaces between solids. Contact acoustic nonline
has been shown to exhibit much greater harmonic generation
classical material nonlinearities,@11,12#, and is expected to offe
valuable information of the contact conditions, with possible a
plication to evaluation of bond interfaces,@13#, and detection of
partially closed defects in materials,@14–16#.
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For elastic waves with wavelength much larger than the typ
length-scale of surface topography, it is known,@17#, that such
contact interface can be treated as a spring interface with
equivalent stiffness property. In this case, theoretical express
for the reflection and transmission coefficients have been der
for normally incident elastic waves in terms of the interface st
ness and other acoustic parameters,@1,2#.

Importantly, the interface stiffness introduced above depend
the contact condition due to the aforementioned effects, and
comes a source of nonlinearity in wave propagation. Theor
cally, Richardson@18# has analyzed one-dimensional nonline
wave propagation through a unilateral contact interface, wh
either the displacement gap or the traction vanishes. In Rich
son’s analysis, however, realistic features of finite and nonlin
interface stiffness, in the sense that it may vary continuously w
the contact condition, are not accounted for. Such effects w
considered by Rudenko and Chin An Vu@19#, who used a
distributed-microasperity model to analyze nonlinear wa
reflection from rough-surface contact, and interpreted exist
experimental data. Nevertheless, it appears that implication
such nonlinear stiffness properties for the acoustic respons
the contact interface are yet to be fully explored in a gene
circumstance.

The aim of the present paper is to demonstrate a concise t
retical analysis to yield a basic insight into the nonlinear behav
of elastic waves propagating through contact interface, as a b
of ultrasonic evaluation of contact conditions. To this end, a n
linear contact stiffness model is incorporated into a on
dimensional framework as analyzed by Richardson@18#, and the
transmission/reflection coefficients as well as the second harm
amplitudes are derived in terms of the interface stiffness prop
and other acoustic parameters. Furthermore, it is shown tha
nonlinear gap-pressure relationship can be extracted from
contact-pressure dependence of the linear interface stiffness.
is demonstrated using the pressure-stiffness relation for alumi
blocks recently reported by Drinkwater et al.@3#. The connection
between the contact stiffness parameters and the transmis

ent of
sity,
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reflection as well as the harmonic generation behavior is discu
in detail. The analysis is shown to reproduce certain qualita
features of nonlinear acoustic response of contact interface
served experimentally in previous studies, e.g., qualita
contact-pressure dependence of the second-harmonic amplit
and the appearance of ‘‘DC’’ displacement components
transmitted/reflected waves.

2 Theoretical Formulation

2.1 Governing Equations. One-dimensional elastic longi
tudinal wave propagation along thex-axis is considered here a
schematically shown in Fig. 1. Two linear elastic solids with ide
tical properties~mass densityr and the longitudinal stiffnessE!
are assumed to occupy the regionsx,X2 and x.X1 , respec-
tively, whereX2,X1 . The mated surfaces of these solids a
nominally flat but assumed to have certain roughness. The re
ence planes of both surfaces, e.g., planes of average height,@20#,
are identified byx5X2 and x5X1 , respectively. The quantity
X12X2 denotes the gap distance between the reference pla
The formulation described in this section essentially follows a l
similar to Richardson@18#, except that the present analysis a
counts for a realistic relation between the gap distance and
contact pressure. For the sake of completeness, the formul
will be recapitulated below including a straightforward outcom
of Richardson’s analysis.

In the absence of elastic waves, the two solids are assume
be at equilibrium under nominal contact pressurep0 with the equi-
librium gap distanceh0 . For longitudinal wave propagation int
the positivex-direction, the equation of motion as well as th
stress-displacement relation are

r
]2u

]t2
5

]s

]x
, s1p05E

]u

]x
, (1)

whereu(x,t) is the displacement in thex-direction accompanying
the wave motion,s(x,t) is the stress, andt denotes time. The
linear kinematics is assumed throughout the analysis. As a s
tion to Eq.~1!, the following forms are considered:

u~x,t !5 f inc~x2ct!1 f re f~x1ct!, x,X2 , (2a)

u~x,t !5 f tra~x2ct!, x.X1 , (2b)

where f inc(x2ct), f re f(x1ct), f tra(x2ct) represent the inci-
dent, reflected, and transmitted waves, respectively, anc
5(E/r)1/2 is the wave velocity.

When the wave interacts with the contact interface, the
distance varies with time, i.e.,

h~ t !5h01u~X1 ,t !2u~X2 ,t !. (3)

The boundary condition at the interface is given as

s~X2 ,t !5s~X1 ,t !52p~h~ t !!, p~h0!5p0 . (4)

Fig. 1 One-dimensional wave propagation through contact
interface.
Journal of Applied Mechanics
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Namely, the stress is continuous across the interface and obe
functional relationship between the gap distanceh and the contact
pressurep(h), which is in general a nonlinear one.

2.2 Reduced Formulation. By introducing the following
change of variables,@18#,

X~ t !5$u~X2 ,t !1u~X1 ,t !%/2, (5a)

Y~ t !5u~X1 ,t !2u~X2 ,t !5h~ t !2h0 , (5b)

the governing equations reduce to

Ẋ52c f inc8~X22ct!, (6a)

Ẏ52c f inc8~X22ct!1
2

rc
$p~h01Y!2p0%, (6b)

where dots denote time derivatives and primes denote differen
tion with respect to the argument of functions. The variablesX
and Y represent the translational motion of the contact interfa
and the time-dependent change of the gap distance, respect
The transmitted and reflected waves are in turn expressed as

f tra~x2ct!5 f inc~x2h02ct!1
1

2
Y~ t2~x2X1!/c!, (7a)

f re f~x1ct!52
1

2
Y~ t1~x2X2!/c!. (7b)

Therefore, the problem is reduced to obtaining the solution to
first-order nonlinear ordinary differential equation in Eq.~6b!.

For a demonstrative purpose, Fig. 2 shows examples of tr
mitted and reflected waveforms for an incident wave of Gauss
modulated profile with the center frequency 10 MHz, obtained
direct numerical analysis of Eqs.~6! and ~7!, with r52700
@kg/m3# andc56420@m/s# pertinent to aluminum and by assum
ing X1>X2 . The nonlinear functionp(h) is characterized by the
parameters as p0510@MPa#, m50.5 and C56.0
31010 @Pa21/2 m21#, which definitions will be clarified in later
discussions. Figure 2~a! is for the incident wave packet with pea
amplitude of 5 nm, and Figs. 2~b! and ~c! are the resulting trans
mitted and reflected waveforms, respectively. Figures 2~d!–~f!
show the corresponding results in the case of peak amplitude
nm, which is a typical level in recent nonlinear ultrasonic me
surements,@10,16#. In the results in Figs. 2~e! and ~f!, it can be
observed that the transmitted and reflected waveforms are so
what distorted due to the nonlinear nature of the interface, w
the distortions are more or less negligible for the incident am
tude of 5 nm as in Figs. 2~b! and~c!. Furthermore, in the spectra
amplitudes of these waveforms shown in Fig. 3, the freque
components around 0 MHz as well as the 20 MHz~second har-
monics! have appeared~higher harmonics are also present but f
below the plot range!. As discussed below, the harmonic gene
tion and the appearance of the zero-frequency component
more evident in the case of larger incident amplitude.

3 Analysis for Harmonic Wave Incidence

3.1 A Perturbation Analysis. In order to propel the analy-
sis further, the incident wave is now assumed in the form o
monochromatic wave of the form

f inc~x2ct!5A cosH v

c
~x2X22ct!J , (8)

whereA is the wave amplitude andv is the angular frequency
When the displacement accompanying the wave is small, the
distance changes only by a small amount. In this case the func
p(h) can be replaced by its Taylor expansion nearh5h0 up to the
second-order term, i.e.,

p~h!5p~h01Y!5p02K1Y1K2Y2, (9)
JULY 2004, Vol. 71 Õ 509
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Fig. 2 Gaussian-modulated incident wave with center frequency 10 MHz, and
the transmitted and reflected waves at the aluminum-aluminum contact inter-
face characterized by the parameters p 0Ä10 †MPa‡, mÄ0.5, and CÄ6.0
Ã1010

†PaÀ1Õ2 mÀ1
‡. „a…, „b…, „c…: Incident wave amplitude 5 nm; „d…, „e…, „f…:

incident wave amplitude 20 nm. The time scales are taken with the origin at
the center of each wave packet.
n

dily
K152
dp

dhU
h5h0

, K25
1

2

d2p

dh2U
h5h0

. (10)

In the above expression,K1 denotes the linear stiffness, andK2
the second-order stiffness of the contact interface. Substitutio
Eqs.~9! and ~10! in Eq. ~6b! yields

Ẏ1
2K1

rc
Y2

2K2

rc
Y252Av sinvt. (11)

To obtain an explicit approximate solution to Eq.~11!, Y is ex-
pressed as the sum of a solution of the linearized equationY1 and
the perturbationY2 , i.e., Y5Y11Y2 . Then Y1 satisfies the lin-
earized form of Eq.~11!,
004
of

Ẏ11
2K1

rc
Y152Av sinvt, (12)

which solution corresponding to steady-state oscillation is rea
obtained as

Y1~ t !5
2A

A11a2/v2
sin~vt2d1!, (13)

where

a5
2K1

rc
, d15arctan~v/a!. (14)
Fig. 3 Amplitude spectra of the waves shown in Fig. 2. The spectral ampli-
tudes are normalized with respect to the amplitude of the incident wave at the
fundamental frequency „10 MHz….
Transactions of the ASME
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Then, assumingY2!Y1 , the solution forY2 can be obtained,
again ignoring the transient component, as

Y2~ t !5
2K2A2

K1~11a2/v2!
H 12

sin~2vt22d11d2!

A114v2/a2 J , (15)

where

d25arctan~a/~2v!!. (16)

SubstitutingY5Y11Y2 and Eqs.~13! and ~15! in Eqs. ~7a! and
~7b!, the transmitted and reflected waves can be obtained as

f tra~x2ct!5
K2A2

K1$114K1
2/~r2c2v2!%

1
2K1A

rcvA114K1
2/~r2c2v2!

3cosH vt2
v

c
~x2X1!2d1J

2
K2A2

rcv$114K1
2/~r2c2v2!%A11K1

2/~r2c2v2!

3sinH 2vt2
2v

c
~x2X1!22d11d2J . (17a)

f re f~x1ct!52
K2A2

K1$114K1
2/~r2c2v2!%

2
A

A114K1
2/~r2c2v2!

sinH vt1
v

c
~x2X2!2d1J

1
K2A2

rcv$114K1
2/~r2c2v2!%A11K1

2/~r2c2v2!

3sinH 2vt1
2v

c
~x2X2!22d11d2J . (17b)

It is seen clearly that both transmitted and reflected waves con
a term with the angular frequency 2v, which is the second har
monic generated by the nonlinear nature of the contact stiffn
Further perturbation analysis would yield higher-order harmon
although it is kept out of the present discussion.

Furthermore, static displacement components are containe
both waves. These zero-frequency components are similar in
ture to the ‘‘DC’’ signal observed experimentally by Korsha
et al. @21# recently for polished glass-piezoceramic interface s
jected to surface wave incidence. The appearance of these
ponents has been derived naturally as the outcome of the pre
analysis. WhenK2 /K1.0, the DC component brings about th
displacement corresponding to gap opening, which is proportio
to the second-order stiffnessK2 and the square of the input wav
amplitude.

3.2 ReflectionÕTransmission Coefficients and Nonlinearity
Parameters. When the amplitude transmission coefficientT and
the amplitude reflection coefficientR are defined as the ratio be
tween the absolute amplitude of the fundamental-frequency c
ponents of the transmitted/reflected waves and the incident w
they read

T5
2K1

rcvA11
4K1

2

r2c2v2

, R5
1

A11
4K1

2

r2c2v2

. (18)

These results coincide with those derived previously from the
ear analysis,@1,2#.

Next, a parameter of nonlinearityb1 is defined as the ratio
between the absolute amplitudes of the second harmonic~2v! and
the fundamental~v! component in the transmitted wave, i.e.,
Journal of Applied Mechanics
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b15
K2A

2K1A11
4K1

2

r2c2v2
A11

K1
2

r2c2v2

. (19)

Likewise, for the reflected wave, a similar parameter of nonline
ity g1 is defined as

g15
K2A

rcvA11
4K1

2

r2c2v2
A11

K1
2

r2c2v2

, (20)

which is the ratio between the absolute amplitudes of the sec
harmonic and the fundamental component in the reflected w
In contrast to the transmission and reflection coefficients,
above nonlinearity parameters are proportional to the seco
order stiffness of the interface. These parameters are also pro
tional to the incident wave amplitude, so the nonlinearity is high
for waves of larger amplitude. Since the contact stiffness par
etersK1 and K2 vary with the applied contact pressurep0 , the
transmission/reflection coefficients and nonlinearity parame
are dependent onp0 . These features are demonstrated below fo
particular nonlinear model of the contact interface.

4 Power-Law Pressure Dependence of Contact
Stiffness

4.1 Derivation of Pressure-Gap Relation. The functional
relationship between the gap distance and the contact pres
written asp(h), can be modeled analytically based on vario
statistical models of rough surfaces. Rudenko and Chin An
@19#, and recently Drinkwater et al.@3# and Baltazar et al.@5#
attempted to link the roughness topography to the contact stiffn
or the transmission/reflection coefficients measured ultrasonic
However, it is in general difficult to take into account all detaile
information of roughness features as well as deformation pro
ties of real surfaces. As an alternative approach, in this section
shown how the desired relation can be extracted from the rela
between the linear stiffness of the contact and the applied con
pressure, which can be easily obtained experimentally using u
sonic methods.

In their detailed investigation, Drinkwater et al.@3# measured
the reflection coefficients of the normally incident ultrasonic wa
at the contact interface between two aluminum blocks, wh
were made rough by grit blasting and subjected to contact load
unloading cycles. By using the relation in Eq.~18!, they con-
nected the reflection coefficients to the linear contact stiffnessK1
as a function of the applied contact pressurep0 . According to
their results,K1 showed more or less linear dependence onp0 ,
i.e., K1}p0 , at the first compressive loading up to about 2
MPa. The relation betweenK1 andp0 showed some hysteresis fo
the first loading/unloading cycle. For the unloading after the fi
loading, and for the subsequent loading/unloading cycles,K1 var-
ied nearly in proportion to the square root ofp0 , i.e., K1}p0

0.5,
without significant hysteresis. The linear stiffness-pressure r
tionship shown in the first loading is attributed to the success
flattening of contact asperities on the rough interface, and
following square-root behavior is attributed to the response of
flattened~partially conformed! surfaces.

In our discussion, the above experimental findings are gene
ized and it is assumed that a simple power-law relation ho
between the linear stiffness and the applied pressure, that is

K15Cp0
m , (21)

whereC and m are positive constants. Hereafter, this particu
relation is employed to model the contact interface stiffness. Co
bined with Eq.~10!, Eq. ~21! can be regarded as a differenti
equation forp(h),
JULY 2004, Vol. 71 Õ 511
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dp

dh
52Cpm, (22)

which can be solved with Eq.~4! as

p~h!5H $p0
12m2~12m!C~h2h0!%1/~12m! ~mÞ1!,

p0 exp$2C~h2h0!% ~m51!.
(23)

Hence, the relation between the contact pressure and the gap
tance can be extracted from the observed linear stiffness-pres
relation. The same procedure may be applied to the situa
where the linear contact stiffnessK1 is expressed as an arbitrar
function of the contact pressurep0 .

When both of the results in Eq.~23! are expanded nearh
5h0 , one obtains

p5p02Cp0
m~h2h0!1

1

2
mC2p0

2m21~h2h0!2, (24)

up to second-order terms, which gives the linear and second-o
stiffness as functions of the equilibrium contact pressure, i.e.,

K1~p0!5Cp0
m , K2~p0!5

1

2
mC2p0

2m21. (25)

4.2 Contact Mechanics Considerations. Prior to proceed-
ing to the discussion of nonlinear acoustic response of con
interface, some remarks are noted for the power-law depend
in Eq. ~21! from a viewpoint of contact mechanics of rough su
faces. A great number of models have been proposed to mode
contact behavior of real surfaces having various roughness
tures. Among them, for noninteracting elastic hemispherical
perities with constant curvature and an exponential height di
bution, Greenwood and Williamson@22# showed that the relation
between the nominal pressure and the gap distance takes o
exponential form. Recently, Larsson et al.@23# obtained a similar
conclusion for exponential distributions of asperity height a
constant asperity curvatures but for nonlinear stress-strain be
ior of power-law type. Such exponential pressure-gap relation
incides with the case ofm51 in Eq. ~23!. For Gaussian asperity
height distributions, similar results have been obtained,@22,23#.

On the other hand, when all hemispherical asperities have
same height and curvature, the nominal pressure followsp(h)
}(h̄2h)11M /2 for the materials obeying the equivalent stres
strain relations}«M ~M: positive material constant!, when the
gap distance at which the asperities first come into contac
denoted byh̄, @23#. As a special case, for linear elastic asperiti
p}(h̄2h)3/2 andK1}p0

1/3, i.e.,m51/3. According to the similar-
ity principle of contact,@24,25#, the same dependence can be e
pected not only for hemispherical asperities but also for asper
with local shapes described by homogeneous functions.

From these considerations, it may be conjectured that ro
surfaces with statistical asperity-height distributions tend to h
m values close to 1, whilem values are lower for surfaces wit
more uniform asperity heights. Coming back to the experime
finding by Drinkwater et al.@3#, it may now be reasonably inter
preted that the grit-blasted aluminum surfaces revealed the e
nent m51 for the first loading, as they ought to have had so
degrees of roughness: after the compression, many asperities
likely conformed to similar heights due to plastic deformatio
and resulted in lower exponent ofm50.5.

5 Implications of Power-Law Pressure-Dependent
Stiffness

5.1 Qualitative Pressure Dependence of Contact Acoustic
Properties. Substituting Eq. ~25! into Eqs. ~18!–~20!, the
transmission/reflection coefficients as well as the nonlinearity
rameters are readily obtained as function of the applied press
Explicitly,
512 Õ Vol. 71, JULY 2004
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T5
2Cp0

m/~rcv!

A114C2p0
2m/~rcv!2

, R5
1

A114C2p0
2m/~rcv!2

,

(26)

b15
mCp0

m21A

4A114C2p0
2m/~rcv!2A11C2p0

2m/~rcv!2
, (27a)

g15
mC2p0

2m21A

2rcvA114C2p0
2m/~rcv!2A11C2p0

2m/~rcv!2
.

(27b)

From these results it is found that the transmission~reflection!
coefficient is a monotonically increasing~decreasing! function of
the contact pressure.

It is also seen in Eqs.~27a! and ~27b! that the nonlinearity
parameters for the transmitted and reflected waves are decre
with the contact pressure, when the pressure becomes suffici
large. However, the qualitative contact-pressure dependence o
nonlinearity parameters in a low pressure range depends on
power exponentm. Namely, whenCp0

m/(rcv)→0, three types of
behaviors are observed, i.e.,

b1'
mCA

4
p0

m21→H 0 ~m.1!

CA/4 ~m51!

` ~m,1!

, (28a)

g1'
mC2A

2rcv
p0

2m21→H 0 ~m.1/2!

C2A/~4rcv! ~m51/2!

` ~m,1/2!

. (28b)

There have been several experimental investigations for sec
harmonic amplitudes generated at contact interface. Among
ers, the second harmonics in the reflected wave measured by
erin and Solodov@6# and Ko Sel Len et al.@7# for polished glass
interfaces show a peak value at a certain pressure~0.2–1.5 MPa!
and tends to zero as the pressure becomes smaller, which is q
tatively akin to the nonmonotonic behavior withm.1/2. Recent
results by Kawashima et al.@10# for the transmitted wave through
a buff-polished aluminum-aluminum interface show monoto
cally decreasing pressure dependence for an extremely
pressure range below 0.03 MPa, which corresponds to the fea
for m,1. These qualitative features do not contradict the disc
sion noted in 4.2, where a plausible range form was given as 1/3
to 1 from simple contact mechanics arguments. At the pres
there appear to be no detailed experimental reports availabl
correlated quantitative data linking the stiffness-pressure rela
and the harmonic amplitude-pressure relation. It remains as
intriguing problem if this theoretical observation can be suppor
from an experimental point of view.

5.2 Results for Particular Model Parameters. Drinkwater
et al. @3# used two aluminum blocks to measure the linear int
face stiffness as function of the frequency and the contact p
sure. As mentioned above, a more or less linear press
dependence of the stiffness was observed in the first loadin
rough aluminum surfaces. For the subsequent unloading and
following cycles, the overall stiffness-pressure relation was b
represented using a square-root relation withm50.5 in Eq.~22!.
To fit to the data for the latter behavior, the parameters w
chosen asm50.5 andC56.031010 @Pa21/2 m21#. Figure 4~a!
shows the relation betweenK1 and p0 thus determined, togethe
with the experimental data by Drinkwater et al.@3#, while Fig.
4~b! illustrates the corresponding functionp(h) in Eq. ~23!.

To simulate the measurements by Drinkwater et al.@3#, the
acoustic properties of aluminum are employed, i.e.,c
56420@m/s# and r52700 @kg/m3#. These were the paramete
used to generate the results in Fig. 2 and Fig. 3. The transmis
and reflection coefficients are calculated for several fundame
Transactions of the ASME
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Fig. 4 „a… The power-law relation between the linear interface
stiffness and the nominal contact pressure, for mÄ0.5 and C
Ä6Ã1010

†PaÀ1Õ2 mÀ1
‡, with the experimental data by Drinkwa-

ter et al. †3‡ for Al-Al interface at unloading from initial loading
„circles …; „b… the corresponding pressure-gap relation derived
thereof, where h 0 is taken as the gap at 10 MPa

Fig. 5 Variation of the transmission and reflection coefficients
with the nominal contact pressure, for different fundamental
frequencies
Journal of Applied Mechanics
frequencies as function of the applied nominal pressure in Fig
As the contact pressure increases from zero, the transmission
efficient increases from zero and the reflection coefficient
creases from unity. For these linear-acoustic characteristics, r
ers are referred to the experimental results by Drinkwater e
@3#, Dwyer-Joyce and Drinkwater@4#, and the discussions therein

The dependence of the nonlinearity parameters on the nom
contact pressure is shown in Fig. 6 for different fundamental f
quencies and two different amplitudes. As mentioned before,
nonlinearity is more profound in the case of higher amplitud
Also, the nonlinearity parameters decrease with the applied p
sure, as has been clarified above form51/2. The influence of the
frequency on the pressure-sensitivity of the nonlinearity para
eters is, however, different forb1 and g1 . In the transmitted
wave, b1 is larger for higher frequency, while in the reflecte
wave,g1 is more profoundly dependent on the nominal press
in the case of lower frequency. As an explanation for this, it
noted that the transmitted and reflected waves contain the s
second-harmonic amplitude for any frequency, while th
fundamental-component amplitudes are separately dependen
the frequency. This feature indicates the importance of selec
an appropriate frequency level to carry out a sensitive nonlin
ultrasonic measurement for contact conditions.

In the context of finite-amplitude ultrasonics,@11#, an alterna-
tive measure of the nonlinearity is often used that is expresse
the ratio between the harmonic amplitude and the square of

Fig. 6 Variation of „a… nonlinearity parameter b1 and „b… non-
linearity parameter g1 with the nominal contact pressure, for
different fundamental frequencies
JULY 2004, Vol. 71 Õ 513
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fundamental-frequency amplitude. If such parameters are den
by b2 and g2 for transmitted and reflected waves, respective
they read

b25
rcvK2

4K1
2A11

K1
2

r2c2v2

5
mCrcv

2p0A11C2p0
2m/~rcv!2

,

(29a)

g25
K2

rcvA11
K1

2

r2c2v2

5
mC2p0

2m21

rcvA11C2p0
2m/~rcv!2

.

(29b)

These nonlinearity parameters have a feature that they are
pendent of the amplitude of the incident wave. For the power-
pressure stiffness relation, the asymptotic behavior for these
rameters follows as

b2'
mCrcv

2

1

p0
, g2'

mC2

rcv
p0

2m21, (30)

in the limit of Cp0
m/(rcv)→0. It is noteworthy thatb2 scales as

the inverse ofp0 irrespective of the value of the exponentm,
while the asymptotic dependence ofg2 on p0 is qualitatively the
same as that ofg1 shown in Eq.~28b!.

Buck et al.@9# measured the harmonic generation at the con
interface between two aluminum blocks, and recordedb2 as a
function of the applied pressure when the fundamental freque
was 5 MHz. The experimental conditions of Buck et al.@9# were
somewhat similar to those of Drinkwater et al.@3#, in that alumi-
num blocks were examined for a similar range of applied con
pressure, although the surface roughness of their specimen
not known to be similar. In spite of this ambiguity, the almo
negligible hysteresis for loading and unloading in the experim
tal data of Buck et al.@9# is indicative of the features of surface
that are characterized bym50.5 as above. Therefore, it is of som
interest to attempt interpretation of the parameterb2 in their ex-
periment based on the stiffness parameters employed here.

The parameterb2 has a dimension of the inverse of lengt
Since no unit for theb2 values is recorded by Buck et al.@9#, their
data and the present theoretical predictions are both normalize
their values at the contact pressure of 10 MPa, say, to com
their qualitative features of the pressure dependence. In the t
retical formula in Eq.~29a!, the fundamental frequency is set as
MHz to simulate the measurement. Figure 7 shows the meas
and theoretical nonlinearity parameterb2 as function of the ap-
plied pressure. When normalized in the fashion explained ab
the theoretical result fits the measured data fairly well. Furth
more, in the log-log plot, the asymptotic relation given in Eq.~30!
for Cp0

m/(rcv)→0 is represented as a straight line with slo
21, as closely approached by the theoretical result of Eq.~29a!.
This inverse proportionality ofb2 to p0 , as predicted universally
for arbitrary power-law relations, is supported here by the exp
mental data.

6 Concluding Remarks
According to the nonlinear interface model described in t

paper, the linear stiffness of the contact interface is expressed
power-law function of the contact pressure. This model h
yielded the relation between the contact pressure and the inte
gap distance, which then gives the second-order stiffness of
interface as a function of the contact pressure. For an incid
harmonic wave, the contact-pressure dependence of the fu
mental and second harmonic amplitudes of the transmitted as
as reflected waves have been derived in terms of the power
parameters and other acoustic properties of the solid. Also,
514 Õ Vol. 71, JULY 2004
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appearance of the zero-frequency component at the interface
been indicated as the outcome of the analysis. The analysis
been applied to interpret some of the existing experimental res
and the qualitative contact-pressure dependence of the harm
amplitudes~nonlinearity parameters! has been illustrated theoret
cally. The present analysis has shown that the quantitative sec
harmonic measurement can yield the second-order contact
ness, and may be used as a supplementary paramete
characterize the state of contact.

Based on some contact-mechanics considerations, certain
planation has been given to the power-law nature of the stiffne
pressure relation of the contact interface. It has been indicated
the power-law exponent may vary depending on the roughn
character of the interface. It has been also shown in the pre
analysis that this power-law exponent has a direct bearing on
pressure-dependence of the second harmonics appearing a
interface. While the nonlinearity parameters defined as the r
between the second-harmonic and the fundamental amplitu
show various contact-pressure sensitivities depending on
power-law exponent, an analogous parameter defined as the
between the transmitted second-harmonic and the squared fu
mental amplitudes shows an inverse proportional dependenc
the contact pressure for arbitrary power-law behavior. Such im
cations ought to be studied more closely in a coordinated theo
ical and experimental study, and constitutes a subject of cont
ing interest.
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Rayleigh Waves in Anisotropic
Crystals Rotating About the
Normal to a Symmetry Plane
The propagation of surface acoustic waves in a rotating anisotropic crystal is studied
crystal is monoclinic and cut along a plane containing the normal to the symmetry pl
this normal is also the axis of rotation. The secular equation is obtained explicitly u
the ‘‘method of the polarization vector,’’ and it shows that the wave is dispersive
decelerates with increasing rotation rate. The case of orthorhombic symmetry is
treated. The surface wave speed is computed for 12 monoclinic and 8 rhombic cry
and for a large range of the rotation rate/wave frequency ratio.
@DOI: 10.1115/1.1756140#
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1 Introduction
Introduced more than 30 years ago, surface acoustic w

~SAW! devices have been used with great success by the tele
munication industry: nowadays, they are produced in large qu
tities ~several billions per year! and used in wireless transmissio
and reception technology for color television sets, cell phon
global positioning systems, etc. In recent years, new applicat
for SAW devices have emerged, namely acoustic sensors, w
are passive~no power supply is needed!, resistant, almost nonag
ing, cheap~only one photo-lithographic process is involved in t
production!, light ~less than 1g! and can be operated remotely an
wirelessly. For instance@1#, SAW identification tags are used fo
highway toll collection in Norway and for the Munich subwa
system; SAW temperature sensors can achieve a resolutio
0.02°C from2196°C up to 500°C; wide ranges and fine reso
tions are also achieved for pressure, torque, or current sensors
Also, the automotive industry is engaged in the search for
‘‘intelligent tire’’ which could provide direct information on its
current state as the car is moving; in this context SAW sens
have been used to measure tire pressure,@2#, or friction, @3#, as the
wheel rotates. In general, SAW devices may be used as ang
rate sensors~gyroscopes! to measure frequency shifts due to th
rotation,@4–6#. In the present paper, an investigation of the eff
of rotation upon the speed of surface~Rayleigh! waves in an an-
isotropic crystal is presented.

The crystal may possess as little as a single plane of symm
It is cut along any plane containing the normal to the symme
plane and is assumed to rotate at a constant rate about this no
The surface wave is polarized in the symmetry plane. In ot
words, it suffices to consider the propagation of a surface wav
the x1-direction of a monoclinic crystal with symmetry plane
x350, cut along thex250 plane, and rotating about thex3-axis
~see Fig. 1!. The secular equation for rotating materials was o
tained by others but in simpler settings: by Clarke and Burdes
an isotropic material, first for small rotation rate/wave frequen
ratios,@4#, then for any ratio,@5#; by Grigor’evskiǐ, Gulyaev, and
Kozlov @7# also for isotropic materials but neglecting the centrif
gal force; and by Fang, Yang, and Jiang@6# for crystals having
tetragonal symmetry. Here, the analysis is fully developed

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, January
2003; final revision, September 29, 2003. Associate Editor: R. C. Benson. Discu
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Jo
of Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and w
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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crystals with a single symmetry plane, up to the derivation of
secular equation in explicit form, that is an equation giving t
Rayleigh wave speed in terms of the elastic parameters and o
rotation rate.

The equation is reached in Sec. 3, after the governing equat
have been written down in Sec. 2. The secular equation turns
to be a polynomial of degree 8 for the squared wave speed
also for the squared rotation rate/wave frequency ratio. In
simpler case of orthorhombic symmetry~Sec. 4!, the polynomial
is of degree 6. The Rayleigh wave speed is computed numeric
for 20 specific anisotropic materials~12 monoclinic, 8 orthorhom-
bic! and for a rotation rate/wave frequency ratio varying from 0
10. Of course, this range is way beyond the elastic behavior lim
and is irrealistic for pratical purposes where the frequency o
SAW device is typically in the 100 kHz–10 MHz range. It
presented to show that the method of resolution is exact and
approximate, applies for any rate of rotation, and that in cont
with the nonrotating case, the secular equation is dispersive
small rotation rates, and for certain crystals such as PZT-5, o
papers,@6,8#, show that the Rayleigh wave speed may at fi
increase slightly with the rotation frequency/wave frequency ra
At large ratios, it is seen here that the wave speed decreases
increasing ratios. These variations are crucial to the understan
and correct design of rotating SAW sensors or SAW signal p
cessing devices. A recent article,@9#, describes the manufacturin
of a 1 cm31 cm SAW gyroscope and how the rotation rate m
be measured using SAW technology. Another example t
springs to mind is that of ‘‘spinning missiles,’’@10#, for which one
might speculate that the communication is ensured via SAW g
eration and processing of high-frequency signals modified by
rotation. Finally in Sec. 5, the merits of several methods of de
vation for the secular equation in non-rotating crystals are d
cussed. This paper aims to provide a theoretical and analy
framework for the study of surface acoustic waves in rotat
crystals.

2 Basic Equations
We consider a half-spacex2>0 occupied by a homogeneou

anisotropic crystal possessing one plane of symmetry atx350,
and rotating at a constant angular velocityV about thex3-axis. We
study the propagation of a surface~Rayleigh! wave in the
x1-direction, with attenuation in thex2-direction. In the rotating
Cartesian frame (Ox1 ,Ox2 ,Ox3)[(O,i,j ,k), the equations of
motion are,@11#,

div s5ru,tt12rVkÃu,t1rV2k3~kÃu!, (1)

wheres is the Cauchy stress tensor,r is the constant mass densit
of the material, and the comma denotes differentiation. The s

2,
sion
rnal

ing,
l be
E

04 by ASME Transactions of the ASME



u

a
d
h
e

m

s

-

re-

tic
li-
or-

d in

e

n-

-

n
ou-

ry

In Eq. ~4!, N1 andN2 are the same as the 232 submatrices of
the 636 fundamental elasticity matrixN from Ingebrigsten and
Tonning @16#. Their real matrixN3 , however, has been modified
by the introduction of off-diagonal pure imaginary terms. Explic-
itly, we have
ond term in the right-hand side of Eq.~1! is due to the Coriolis
acceleration, the third is due to the centrifugal acceleration. N
that Eq.~1! represents the time-dependent part of the full eq
tions of motion. The time-independent part, namely divss

5rV2k3@k3(us1x)#, whereus5us(x) ands i j
s 5ci jkl ul ,k

s must
be solved separately. The questions remain of~a! whether an ac-
tual time-independent solution exists for allV and if it does, of~b!
whether the boundary conditions of a traction-free rotating h
space may be satisfied without perturbating the time-depen
boundary value problem. These questions do not seem to
been addressed in the literature, but some preliminary work s
however to suggest that~a! and~b! may be answered positively, a
least within the framework of small amplitude waves superi
posed upon a large elastic deformation.

Now, turning back to the time-dependent Eq.~1!, the mechani-
cal displacementu is taken in the form

u~x1 ,x2 ,x3 ,t !5U~kx2!eik~x12vt !, (2)

showing a sinusoidal propagation with speedv and wave number
k in the x1-direction, and the possibility of an attenuation in th
x2-direction through the unknown functionU(kx2).

We wish to describe the influence of the frame rotation upon
speed of Rayleigh waves, and to this end, we introduce the
lowing quantities:

X5rv2, d5V/~kv !5V/v,

wherev is the real frequency of the wave.
For two-dimensional motions (]u/]x350) such as Eq.~2!, the

anisotropy of a crystal possessingx350 as a symmetry plane i
described by the following strain-stress relationship,@12#:

Fig. 1 Monoclinic crystal with symmetry plane at x 3Ä0, cut
along x 2Ä0, and rotating about x 3 at constant angular velocity
V
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F e11

e22

2e23

2e31

2e12

G5F s118 s128 0 0 s168

s228 0 0 s268

s448 s458 0

s558 0

s668

G F s11

s22

s23

s31

s12

G ,

where the strain componentse i j are defined in terms of the dis
placement components by: 2e i j 5ui , j1uj ,i , and thesi j8 are the
reduced compliances. Alternatively, the equivalent strain-stress
lations can be used,~@12#, p. 39!,

s+5C+e+, C+s851, (3)

where s+5@s11,s22,s23,s31,s12#
T, e+5@e11, . . . ,2e12#

T. The
Ci j

+ are elements, in the Voigt notation, of the fourth-order elas
stiffness tensorCi jkl . Table 1 shows the relevant reduced comp
ances of 12 different monoclinic crystals, computed from the c
responding stiffnesses as collected by Chadwick and Wilson@13#;
the last column gives the corresponding Rayleigh wave spee
the nonrotating case,@14#.

In view of the form Eq.~2! for the displacement, we introduc
the functionst1 , t2 for the tractionss12, s22 on the planesx2
5const. as

s12~x1 ,x2 ,x3 ,t !5 ikt1~kx2!eik~x12vt !,

s22~x1 ,x2 ,x3 ,t !5 ikt2~kx2!eik~x12vt !.

Then, substituting Eqs.~2! and ~3! into the equations of motion
~1!, we derive the following system of linear first-order differe
tial equations forU1 , U2 , t1 , t2 ,

FU8
t8 G5 i F N1 N2

Ň31~11d2!X1 N1
G FUt G , (4)

whereU5@U1 ,U2#T, t5@ t1 ,t2#T, and the prime denotes differ
entiation with respect tokx2 . Note that, as in the static case,@15#,
the antiplane strain~stress! decouples from the plane strai
~stress! and need not be considered for this problem. This dec
pling would not occur if the crystal was rotating about thex1-axis
or thex2-axis, @6#.

The surfacex250 is free of tractions and so, the bounda
conditions are

t1~0!5t2~0!50. (5)
Table 1 Values of the reduced compliances „10À12 m2ÕN…, density „kg Õm3
…, and „nonrotating …

surface wave speed „mÕs… for 12 monoclinic crystals

Material s118 s228 s128 s168 s268 s668 r vR

diphenyl 854 1858 2366 2698 21.44 5049 1114 1276
tin fluoride 345 228 259.2 2197 120 922 4875 1339
tartaric acid 343 211 2164 2223 301 1650 1760 1756
oligoclase 133 227 2108 97.0 2160 483 2638 2413
microcline 94.5 165 235.1 47.2 1.69 446 2561 2816
gypsum 243 130 268.6 32.9 28.1 326 2310 3011
hornblende 63.3 103 232.7 215.8 22.72 320 3120 3049
aegirite-augite 53.6 78.4 221.0 210.6 233.5 237 3420 3382
epidote 53.3 49.6 211.3 17.7 23.74 237 3400 3409
augite 54.5 64.4 219.5 219.0 215.7 211 3320 3615
diopside 53.1 58.6 220.1 24.0 6.98 186 3310 3799
diallage 49.8 69.1 211.3 26.88 214.5 166 3300 4000
JULY 2004, Vol. 71 Õ 517
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2N15F r 6 1

r 2 0G , N25Fn66 n26

n26 n22
G , 2Ň35F h 2idX

22idX 0 G ,
where the quantitiesr 2 , r 6 , n22, n26, n66, h are given in terms of
the elastic parameters as~@14,17#!

h5
1

s118
, r 652

s168

s118
, r 252

s128

s118
,

n665
1

s118
Us118 s168

s168 s668
U, n225

1

s118
Us118 s128

s128 s228
U, n265

1

s118
Us118 s168

s128 s268
U.

Thus the rotation of the crystal perturbs the equations of motio
three ways: the introduction of dispersion throughd; a shift of
magnituded2 in X5rv2 for the lower left submatrix ofN pro-
portional to the 232 unit matrix; and the modification ofN3 ,
which is diagonal in the nonrotating case~note that the new ma

trix Ň3 is Hermitian:Ň35Ň3
T .) Despite these modifications, th

secular equation can be obtained explicitly for the surface w
speed, using a method proposed by Currie@18# and by Taziev@19#
for nonrotating anisotropic crystals with and without a plane
symmetry, respectively.

3 Secular Equation
The method of the polarization vector was first presented

Currie @18# to derive the secular equation for Rayleigh waves
the symmetry plane of monoclinic nonrotating crystals. Then
ziev @19# generalized the method to triclinic~no symmetry plane!
crystals. This method takes advantage of the Cayley-Hami
theorem for the fundamental matrixN, which implies that onlyn
matrices Nk (k51, . . . ,n) are linearly independent (n53 for
monoclinic crystals,n55 for triclinic crystals!. Currie used the
matricesN, N2, N3; Taziev, the matricesN, N2, N3, N4, N5.
Recently, Ting@20# placed their results within the context of th
Stroh-Barnett-Lothe formalism and improved on them by show
that the choices ofN21, N, N2 for monoclinic crystals and of
N22, N21, N, N2, N3 for triclinic crystals lead to simpler and
more explicit secular equations. His approach is now adapte
our present context of a rotating crystal with one symmetry pla
An alternative derivation, not based on the Stroh-Barnett-Lo
formalism, is available elsewhere,@21,22#.

We seek solutions to the equations of motion Eq.~4! presenting
exponential decay with distance

U~kx2!5aeikpx2, t~kx2!5beikpx2, I~p!.0,

where the constant vectorsa and b are related through@12#, p.
139: bi5(Ck1i11pCi2k2)ak . Then the equations of motion Eq
~4! give

pFa
bG5ŇFa

bG , (6)

whereŇ is the 434 matrix in Eq.~4!. This eigenvalue problem
yields a quartic forp. We limit our investigation to the subsoni
range, defined as the greatest interval of values forv where the
determinant ofŇ2p1 possesses two rootsp1 , p2 , with positive
imaginary parts. We calla1 , a2 , andb1 , b2 , the vectorsa andb
corresponding to each root. Then the solution is of the form~@12#,
p. 141!

U5A^eikp* &q, t5B^eikp* &q, ^eikp* &5diag~eikp1x2,eikp2x2!,

whereA5@a1 ,a2#, B5@b1 ,b2#, andq is a constant vector. Using
the boundary conditions Eq.~5!, we have at the free surfacex2
50,

Bq50, and u~x1,0,x3 ,t !5aReik~x12vt !, aR5Aq. (7)

Moreover, the matricesA and B satisfy the orthogonality condi
tion, @23#,
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B̄TA1ĀTB50. (8)

Now, the eigenrelation Eq.~6! may be generalized for any pos
tive or negative integern as

pnFa
bG5ŇnFa

bG , where Ňn5F N1
~n! N2

~n!

Ǩ ~n! N1
~n!TG ~say!. (9)

Explicitly, the elements ofŇn are computed by multiplication o
Ň or its inverse by itself. For instance,Ǩ (n) for n51, 2, 21 is
given by Ǩ (1)5Ň31X(11d2)1,

Ǩ11
~2!522s168 @12s118 ~11d2!X#/s118

2,

Ǩ12
~2!5@12~s118 2s128 !~11d2!X22is168 dX#/s118 ,5Ǩ21

~2!, (10)

Ǩ22
~2!50,

and

Ǩ11
~21!52@s228 ~11d2!2~s118 s228 2s128

2!~12d2!2X#X/D,

Ǩ12
~21!5@s268 ~11d2!12is128 d1~s128 s168 2s118 s268 !~12d2!2X#X/D

5Ǩ21
~21!, (11)

Ǩ22
~21!5@12~s118 1s668 !~11d2!X1~s118 s668 2s168

2!~12d2!2X2#/D,

whereD is a real denominator common to theKi j
(21) whose ex-

pression is too long to reproduce and which turns out to be ir
evant for the derivation of the secular equation.

Now we write in turn the second vector line of Eq.~9!1 for p1
and forp2 , and deduce

Ǩ ~n!A1Ň1
~n!B5B diag~p1 ,p2!.

Multiplying this equality to the left byaR
T5q̄TĀT and to the right

by q, and using Eqs.~7!, ~8!, we conclude that~see@20# for the
nonrotating case!

aR
TǨ ~n!aR50. (12)

At n521, 1, 2, andaR5@1,a#T ~say), three equations follow:

Ǩ12
~21!a1Ǩ12

~21!ā1Ǩ22
~21!aā52Ǩ11

~21! ,

Ǩ12
~1!a1Ǩ12

~1!ā1Ǩ22
~1!aā52Ǩ11

~1! ,

Ǩ12
~2!a1Ǩ12

~2!ā52Ǩ11
~2! .

We rearrange this system as:Fikgk5hi , by introducing the fol-
lowing quantities:

F115DR~Ǩ12
~21!!, F125DI~Ǩ12

~21!!, F135DǨ22
~21! ,

F2150, F225s118 I~Ǩ12
~1!!, F235s118 Ǩ22

~1! ,

F315s118 R~Ǩ12
~2!!, F325s118 I~Ǩ12

~2!!, F3350,

g15a1ā, g25 i ~a2ā !, g35aā,

h152DǨ11
~21! , h252s118 Ǩ11

~1! , h352s118 Ǩ11
~2! .

Note that the explicit expressions for the nondimensional qua
ties Fik and hi in terms of X5rv2, d5V/v, and thesi j8 are
easily read off Eqs.~10!, ~11!. For instance,F1252s128 dX,
F32522s168 dX, h2512s118 (11d2)X, and so on.

The linear nonhomogeneous systemFg5h has a unique solu-
tion for g. IntroducingD5detF and Dk (k51,2,3), the determi-
nant of the matrix obtained fromF by replacing itskth column
with h, we write the solution asgk5Dk /D. But the components
of g are related one to another throughg35(g1/2)21(g2/2)2.
This relation is theexplicit secular equation for Rayleigh wave
on an anisotropic crystal rotating in its plane of symmetry,
Transactions of the ASME
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This equation is a polynomial of degree 8 inX5rv2, and also
of degree 8 ind2. Becaused5V/v appears only in even powers i
the secular equation, the Rayleigh speed obtained as a root o
~13! does not depend on the sense of rotation. Numerically,
find that the rotation slows the Rayleigh wave down and that
speed is a monotone decreasing function ofd. We see this behav
ior on Fig. 2, where the dependence of the Rayleigh wave sp
upond is shown for the 12 monoclinic crystals from Table 1. T
curves are arranged in the same order as in the table, from
slowest~diphenyl, starting at 1276 m/s! to the fastest~diallage,
starting at 4000 m/s!.

The secular equation is valid for any crystal possessing at l
one plane of symmetry, as long as the half-space is cut alon
plane containing the normal to the plane of symmetry. In parti
lar, it is also valid for orthorhombic crystals when the plane of c
contains one of the crystallographic axes. When this plane c
tains two crystallographic axes, the secular equation factor
and a separate treatment is required.

4 Orthorhombic Materials
When the material possesses three orthogonal planes of

metry and the axes (O,i,j ,k) are aligned with the crystallographi
axes, some compliances vanish:s168 5s268 50. Table 2 lists the val-
ues of the relevant reduced compliances for 8 rhombic crys

Fig. 2 Rayleigh wave speeds for 12 monoclinic crystals rotat-
ing about x 3

Table 2 Values of the reduced compliances „10À12 m2ÕN…, den-
sity „kg Õm3

…, and „nonrotating … surface wave speed „mÕs… for 8
orthorhombic crystals

Material s118 s228 s128 s668 r vR

sulfur 65.1 76.2 242.2 132 2070 1628
iodic acid 36.1 20.1 27.88 57.5 4630 1678
a-uranium 4.89 5.29 21.13 13.5 19000 1819
rochelle salt 49.3 33.0 218.2 102 1775 2114
sodium-tartrate 32.1 27.1 216.8 102 1818 2197
strotium formate 24.5 30.9 27.32 58.1 2250 2451
olivine 3.26 5.34 20.97 12.6 3324 4599
benzophenone 13.0 13.9 27.17 27.9 1219 4723
Journal of Applied Mechanics
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computed from the corresponding values of the stiffnesses as
lected by Shutilov@24#. The corresponding Rayleigh wave spe
vR in the nonrotating case~last column! is found from the exact
secular equation,~@25#!

~12Xs118 !A12Xs668 2XAs118 @s228 2X~s118 s228 2s128
2!#50.

When the frame is rotating, the systemFg5h reduces to

F 0 F12 F13

0 F22 F23

F31 0 0
G F g1

g2

g3

G5F h1

h2

0
G ,

whereF31Þ0 and

F1252s128 dX,

F13512~s118 1s668 !~11d2!X1s118 s668 ~12d2!2X2,

F22522s118 dX, F235s118 ~11d2!X,

h15@s228 ~11d2!2~s118 s228 2s128
2!~12d2!2X#X,

h2512s118 ~11d2!X.

From this new system of equations, we deduce thatg25D̂2 /D̂ and
g35D̂3 /D̂, where

D̂5F12F232F22F13, D̂25h1F232h2F13,

D̂35F12h22F22h1 ,

and also thatg15a1ā50, implying that g252ia, g352a2

5(g2/2)2 as well. This last equality is theexplicit secular equa-
tion for Rayleigh waves on an orthorhombic crystal rotating
one plane of symmetry,

D̂2
224D̂3D̂50.

This equation is a polynomial of degree 6 inX5rv2 and in
d5V/v. As in the monoclinic case above, the roots are even fu
tions of d. Numerically, the results are similar to those of th
monoclinic case, as Fig. 3 shows for the eight orthorhombic cr

Fig. 3 Rayleigh wave speeds for 8 rhombic crystals rotating
about x 3
JULY 2004, Vol. 71 Õ 519
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tals of Table 2. Again, the curves are arranged in the same ord
in the table, from the slowest~sulfur, starting at 1628 m/s! to the
fastest~benzophenone, starting at 4723 m/s!.

5 Concluding Remarks
Several methods have been proposed to derive explicitly

secular equation for surface waves in nonrotating monocl
crystals with the plane of symmetry atx350. This author,@14#,
wrote the equations of motion as a system of two second-o
differential equations for the tractionst: â iktk92 i b̂ iktk82ĝ iktk50,
whereâ, b̂, ĝ are 232 real symmetric matrices. Then the meth
of first integrals@26#, yields the secular equation. The equations
motion Eq. ~4! may also be written in a similar manner for
rotating crystal, butâ, b̂, ĝ become complex and the method
first integrals is no longer applicable as such. Next, Ting@17#
assumed an exponential form fort(kx2) and obtained the secula
equation through some simple algebraic manipulations, taking
vantage of the fact thatâ125b̂2250; in the rotating case, how
ever, these quantities are no longer zero. Furs@27# ~using the
displacement field! and this author@25# ~using the traction field!
devised yet another method, where the secular equation is
resultant of two polynomials; again, having real quantities for
components ofN is a crucial property, no longer true for rotatin
crystals.

All in all, it seems that the method of the polarization vector
the most appropriate for the case of a rotating crystal. Note th
simple derivation of its main result~12!, not relying on the Stroh
formalism, was presented recently,@21,22#.
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Modeling the Rotation of
Orthotropic Axes of Sheet Metals
Subjected to Off-Axis Uniaxial
Tension
A simplified version of a newly developed anisotropic plasticity theory is presente
describe the anisotropic flow behavior of orthotropic polycrystalline sheet metals u
uniaxial tension. The theory is formulated in terms of the intrinsic variables of princ
stresses and a loading orientation angle and its uniaxial tension version requires a
quadratic stress exponent and up to five anisotropic material functions of the loa
orientation angle to specify a flow condition, a flow rule for plastic strain rates, a fl
rule for macroscopic plastic spin, and an evolution law of isotropic hardening. In
investigation, the proper analytical form and the associated parameter identificatio
the anisotropic material functions defining the flow rule of macroscopic plastic spin
discussed for sheet metals with persistent but rotated orthotropic symmetry axes
off-axis uniaxial tension. It is shown that the proposed flow rule of macroscopic pla
spin can successfully model the experimental data on the rotation of orthotropic sym
axes in the three sheet metals reported, respectively, by Boehler et al. (Boehler and
1991, Advances in Continuum Mechanics, O. Bruller et al., eds., Springer, Heidel
pp. 143–158; Losilla, Boehler, and Zheng, 2000, Acta Mech.144, pp. 169–183); Kim and
Yin (1997, J. Mech. Phys. Solids45, pp. 841–851); and Bunge and Nielsen (1997 Int.
Plasticity 13, pp. 435–446). @DOI: 10.1115/1.1755694#
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1 Introduction
The microstructure of a polycrystalline sheet metal gener

evolves as it undergoes some finite plastic deformation.
plasticity-induced microstructural evolution occurs at least at t
levels: the crystallographic texture evolution of grains and
dislocation substructure texture evolution within the grains. Th
have been continued efforts on improving phenomenological m
roscopic plasticity theories by incorporating some constitut
modeling capabilities of material microstructural evolution usi
scalar and tensorial internal state variables. Isotropic strain
work hardening characterized by an effective plastic strain
equivalent specific plastic work,@1#, is perhaps the best-know
single scalar state variable model of material microstructural e
lution ~it basically accounts for the increase of the average di
cation density in a metal due to plastic flow!. The kinematic hard-
ening model with a backstress tensor developed for isotro
plasticity theories,@2–4#, can be regarded as the phenomenolo
cal description of anisotropic hardening behavior due to the e
lution of the dislocation substructure towards some preferred
tial orientations that are aligned with current plastic strain
directions.

On the other hand, metal products manufactured by roll
~sheet metals!, drawing ~wires!, and extrusion~plates! are typi-
cally anisotropic~primarily due to the resulting crystallograph
texture, i.e., grains packed with some preferred orientations! and
so the use of anisotropic plasticity theories is more appropriat
engineering design and analysis of these materials,@5–8#. While

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
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many macroscopic anisotropic plasticity theories proposed in
literature have incorporated isotropic hardening and even k
matic hardening models developed originally for isotropic plas
ity theories, almost all of them have explicitly or implicitly as
sumed that the initial material texture is strong and it persists u
further plastic straining, i.e., the evolution of crystallographic te
ture is not considered. However, both micromechanical analy
and experimental investigations of rolled sheet metals have sh
that there are noticeable and even significant changes of mat
orthotropic symmetry when a sheet metal is subjected to a pla
strain up to 20%–30%,@9–12#. For two rolled steel and one alu
minum sheet metals that were subjected tooff-axis uniaxial ten-
sion ~i.e., the axial loading direction is not aligned with the ortho
tropic axes of the sheets!, experimental observations have show
that the orthotropic symmetry of these sheet metals is more or
intact but the symmetry axes rotate relatively with respect to
sheet metal itself in the plane of the sheet,@10–12#. A flow rule
for macroscopic plastic spin~accounting for the orientational evo
lution of the material texture frame! may thus be appropriate in a
anisotropic plasticity theory to describe these experimental ob
vations.

The concept of macroscopic plastic spin has been explic
introduced since early 1970s into the framework of polycrystall
plasticity theories,@13–15#. Considerable attentions have been d
voted to its role from theoretical considerations~such as a missing
kinematics link to the material microstructural evolution! and the
necessity from the standpoint of the stability of numerical sim
lations, @16–34#. The flow rule of macroscopic plastic spin pro
posed in the literature are mainly motivated and derived thro
either the representation theorems or some heuristic micro
chanical arguments involving tensorial structure variables, ide
fied to be either the orthotropic or other privileged material fram
or back stress tensors. Only very simple analytical forms of
flow rule of macroscopic plastic spin have been suggested
illustrative purpose, mostly for either von Mises quadratic isot
pic plasticity theory with tensorial backstress kinematic harden
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sion
rnal

ing,
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or Hill’s 1948 quadratic anisotropic plasticity theory with isotr
pic hardening and strong and persistent orthotropic symme
Nevertheless, the existing simple flow rules of macroscopic p
tic spin for orthotropic sheet metals are found to be unable
describe consistently the rotation of orthotropic axes observe
experiments,@11,28#.

In this investigation, a flow rule of macroscopic plastic sp
proposed in a newly developed anisotropic plasticity theory,@35–
40# is evaluated for modeling the rotation of orthotropic symme
axes in the two steel and one aluminum sheet metals subject
off-axis uniaxial tension. First, constitutive equations of the ani
tropic plasticity theory along with the procedure on evaluat
anisotropic material functions in these constitutive equations
summarized in Section 2 for polycrystalline sheet metals un
uniaxial tension. The experimental investigations on the orien
tional evolution of orthotropic symmetry axes in sheet metals
briefly reviewed and material parameters of the anisotropic m
rial functions defining the flow rule of macroscopic plastic sp
proposed in the theory are identified in Section 3. Results of b
the experimental measurements and the model descriptions
compared for the three sheet metals in Section 3 as well. A
cussion on the proper formulation and the necessity of the fl
rule of macroscopic plastic spin for modeling the anisotropic pl
tic flow of sheet metals is presented in Section 4. Conclusi
drawn from this investigation on modeling macroscopic plas
spin are given in Section 5.

2 A Model of Anisotropic Plastic Flows Under
Uniaxial Tension

The finite elastic-plastic deformation kinematics of a sh
metal may be expressed through the multiplicative decompos
of the macroscopic deformation gradient tensorF into the elastic
and plastic partsFe andFp, @31#. By neglecting the small elastic
stretching in sheet metals involving finite plastic deformation, o
has the commonly known results of rigid-viscoplastic deformat
kinematics as follows:

F5FeFp'R* Fp,

L5ḞF21'~Ṙ* Fp1R* Ḟp!Fp21
R* 21

5Ṙ* R* 211R* ḞpFp21
R* 21, (1)

L5D1W'Dp1W* 1Wp,

D5~L1LT!/25De1Dp'Dp,

W5~L2LT!/25W* 1Wp, (2)

where R* is the rigid body rotation of the underlying materi
‘‘texture’’ frame ~some preferred orientations such as orthotro
symmetry axes!, Dp is the plastic rate of deformation tensor,Wp

is the plastic spin tensor defined as the difference between
material spinW, and the so-called constitutive spinW* , @17,28#.
A complete macroscopic theory of plastic flow usually provide
flow condition, flow rules that define both the plastic strain ra
tensorDp and the plastic spin rate tensorWp, and isotropic and
even anisotropic hardening models via a set of internal state v
ables and associated kinetic equations on their evolution,@32–34#.

Using the principal axes of the applied stress tensor as the
tesian coordinate system of the choice in this investigation~see
Fig. 1!, the expressions for the stress tensors, the macroscopic
plastic rate of deformation tensorDp, the macroscopic plastic spi
tensorWp, and the material constitutive spin tensorW* under
uniaxial tensionare

s5S su

0

0
D , Dp5S «̇1 «̇12 0

«̇21 «̇2 0

0 0 «̇3

D ,
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Wp5S 0 v̇12 0

v̇21 0 0

0 0 0
D , W* 5S 0 v̇12* 0

v̇21* 0 0

0 0 0
D , (3)

where u is the loading orientation angledefined as the angle
between the axial loading directions15su.0 and the current
in-planeX-axis of the sheet metal texture frame~see Fig. 1!, and

«̇352 «̇12 «̇2 , «̇215 «̇12, v̇2152v̇12,

v̇21* 52v̇12* , Ẇ125v̇12* 1v̇12, (4)

where Ẇ12 is the in-plane material spin~macroscopically observ-
able! of the sheet metal. We propose the following rate-depend
phenomenological theory to model the anisotropic plastic flow
a sheet metal underuniaxial tension

t5t0~j,ġ !,

ta5su
aF1~u! ~ the flow condition and flow function!, (5)

«̇15ġS su

t D a21

F1~u!, «̇25ġS su

t D a21

F2~u!,

«̇125ġS su

t D a21

F3~u!, ~ the flow rule for Dp! (6)

v̇125ġS su

t D a21

F4~u!, ~ the flow rule for Wp! (7)

j̇5ġS F5~u!

F1~u! D
a21/a

Fig. 1 Definitions of the three Cartesian coordinate systems
for a monoclinic sheet metal: „a… the principal axes of stress
„s1 ,s2 ,s3…; „b… the principal axes of the current material tex-
ture frame XYZ; and „c… the sheet material coordinate system
X0Y0Z0 . The principal axis of s3 always coincides with Z0-axis
and Z-axis to ensure the planar plastic flow of the sheet metal.
The in-plane axes X and Y of the texture frame are defined to
be the principal straining directions of the sheet metal under
equal biaxial tension „s1Äs2 , s3Ä0…. The material coordinate
system X0Y0Z0 undergoes the same rigid body rotation as the
sheet metal itself and it may be chosen to coincide with the
initial texture frame of the sheet metal „the initial texture frame
of an orthotropic sheet metal is defined by its rolling „RD…,
transverse „TD…, and normal „ND… directions …. The loading ori-
entation angle u is defined as the angle between the principal
axis of s1 and the X-axis of the material texture frame. The
relative rotation v12 of the texture frame with respect to the
material coordinate system of the sheet metal is due to the
macroscopic plastic spin v̇12 , †28‡.
Transactions of the ASME
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~ the evolution law of isotropic hardening!, (8)

wheret is the effective flow stress,ġ is the work-conjugate ef-
fective plastic strain rate,j is a certain internal state variabl
characterizing the isotropic hardening state of the material,t0 is
the effective flow strength,a(.1) is the stress exponent and it
a noninteger in general, andF1(u), F2(u), F3(u), F4(u), and
F5(u) are five material functions characterizing the planar pla
anisotropy of the sheet metal under uniaxial tension. The con
tutive equations Eqs.~5!–~8! are the simplified~uniaxial tension!
version of a planar anisotropic plastic flow theory recently dev
oped by Tong et al.@35–40# in terms of principal stresses and
loading orientation angle~which have been called intrinsic var
ables of a stress field according to Hill@41,42#!. The above con-
stitutive equations under uniaxial tension can be justified from
micromechanical point of view~see Appendix!. When the associ-
ated flow rule is applied to«̇12, @41,42#, one has F3(u)
5F18(u)/2a. If one assumesF5(u)5F1(u), then j̇5ġ, i.e., the
isotropic hardening is characterized by the cumulative effec
plastic strain. On the other hand, if one assumesF5(u)
5F1(u)ta/(a21), thenj̇5tġ, i.e., the isotropic hardening is cha
acterized by the cumulative plastic work per unit volume.

Because the equivalence of the loading orientation anglesu
andu6p due to the symmetry of mechanical loading, each of
five anisotropic material functions of a sheet metal can be re
sented by a Fourier series, namely,

F1~u!5A01A1 sin 2u1A2 cos 2u1 . . . 1A2k21 sin 2ku

1A2k cos 2ku1 . . . ,

F2~u!5B01B1 sin 2u1B2 cos 2u1 . . . 1B2k21 sin 2ku

1B2k cos 2ku1 . . . ,

F3~u!5C01C1 sin 2u1C2 cos 2u1 . . . 1C2k21 sin 2ku

1C2k cos 2ku1 . . . , (9)

F4~u!5D01D1 sin 2u1D2 cos 2u1 . . . 1D2k21 sin 2ku

1D2k cos 2ku1 . . . ,

F5~u!5E01E1 sin 2u1E2 cos 2u1 . . . 1E2k21 sin 2ku

1E2k cos 2ku1 . . . ,

wherek51,2, . . . , andAn , Bn , Cn , Dn , andEn are the Fourier
coefficients. The stress exponenta and the Fourier coefficients o
the five anisotropic material functions in Eq.~9! may evolve with
subsequent plastic deformation when anisotropic hardening du
material texture evolution is modeled. They are all assumed to
constant in this investigation, i.e., the characteristics of the m
rial texture remains more or less the same but the whole tex
frame can rotate relatively with respect to the sheet metal itsel
the sheet metal has some additional symmetry characteristics
as orthotropic, trigonal, or cubic symmetry in the plane of t
sheet, one can reduce the number of terms in each Fourier s
by imposing the equivalency of loading conditions betweenu and
2u, u andu12p/3, andu andu1p/2 respectively. Furthermore,
truncated Fourier series may be used in practice to approxim
each anisotropic material function and the number of terms kep
each truncated Fourier series depends on planar anisotropy o
sheet metal. Besides flow stress-strain curvessu(«1 ,«̇1), plastic
strain and spin ratios can be measured under uniaxial tension

Ru[
«̇2

«̇3
52

F2~u!

F1~u!1F2~u!
, ~ the plastic axial strain ratio!

(10a)

Gu[
«̇12

«̇1
5

F3~u!

F1~u!
, ~ the plastic shear strain ratio!

(10b)
Journal of Applied Mechanics
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Pu[
v̇12

«̇1
5

F4~u!

F1~u!
. ~ the plastic spin ratio!. (10c)

The five anisotropic material functionsF1(u), F2(u), F3(u),
F4(u), andF5(u) in the proposed anisotropic plastic flow theo
under uniaxial tension can thus be completely examined from
experimental measurements ofsu(«1 ,«̇1), Ru , Gu , and Pu ,
@35–37,40#. Evaluation of the proper analytical form of the anis
tropic material functionF4(u) that defines the flow rule of mac
roscopic plastic spin or the plastic spin ratioPu for a given sheet
metal is the focus of this investigation and will be discussed
details in the next section.

3 Macroscopic Plastic Spin in Sheet Metals Subjected
to Off-Axis Uniaxial Tension

In this section, the procedures of experimental investigations
the orientational evolution of material texture frames in thr
sheet metals will be reviewed first and the reported experime
results will be summarized briefly. The Fourier series represe
tion and the identification of its Fourier coefficients of the anis
tropic material functionF4(u) or the plastic spin ratioPu will
then be detailed. The model description of the rotation of ort
tropic axes of these three sheet metals under off-axis unia
tension due to macroscopic plastic spin will be compared with
experimental measurements. Although the theory presente
Section 2 can be applied to monoclinic sheet metals un
uniaxial tension,@37,40#, the sheet metals considered in the fo
lowing are assumed to be initially orthotropic and remain so un
off-axis uniaxial tension,@11,28#. So only the coefficients of the
sine terms in the Fourier series ofF4(u) and the coefficients of
the cosine terms in the Fourier series ofF1(u) are nonzero.

3.1 On the Experimental Measurements of the Rotation of
Orthotropic Axes due to Macroscopic Plastic Spin. There
have been rather limited experimental investigations on detec
the macroscopic plastic spin and its evolution in orthotropic sh
metals so far,@10–12,43,44#. A direct mechanisticevaluation of
the macroscopic plastic spin in orthotropic sheet metals un
uniaxial tension has been carried out using a two-step experim
tal technique by Boehler and Koss@10# and Kim and Yin@11#. It
consists of~a! the plastic deformation stepof uniaxial straining
multiple large sheet samples up to various plastic strain lev
~10%–30%! without necking at different off-axis angles and~b!
the material (texture frame) probing stepof measuring the direc-
tional dependence of uniaxial tension flow stress~more specifi-
cally, the yield stress with a big offset strain of 0.2%! of smaller
tensile sheet samples cut off from the deformed large sheet
every 10 deg or 15 deg offset angle increments from the orig
rolling direction.

Boehler et al.@10,45# tested large sheets of an aluminum kille
soft steel of size 10003360 mm2 under uniaxial tension with ini-
tial off-axis loading orientation angles of 30 deg, 45 deg, and
deg for various plastic strain levels up to 20% and above. Twe
smaller specimens cut off from each of the deformed large sh
with angles of 0 deg, 15 deg, 30 deg, 45 deg, 60 deg, 75 deg
deg, 105 deg, 120 deg, 135 deg, 150 deg, 165 deg offset from
rolling direction of the sheets were then tested for yield str
measurements. Kim and Yin@11# carried out very similar tests on
an automotive low carbon steel sheet using the same three in
off-axis loading orientation angles for various strain levels up
10%. They used a total of 18 smaller specimens cut off from e
of the deformed large sheets in the material probing step with e
specimen at an offset angle of every 10 deg increment from
rolling direction of the large sheets. To enhance the degree
anisotropy of the steel sheets that were nearly isotropic initia
Kim and Yin @11# pre-strained the steel sheets along the rolli
direction up to strains of 3% and 6%, respectively. By examin
the directional dependence of flow stress measured from 12
18 small tensile specimens, respectively, both Boehler e
JULY 2004, Vol. 71 Õ 523
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@10,45# and Kim and Yin@11# concluded that their sheet meta
remain approximately orthotropic but there exists a large in-pl
rotation of the orthotropic symmetry axes relative to the sh
metal itself under off-axis uniaxial tension. Both positive~coun-
terclockwise! and negative~clockwise! rotations as defined in Fig
1 were observed for initial loading orientation angles of 30 d
and 60 deg, respectively, and the orthotropic symmetry axes
come completely aligned with the external axial loading direct
within 5–10% uniaxial plastic strain. That is, the texture axis t
is coincided with the initial rolling direction rotates towards th
axial loading direction with an initial loading orientation angle
30 deg but the texture axis that is coincided with the initial tra
verse direction rotates towards the axial loading direction with
initial loading orientation angle of 60 deg. A rotation of the orth
tropic symmetry axes with an initial loading orientation angle
45 deg was detected in both investigations as well but a pos
rotation was reported by Boehler and Koss@10# while a negative
rotation was found by Kim and Yin@11#.

An experimental determination of macroscopic plastic spin
polycrystals based on material crystallographic texture meas
ments has been proposed by Bunge and Nielsen@12#. They di-
vided the crystallographic texture change of a polycrystal und
going plastic deformation into an average rotation of so
common texture reference axes characteristic for the whole p
crystal material element and a ‘‘spreading’’ of the individual cry
tal orientations away from the common~rotated! reference texture
frame. When the texture ‘‘spreading’’ is neglected, the text
evolution can thus be characterized approximately by the tex
rotation or texture spin. Bunge and Nielsen@12# measured the
orientation distribution function~ODF! of an annealed polycrys
talline aluminum sheet of 1 mm thickness before and after be
subjected to off-axis uniaxial tension to a total plastic strain
20% at 11 different initial loading orientation angles. They an
lyzed the rotation of a characteristic reference system formed
the symmetric elements of the texture with an accuracy of;0.5
deg using an autocorrelation function of ODF and considered
texture rotation or spin being related to the macroscopic pla
spin in the macroscopic theories of plasticity. They found that
amount of texture rotation at a uniaxial plastic strain of 20%
pends on the initial loading orientation angle and the maxim
plastic spin ratio is about 5 deg/20% occurred around the off-a
loading angle of 22.5 deg~i.e., P22.5deg'5 deg/20% if a constan
plastic spin is assumed!. The macroscopic plastic spin of the alu
minum sheet defined by the crystallographic texture spin acc
ing to Bunge and Nielsen@12# is much smaller than that of low
carbon steel sheets defined by the symmetry characteristics o
directional dependence of flow stress according to Boehler
Koss@10# and Kim and Yin@11#. Measured pole figures of a ste
sheet investigated by Boehler and Koss@10# under 45 deg off-axis
uniaxial tension showed that the symmetry part of the crysta
graphic texture in the steel sheet did rotate completely towards
axial loading direction at a plastic strain level of about 10%.

3.2 An Analysis of the Rotation of Orthotropic Axes due to
Macroscopic Plastic Spin. As there is very little relative rota-
tion of the sheet metal with respect to the fixed laboratory load
frame under uniaxial tension,@10–12,43,44#, i.e.,Ẇ12'0, one has
~see Fig. 1!

v121u'u0 , and v̇121 u̇'0, (11)

whereu0 and u are, respectively, the initial and current loadin
orientation angles, andv12 is the rotation of the sheet metal tex
ture frame due to plastic spinv̇12. One can thus rewrite Eq.~10c!
as

Pu52
u̇

«̇1
or «152E

u0

u du

Pu
. (12)

The directional dependence of flow stress under uniaxial ten
is usually much milder than that of plastic strain and spin rati
524 Õ Vol. 71, JULY 2004
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To the first approximation, one may setF1(u)'1 ~assuming
t(j,ġ)5s0). When only one of coefficients in the Fourier seri
of F4(u) is nonzero, i.e.,Pu'F4(u)'D sin 2ku(k51,2, . . . ),
one can obtain an analytical expression of Eq.~12! as

u5
1

k
arctan@$tan~ku0!e22kD«1%#, (13a)

so

v125u02
1

k
arctan@$tan~ku0!e22kD«1%#. (13b)

The rotationv12 of the material texture frame with respect to th
sheet metal itself or the current loading orientation angleu as a
function of the initial loading orientation angleu0 and the uniaxial
plastic strain«1(>0) are shown in Fig. 2 and Fig. 3, respective
using Eq.~13!. The material texture frame will eventually sto
spinning at certain loading orientation angles at sufficiently la
plastic strains and these loading orientation angles are theequilib-
rium orientations of the material texture frame. Possible equi
rium orientations of the material texture frame of a sheet metal
the loading orientation angles that satisfy the conditionsPu50
andPu8>0. Loading orientation angles that satisfy the conditio
Pu50 and Pu8,0 are metastable orientations and are not t
equilibrium orientations~i.e., any small disturbance can cause t
material texture frame to rotate away from those orientation!.
When D.0, the possible equilibrium orientations of the mater
texture frame areu50 deg fork51, u50 deg and 90 deg fork
52, andu50 deg, 60 deg and 120 deg fork53. When D,0, the
possible equilibrium orientations of the material texture frame
u590 deg fork51, u545 deg and 135 deg fork52, andu530
deg, 90 deg, and 150 deg fork53. In general, Eq.~12! may also
be rewritten using the Fourier series expansion ofPu
5F4(u)/F1(u) as

«152E
u0

u du

~d1 sin 2u1d2 sin 4u1d3 sin 6u1 . . . !
. (14)

The relation between the current loading orientation angleu or the
rotation of the texture framev12 and the uniaxial plastic strain«1
can be obtained by integrating Eq.~14! numerically.

Fig. 2 The amount of rotation v12 of the material texture frame
due to plastic spin at a fixed uniaxial plastic strain «1 of 20% as
a function of the initial loading orientation angle u0 with three
different k values according to Eq. „13b… „DÄ1 is used for all
data points …
Transactions of the ASME
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Fig. 3 The current loading orientation angle u and the amount
of rotation v12 of the material texture frame due to plastic spin
as a function of uniaxial plastic strain «1 with three different
initial loading orientation angles u0 and three different k values
according to Eq. „13… „kDÄ10 is used for all data points …
Journal of Applied Mechanics
3.3 Comparison Between the Model Description and Ex-
perimental Measurements on the Rotation of Orthotropic
Axes. Unlike plastic axial and shear strain ratiosRu andGu ~see
Eqs.~10a! and~10b!! that can be directly determined from incre
mental plastic strain measurements in each uniaxial tension
the plastic spin ratio has to be determined from the measurem
of both axial plastic strain increments and rotations of the mate
symmetry axes~by a separate mechanical or material texture m
surement, see Section 3.1!. Only limited experimental data are
reported for a given sheet metal either in terms of the rotation
orthotropic axes as a function of uniaxial plastic strain with s
lected initial loading orientation angles~see Fig. 4 and Fig. 5! or
in terms of the rotation of crystallographic texture symmetry ax
as a function of initial loading orientation angles at a fix
uniaxial plastic strain~see Fig. 6!. The plastic spin ratio can be
obtained in principle by curve-fitting and numerical differentiatio
of the experimental data shown in Fig. 4 and Fig. 5, the mate
parameters and coefficients in Eq.~13b! and/or Eq.~14! can then
be determined. The following trial-and-error procedure is us
instead for parameter identification:

1. Use the results shown in Fig. 2 and Fig. 3~which are given
by Eq. ~13! using differentk values! as the basis to deter
mine the dominant term~the value ofk! in the Fourier series
of Pu measured in experiments.

2. Adjust the value of the coefficientD ~both its sign and mag-
nitude! to best describe the experimental data. If Eq.~13!
with the selected values ofk and D can model all of the
experimental measurements reasonably well, then the pla
spin ratio is determined asPu5D sin 2ku.

3. Add one or more sine terms for the Fourier series ofPu if
Eq. ~13! cannot describe the experimental measurements
isfactorily. Estimate the sign and magnitude of the Four
coefficient of each new term by comparing the results sho
in Fig. 2 and Fig. 3 with the experimental measuremen
Adjust the Fourier coefficientsdi in Eq. ~14! iteratively until

Fig. 4 Comparison of the model description „solid and dashed
lines … and the experimental data „filled symbols … of a steel
sheet reported by Boehler and Koss †10‡ and Losilla et al. †45‡
on the rotation v12 of the material texture frame due to plastic
spin as a function of uniaxial plastic strain «1 with different
initial loading orientation angles u0Ä30deg , 45 deg, and 60
deg. The solid lines are given by Eq. „14… with d 1Ä7, d 2Ä10 and
d 3ÄÀ3 „all other coefficients are zero …. The dashed lines are
given by Eq. „13b… with kÄ2 and DÄ9 „the initial loading orien-
tation angles of 30 deg, 46 deg, and 60 deg were used ….
JULY 2004, Vol. 71 Õ 525



n

gle
tal

s

a
-
for
ue

erva-
ever
pin

d by

the

ure
ob-

um
ets.
en
the
e-
in.

eet

is

re

of

the
oth
city
s by

ry
and
ing
he
ct to
. In

re-
pic
etry
rop-

hic
be
the model description matches closely the experime
measurements. The plastic spin ratio is then given asPu
5d1 sin 2u1d2 sin 4u1d3 sin 6u1 . . . .

The above procedure was applied to model the experime
data on the three sheet metals reported by Boehler et al.@10,45#,
Kim and Yin @11#, and Bunge and Nielsen@12# and plastic spin
ratios of these three sheet metals were determined as follows

Fig. 5 Comparison of the model description „solid and dashed
lines … and the experimental data „filled symbols … of a steel
sheet reported by Kim and Yin †11‡ on the rotation v12 of the
material texture frame due to plastic spin as a function of
uniaxial plastic strain «1 with different initial loading orienta-
tion angles u0Ä30deg , 45 deg, and 60 deg. The solid lines are
given by Eq. „14… with d 1ÄÀ8, d 2Ä17 and d 3Ä3 „all other co-
efficients are zero …. The dashed lines are given by Eq. „13b…
with kÄ2 and DÄ12.5 „the initial loading orientation angles of
30 deg, 46 deg, and 60 deg were used ….

Fig. 6 Comparison of the model description „solid and dashed
lines … and the experimental data „filled symbols … of an alumi-
num sheet reported by Bunge and Nielsen †12‡ on the amount
of rotation v12 of the material texture frame due to plastic spin
at a fixed uniaxial plastic strain «1 of 20% with 11 different ini-
tial loading orientation angles u0 . The solid line is given by Eq.
„13b… with kÄ2 and DÄ0.45.
526 Õ Vol. 71, JULY 2004
tal

ntal

:

Pu59 sin 4u, and Pu57 sin 2u110 sin 4u

23 sin 6u, ~Boehler and Koss! (15a)

Pu512.5 sin 4u, and Pu528 sin 2u117 sin 4u

13 sin 6u, ~Kim and Yin! (15b)

Pu50.45 sin 4u ~Bunge and Nielsen!. (15c)

As shown in Fig. 4 and Fig. 5, the plastic spin ratio using a sin
sine term withk52 can only describe some of the experimen
data on the two steel sheets reported by Boehler and Koss@10#
and Kim and Yin@11# ~for initial loading orientation angles of 30
deg and 60 deg!. Actually, no rotation of the orthotropic axes i
predicted byPu5D sin 4u for the initial loading orientation angle
of 45 deg at all. However,u0545deg is not one of the true
equilibrium orientations of the material texture frame with such
plastic spin ratio~see Section 3.2!. If one assumes the initial load
ing orientation angle to be 44 deg and 46 deg, respectively,
each investigation~say, there were some experimental errors d
to some slight misalignments!, then the rotation of orthotropic
axes occurs in both cases and matches the experimental obs
tions at large strains. The predictions at small strains are how
inconsistent with the experimental data. Indeed, the plastic s
ratios with three sine terms given in Eq.~15a! and Eq.~15b! are
needed to adequately model the experimental data reporte
both Boehler and Koss@10# and Kim and Yin@11# for all three
different initial loading orientation angles. On the other hand,
plastic spin ratio using a single sine term withk52 describe rea-
sonably well the directional dependence of the rotation of text
symmetry axes at a fixed uniaxial plastic strain of 20% as
served by Bunge and Nielsen@12# for an annealed aluminum
sheet. The magnitude of the plastic spin ratio of the alumin
sheet is, however, about 1/20 to 1/30 of that of the steel she
The difference in the magnitude of plastic spin ratios betwe
steel and aluminum sheets may be due to the difference in
characteristics of their initial anisotropy and a further microm
chanical investigation is warranted to elucidate its physical orig
According to the plastic spin ratios given in Eq.~15!, the equilib-
rium orientation of the material texture frames in these three sh
metals is eitheru50 deg~theX-axis will eventually coincide with
the external axial loading direction! or u590 deg~the Y-axis will
eventually coincide with the external axial loading direction!.

4 Discussion
A plane-stress anisotropic plasticity theory of sheet metals

often formulated using the Cartesian stress componentssx , sy ,
andsxy projected onto the principal axes of the material textu
~symmetry! frame XYZ as shown in Fig. 1. Hill@41,42# has re-
cently advocated the use of the so-called intrinsic variables
principal stresses (s1 ,s2) and a loading orientation angleu for
developing anisotropic plasticity theories. He has argued that
resulting plasticity theories should be more appealing to b
theoreticians and experimentalists. A new anisotropic plasti
theory has indeed been proposed using these intrinsic variable
Tong et al.@35–40# and the uniaxial tension version of the theo
is presented in this investigation. In both theoretical analyses
experimental evaluations of an anisotropic plasticity theory us
either formulation, one needs to know the initial orientation of t
material texture frame and its subsequent evolution with respe
the sheet metal itself during a plastic deformation process
other words, an explicit mechanistic definition~i.e., an experimen-
tal procedure for its determination by a mechanical test! of the
material texture frame at a given plastic deformation stage is
quired by such an anisotropic plasticity theory. For orthotro
sheets, the orthotropic axes can be identified with the symm
axes detected in the orientational dependence of mechanical p
erties such as flow stress under uniaxial tension,@10,11#. If plastic
anisotropy of the sheet metal is solely due to the crystallograp
texture, then the crystallographic texture symmetry axes may
Transactions of the ASME
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used as well to measure the orientation of the material tex
frame in the sheet metal,@12#. While such a definition of the
material texture frame works well for sheet metals with orthot
pic or other higher-order symmetries, it cannot however be
tended to monoclinic sheets. A different and more general de
tion of the in-plane axesX and Y of the sheet material textur
frame coordinate system has been given in the anisotropic pla
ity theory presented here, that is, theX andY-axes are defined to
be the principal axes of in-plane plastic strain rates of the sh
metal under equal biaxial tension (s15s2). In practice, an out-
of-plane uniaxial compression test may be used to experimen
determine the material texture axesX and Y if plastic flow is
unaffected by hydrostatic loading. This definition of the mater
texture axes is equivalent to the one based on the symmetry c
acteristics of flow stress under uniaxial tension for orthotro
sheets with isotropic hardening but requires much less experim
tal efforts,@35#.

Most of the existing anisotropic plasticity theories assume t
a polycrystalline sheet metal is orthotropic initially and the init
orthotropy symmetry is strong and persists during subseq
plastic deformation,@6,28#. When the sheet metal deforms plas
cally under on-axis loading conditions~i.e., the principal axes of
stress coincide with the orthotropic axes of the sheet!, there is no
ambiguity on the orientation of the current orthotropic textu
frame with respect to the sheet metal itself as there is no pla
spin of the material texture frame. However, when the loading
off-axis in uniaxial tension or shear tests, the original RD and
directions of the sheet metal are no longer orthogonal and
current orientation of the material texture axesX andY cannot be
clearly identified without additional theoretical hypotheses or
perimental characterization. Few existing anisotropic plastic
theories offer a flow rule for macroscopic plastic spin at all
most of them assume explicitly or implicitly that the macrosco
plastic spin is always zero and the material texture frame rot
along with the sheet metal itself. The experimental measurem
on the current orientation of the material texture frame afte
sheet metal is subjected to off-axis uniaxial tension have sh
that there exist detectable and even significant relative rotat
between the material texture frame and the sheet metal,@10–12#.
A robust and flexible flow rule of macroscopic plastic spin
proposed in this investigation should be incorporated into an
isotropic plasticity theory to improve its modeling capabilities.
comparative evaluation of the proposed flow rule of macrosco
plastic spin with some of the specific analytical forms of the flo
rule of macroscopic plastic spin appeared in the literature is
order. As pointed out in the Section 1, the explicit forms of t
flow rule of macroscopic plastic spin have been motivated larg
by invoking the representation theorems for isotropic functions
conjunction with the concept of tensorial structure variab
mostly for quadratic plastic flow theories,@13–30#. Only two ana-
lytical expressions of the flow rule of macroscopic plastic s
have often been cited in the literature and they have the follow
forms for an orthotropic sheet metal under off-axis uniaxial te
sion, @28#,

v̇125ha«̇xy ,

or Pu[
v̇12

«̇1

5ha

~ «̇12 «̇2!sinu cosu1 «̇12 cos 2u

«̇1

5haF S 11
Ru

11Ru
D sinu cosu1Gu cos 2uG , (16a)

v̇125hbsu«̇12, or Pu[
v̇12

«̇1
5hbsuGu , (16b)
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whereha andhb are plastic spin coefficients and can be in gene
a function of the isotropic invariants of a given loading stre
tensor and the material symmetry orientations,Ru , Gu , and su
are, respectively, the plastic axial strain ratio, the plastic sh
strain ratio, and the flow stress under uniaxial tension~see Section
2!. The flow rule Eq.~16b! is the uniaxial tension version of th
constitutive equation for plastic spinWp5h(sDp2Dps) that has
been adapted widely in the literature,@26–28#. In many actual
applications of the above two flow rules reported in the literatu
a constantplastic spin coefficient is usually assumed,@18,28#. The
flow rule given by Eq.~16a! has been used extensively for inve
tigating the plastic spin effect but they were mostly illustrati
without experimental corroboration,@15,18#. The flow rule given
by Eq. ~16b! has been employed by Kuroda@26# to simulate the
inverse Swift effect in free-end torsion experiments assuming
the material is orthotropic prior to torsion. Kim and Yin@11# and
Dafalias@28# have used the same expression for the plastic s
along with Hill’s 1948 quadratic anisotropic plasticity theory,@5#,
to simulate the orientational evolution of orthotropic symme
axes in steel sheets upon off-axis uniaxial tensile deformat
While qualitative agreements were found in their analyses,
orientational evolution of the orthotropic axes with increasi
plastic deformation is not described with great accuracy and
nificantly different values of the plastic spin coefficienthb ~which
also has to be opposite in sign when comparing with the one u
by Kuroda@26#! were needed for the best description of each
the off-axis tensile tests with the initial loading orientation ang
of 30 deg, 45 deg, and 60 deg. In the light of the anisotro
plastic flow theory proposed here~see Section 2 and Section 3!,
the two widely used analytical expressions for the flow rule
macroscopic plastic spin as given in Eqs.~16a! and ~16b! for
uniaxial tension are indeed both overly restrictive~linking directly
the plastic spinv̇12 with the plastic shear rate«̇xy or «̇12) and
overly simplistic~no dependence on the loading orientation an
u is given for the plastic spin coefficientsha andhb at all in their
actual application examples!. The micromechanical analysis of th
plastic flow of single crystals with a regularized Schmid law und
uniaxial tension given in the Appendix also shows that the gen
validity of the plastic spin equation given by either Eq.~16a! or
Eq. ~16b! is indeed questionable.

As mentioned in the Introduction, the other major area of int
est of incorporating a flow rule of macroscopic plastic spin is
isotropic plasticity theories with kinematic hardening@23,46#. One
can define the material texture frame as the principal axes of
backstress tensor, then a flow rule of macroscopic plastic s
becomes basically a part of the evolution law of kinematic ha
ening that describes the orientational evolution of the princi
axes of the backstress tensor~the other part covers the evolutio
of the strength of the backstress in terms of its principal com
nents!. However, direct measurements of the backstress te
~and hence its principal axes! using tension-compression or sim
lar tests at different loading orientation angles are required
properly evaluate any specific form of the flow rule of plastic sp
for kinematic hardening. Experimental inference of the form
the flow rule of plastic spin for isotropic plasticity theories wi
kinematic hardening by simulating finite deformation simple sh
tests is problematic@46# as the crystallographic aspect of the m
terial texture evolution may become significant and even do
nant. As observed early in Section 3, the magnitude of the pla
spin ratio of the aluminum sheet,@12#, is only about 1/20 to 1/30
of that of the steel sheets,@10,11#. Such a difference may be
attributed to the two different plastic spin detection methods us
the plastic spin determined by Bunge and Nielsen@12# is mainly
related to the material crystallographic texture evolution while
plastic spin determined by Boehler and Koss@10# and Kim and
Yin @11# may be related primarily to the evolution of dislocatio
substructures in steel sheet metals~especially at small plastic
strains!. In this investigation, it was assumed that all three sh
metals have a pre-existing orthotropic symmetry and the orie
JULY 2004, Vol. 71 Õ 527
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tional dependence of flow stress and plastic strain ratio of
sheet metals under off-axis uniaxial tension remains orthotro
with the samesymmetry axes,@28#. Consequently, a single mac
roscopic flow rule of macroscopic plastic spin was used to ch
acterize satisfactorily the relative rotation of the material symm
try axes regardless of its origin. The validity of the persiste
orthotropic symmetry assumption cannot be examined directly
these three sheet metals due to lack of experimental data. I
experimental data on the orientational dependence of plastic s
ratio of the two steel sheets upon off-axis uniaxial tension w
also made available and they would show indeed that the sym
try axes of plastic strain ratio do not coincide with the symme
axes of flow stress, the sheet metals should then be treate
monoclinic instead of orthotropic. Incorporations of both a ba
stress kinematic hardening model and a flow rule of macrosc
plastic spin in an anisotropic plastic flow theory may be a poss
modeling approach,@23,43,44#. Direct experimental evaluation o
the backstress tensor is however very challenging if not imp
sible for sheet metals~as in-plane uniaxial compression tests a
rather difficult to carry out for thin sheets! and flow rules of two
plastic spins are required to describe the orientation evolutio
the principal axes of both the backstress~related primarily to the
dislocation substructure! and the crystallographic texture fram
respectively,@23#. When only one plastic spin is used, its expe
mental evaluation becomes ambiguous unless further clarifica
on the definition of the material texture frame that is associa
with the plastic spin is provided and extensive experimental d
are made available. For example, Truong Qui and Lippm
@43,44# have proposed a quadratic anisotropic plasticity the
that generalizes Hill’s orthotropic theory,@5#, for monoclinic
sheets with combined isotropic and kinematic hardening an
plastic spin. Their theory is formulated using the Cartesian st
componentssx , sy , andsxy on the axes of the material textur
coordinate system which is associated with their plastic s
However, as no experimental data on in-plane uniaxial comp
sion flow stress are available for the steel and aluminum sh
investigated, respectively, by Boehler and Koss@10# and by
Truong Qui and Lippmann@43,44#, the evaluation ofboth the
backstress and the rotation of the material texture frame du
plastic spin in their theory is impossible using solely the expe
mental data on the directional dependence of uniaxial tensile
stress. Truong Qui and Lippmann@43,44# used a least-square fit
ting parameter identification procedure that lumps together all
terial parameters plus a rotation anglev12 due to plastic spin.
Such an indirect approach in evaluating the effect of plastic s
and other aspects of a highly nonlinear anisotropic plastic fl
behavior is very questionable as noted by McDowell et al.@46#.
Alternatively, one may invoke an anisotropic plasticity theo
with a nonassociated flow rule,@47#, and uses a yield surface t
model the anisotropy of flow stress and a separate flow surfac
model the anisotropy of plastic strain ratios. Two plastic sp
associated with the evolution of symmetry axes of yield and fl
surfaces can thus be in principle evaluated independently base
the experimental data on the orientational dependence of
stress and plastic strain ratio respectively following the method
ogy give in this investigation. Under this context, the plastic s
ratio obtained here for the two steel sheets should perhap
limited to the evolution of the yield surface and its applicability
the evolution of the flow surface cannot be assessed without
ditional experimental data on the orientational dependence
plastic strain ratio.

We take the viewpoint that the purpose of a macroscopic an
tropic plasticity theory is mainly to provide a mathematica
more compact but still physically sound description of the plas
flow behavior of a sheet metal so that engineering analyses
designs of sheet metal forming processes can be carried out
efficient way with accepted accuracy. One basically calibrates
material parameters in the theory through a set of mechanical
under simple loading conditions and then applies the theory
528 Õ Vol. 71, JULY 2004
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analyze problems under more general loading conditions. Our
isotropic plasticity theory formulated in terms of the intrinsic va
ables of principal stresses and a loading orientation angle inte
to strike a proper balance between the mathematical compac
and the descriptive robustness through the truncated Fourier s
representation of each of anisotropic material functions charac
izing plastic anisotropy of a sheet metal. Depending on the ex
of the experimental data made available, the degree of pla
anisotropy, and the accuracy required for an analysis, a flex
and adaptive anisotropic plasticity theory can thus be establis
for practical engineering applications,@35–40#. There have been
some debates in recent years on the role and necessity of m
scopic plastic spin within the framework of a macroscopic po
crystalline plasticity theory@24,46,48#. We suggest that a flow rule
of macroscopic plastic spin should be considered if it improv
the mathematical formulation~say, the compactness! and the con-
stitutive modeling quality of a phenomenological theory of a sh
metal and if there is a clear physical basis~such as the relative
rotation of the material texture frame against the material its!
and an associated experimental procedure for its evaluation.
investigation showed that the proposed flow rule of macrosco
plastic spin can be used to describe effectively the orientatio
evolution of the material texture frame in three orthotropic sh
metals subjected to off-axis uniaxial tension and thus their p
ticity anisotropy without invoking the use of other mathematica
more complicated anisotropic hardening models,@43–45#. When
other aspects of material texture evolution such as texture spr
ing or texture sharpening have significant effects on the an
tropic plastic flow behavior of a sheet metal, constitutive ani
tropic hardening equations in addition to the flow rule of plas
spin may have to be added to characterize the evolution of tex
intensity.

5 Conclusions
A new flow rule of macroscopic plastic spin has been propo

for modeling the orientational evolution of the material textu
frame of a sheet metal subjected to off-axis uniaxial tensi
When a sheet metal has a pre-existing and persisting orthotr
symmetry, the anisotropic material function in the flow rule can
approximated by a truncated Fourier sine series of the load
orientation angle and its Fourier coefficients can be identified
ing the experimental data on the rotation of the material text
frame relative to the sheet metal itself. The flow rule of mac
scopic plastic spin is found to provide a consistent description
the experimental data on the orientational evolution of the ma
rial texture frame of three sheet metals reported in the literat
Such a flow rule of macroscopic plastic spin should be incor
rated into an anisotropic plasticity theory for finite plastic defo
mation applications when it can improve both the mathemat
formulation ~the compactness! and the descriptive quality of the
theory and when it can be unambiguously evaluated experim
tally based on an explicit mechanistic definition of the mater
texture frame. Additional theoretical and experimental investi
tions are needed to clarify the definition of macroscopic plas
spin and its evaluation for a monoclinic sheet metal.
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Appendix

On the Micromechanical Basis of the Proposed Anisotropic
Plastic Flow Theory. At ambient conditions, the plastic flow o
a single crystal is primarily due tocrystallographicslips on se-
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lected slip systems. The plastic rate of deformation tensorDp and
the plastic spin tensorWp of a single crystal can be represented
slip rates associated with slip modes,@49,50#:

Dp5sym~R* ḞpFp21
R* 21!5(

i 51

N*

ġ i* Pi ,

Wp5skew~R* ḞpFp21
R* 21!5(

i 51

N*

ġ i* Qi , (A1)

whereR* is the lattice rigid body rotation tensor,Fp is the plastic
deformation gradient tensor,ġ i* is the absolute value of the rate o
change of integrated shear strain for thei-th crystallographic slip
system, andN* is the total number of the activated crystall
graphic slip modes. Each slip mode is composed of a slip di
tion and a slip plane. The tensorsPi andQi for the ith slip mode
are defined by

Pi5symT i5
1

2
~si ^ mi1mi ^ si !,

Qi5skewT i5
1

2
~si ^ mi2mi ^ si !, (A2)

where the Schmid tensorT i is defined byT i5si ^ mi , and unit
vectorssi andmi are the slip direction and normal to the slip pla
associated with theith slip mode in the deformed configuration
respectively. Activation of the selected slip systems can be
scribed by a certain slip condition. The driving force to activa
the i-th slip system is the resolved shear stresst i* along the slip
direction on the crystallographic slip plane of the slip system
the current configuration, which can be obtained byt i* 5Pi :s,
wheres is the Cauchy stress tensor.

We assume the existence ofa rate-dependent slip potentialt*
~the effective resolved shear stress! for plastic deformation of
single crystal grains in a polycrystalline aggregate with a str
exponentb(.1)

t* ~t1* ,t2* , . . . ,tN*
* !5@a1* ut1* ub1a2* ut2* ub1 . . .

1aN*
* utN*

* ub#1/b5F(
i 51

N*

a i* ut i* ubG 1/b

,

(A3)

wheret i* are resolved shear stresses on the available slip sys
of the crystal anda i* are the weight coefficients related to th
relative strength of the slip systems. A work-conjugate effect
shear rateġ* and the slip surface can be defined as

t* ġ* 5t1* ġ1* 1t2* ġ2* 1 . . . 1tN*
* ġN*

* 5(
i 51

N*

t i* ġ i* , (A4)

t* ~t1* ,t2* , . . . ,tN*
* !2t0* ~j* ,ġ* !50, (A5)

wherej* is a scalar characterizing the overall isotropic harden
of the crystal andt0* (j* ,ġ* ) is the effective slip strength of the
crystal.The associated flow ruleresults the slip rate on the eac
slip system as

ġ i* 5l*
]t* ~t1* ,t2* , . . . ,tN*

* !

]t i*

5l* a i* S ut i* u
t* D b22 t i*

t*

5ġ* a i* S ut i* u
t* D b22 t i*

t*
5ġ* S ut i* u

t i0*
D b22

t i*

t i0*
, (A6)
Journal of Applied Mechanics
y

f

-
ec-

e
,
re-
te

in

ess

ems
e
ve

ng

h

where l* 5ġ* from the plastic work-equivalency requireme
~see Eq.~A4!!, a i* 5(t0* /t i0* )b21, andt i0* 5t i0* (gi* ,ġ* ) is the slip
strength on each slip system. Evolution laws of isotropic hard
ing of the single crystal withN* 11 scalar state variables ar
given as

j̇* 5 j̇* ~ ġ1* ,ġ2* , . . . ,ġN*
* !, ġi* 5ġi* ~ ġ1* ,ġ2* , . . . ,ġN*

* !.
(A7)

When one assumesb511m ~with m.0) and

t0* ~j* ,ġ* !5g* ~j* !S ġ*

ġ0*
D 1/m

and t i0* ~gi* ,ġ* !

5gi* S ġ*

ġ i0*
D 1/m

, so a i* 5S t0*

t i0*
D m

5S ġ i0*

ġ0*
D S g*

gi*
D m

,

(A8)

one can show that

ġ i* 5ġ* S ut i* u

t i0*
D m21

t i*

t i0*
5ġ i0* S ut i* u

gi*
D m21

t i*

gi*
. (A9)

This is exactly the rate-dependent slip rule that has been prop
by Hutchinson@51#, Asaro@49#, and Asaro and Needleman@52#. A
combined self-hardening and latent hardening model can
adapted here withj* 5gT*

ġ* 5h* ~gT* !ġT* , ġi* 5(
j 51

N*

hi j* ġ j* , (A10)

where the Taylor straingT* and the hardening moduli matrixhi j*
are defined by

ġT* 5(
i 51

N*

uġ i* u, hi j* 5qh* 1~12q!h* d i j , (A11)

whereq is a parameter characterizing the latent hardening. W
the latent hardening is equal to the self-hardening (q51), one has
the Taylor isotropic hardening model of single crystals w
hi j* (gT* )5h* (gT* ), a i* 51, j̇* 5ġT* , and gi* 5g* . On the other
hand, the current crystal plasticity model is a rate-dependent
tension of the rate-independent models proposed by Gambin@53#
and Darrieulat and Piot@54#. The stress exponentb has been iden-
tified by them respectively as either the interaction exponen
slip systems in a single crystal or the texture dispersion expon
in a polycrystal. This crystal plasticity model with an associat
rate-dependent slip potential is more flexible as in generalbÞ1
1m or mÞ` ~where m is a parameter in a simple power-la
rate-dependence model, see Eq.~A8!!.

Under uniaxial tension, the resolved shear stresses in term
the uniaxial tensile stresssu.0 and the slip system vectors~slip
direction and the slip plane normal in terms of the in-plane lo
ing orientation angleu! are given as

t i* 5si1* mi1* su5Li1* su5@si1
0* mi1

0* cos2 u1~si1
0* mi2

0*

1si2
0* mi1

0* !sinu cosu1si2
0* mi2

0* sin2 u#su , (A12)

where (si1
0* ,si2

0* ,si3
0* ) and (mi1

0* ,mi2
0* ,mi3

0* ) are the Cartesian
components of the slip system vectors defined in the mate
texture coordinate systemXYZ. The slip potential Eq.~A3! can be
expressed in terms of the uniaxial tensile stress and the in-p
loading orientation angle as
JULY 2004, Vol. 71 Õ 529
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@t* ~su ,u!#b5su
b(

i 51

N*

a i* uLi1* ub

5su
b(

i 51

N*

a i* usi1
0* mi1

0* cos2 u1~si1
0* mi2

0* 1si2
0* mi1

0* !

3sinu cosu1si2
0* mi2

0* sin2 uub

[su
bF1* ~u!. (A13)

The in-plane components of the plastic rate of deformation ten
Dp and the plastic spin tensorWp of a single crystal can be ob
tained using Eqs.~A1!, ~A2!, ~A6!, ~A12!, and~A13!

«̇15(
i 51

N*

si1* mi1* ġ i* 5ġ* S su

t0
D b21

(
i 51

N*

a i* uLi1* ub

[ġ* S su

t0
D b21

F1* ~u!, (A14a)

«̇25(
i 51

N*

si2* mi2* ġ i* 5ġ* S su

t0
D b21

(
i 51

N*

a i* uLi1* ub22Li1* Li2*

[ġ* S su

t0
D b21

F2* ~u!, (A14b)

«̇125(
i 51

N*
si1* mi2* 1si2* mi1*

2
ġ i* 5ġ* S su

t0
D b21

(
i 51

N*

a i* uLi1* ub22Li1* Vi1*

[ġ* S su

t0
D b21

F3* ~u!, (A14c)

v̇125(
i 51

N*
si1* mi2* 2si2* mi1*

2
ġ i* 5ġ* S su

t0
D b21

(
i 51

N*

a i* uLi1* ub22Li1* Vi2*

[ġ* S su

t0
D b21

F4* ~u!, (A14d)

where

Li1* 5si1* mi1* 5si1
0* mi1

0* cos2 u1~si1
0* mi2

0* 1si2
0* mi1

0* !sinu cosu

1si2
0* mi2

0* sin2 u,

Li2* 5si2* mi2* 5si1
0* mi1

0* sin2 u2~si1
0* mi2

0* 1si2
0* mi1

0* !sinu cosu

1si2
0* mi2

0* cos2 u,

Vi1* 5
si1* mi2* 1si2* mi1*

2
5

si2
0* mi2

0* 2si1
0* mi1

0*

2
sin 2u

1
si1

0* mi2
0* 1si2

0* mi1
0*

2
cos 2u,

Vi2* 5
si1* mi2* 2si2* mi1*

2
5

si1
0* mi2

0* 2si2
0* mi1

0*

2
, and

F3* ~u!5
1

2b

dF1* ~u!

du
~ the associated flow rule!.

The material anisotropic functionsF1* (u), F2* (u), andF4* (u)
of the single crystal under uniaxial tension are related only to
slip system vectorssi andmi , the slip system weight coefficien
a i* , and the stress exponentb. By using the Sachs assumption
the uniform stress field in each single crystal grain of a polycr
tal, the macroscopic flow potential and the associated flow ru
for plastic strain rates and the flow rule for plastic spin can
530 Õ Vol. 71, JULY 2004
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obtained approximately via simple volume averaging. The res
ing mathematical formulation of these constitutive equations
identical to the one presented in Section 2 ifa5b.

The plastic spin appeared in themicromechanicaltheory of
single crystal plasticity~see Eq.~A1! in general and Eq.~14d!
under uniaxial tension! is the natural consequence of the kinem
ics of crystallographic slips. When one does not directly meas
the crystal orientations using either X-ray or electron diffracti
techniques, one does not know explicitly the slip system vectorsi
andmi . One has to rely on the mechanical tests instead to ev
ate the material anisotropic functionsF1* (u), F2* (u), andF4* (u)
of the single crystal under uniaxial tension. In other words, t
results in amacroscopictheory of single crystal plasticity using
these material anisotropic functions for uniaxial tensile loadi
One can show that in general the material anisotropic func
F4* (u) cannot be deduced from the knowledge of other two
isotropic material anisotropic functionsF1* (u) and F2* (u) for
single crystals: that is, the knowledge of the orientational dep
dence of flow stress and plastic strain ratio under uniaxial tens
will not provide any prediction on the orientational dependence
plastic spin ratio at all. Indeed, this result directly contradicts o
of the commonly cited expressions for macroscopic plastic s
@26–28#:

Wp5h~sDp2Dps!, or v̇12

5hsu«̇12 ~under uniaxial tension!, (A15)

whereh is the plastic spin coefficient~which has been assumed t
be a constant in its application examples!. Kurroda@26# and Da-
falias @28# found that the plastic spin coefficient have to be
negative constant for modeling certain experimental data whil
is required to be non-negative according to Levitas@27#. One can
show that the relationv̇125hsu«̇12 ~uniaxial tension! does not
hold for single crystals in general according to the micromecha
cal crystal plasticity model presented above~numerical simula-
tions of single crystals have revealed that there exist cases
v̇12 is nonzero when«̇1250!) and the general validity of the
constitutive equation for macroscopic plastic spin Eq.~A15! is
thus questionable. A similar conclusion can also be reached a
another proposed simple expression for the macroscopic pla
spin, @28#, v̇125h«̇xy5h@( «̇12 «̇2)sinu cosu1«̇12 cos 2u# as it
holds only strictly for single slips for single crystals.
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Evaluation of Tension Field
Theory for Wrinkling Analysis
With Respect to the Post-Buckling
Study
A comparative study of two representative wrinkling theories, a bifurcation theory a
tension field theory, is carried out for quantitative evaluation of the tension field the
regarding wrinkling analysis. Results obtained from the bifurcation theory show the
tations of tension field theory on the wrinkling analysis. Existence of compressive str
caused by wrinkling phenomena, which is not accounted for tension field theory, is q
titatively presented. Considering strain energy due to these compressive stresse
geometrical boundary constraints, it is clarified that there are regions, in which
tension field theory is not properly applied.@DOI: 10.1115/1.1767171#
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Introduction
Large membrane structures are proposed for future space

sions,@1–3#, because they are lightweight and have excellent
capsulation characteristics. Solar sails, sunshields, and s
power arrays are representative of these future space struc
However, since a membrane has negligible bending stiffn
wrinkling occurs easily once the membrane is subjected to c
pressive stresses. These phenomena deteriorate the ope
abilities of membrane space structures. For that reason, m
studies on wrinkling phenomena for these structures have b
reported,@4–18#.

Currently, conventional studies on wrinkling phenomena u
tension field theory, in which it is assumed that the membrane
no bending stiffness and can carry no compressive stress. F
these assumptions, wrinkling of initially flat membranes a
treated as in-plane problems through the special definition
which one principal stress must be zero and the other nonze
wrinkled regions. Therefore, in tension field theory, only wrinkl
regions and directions of wrinkles are obtained, which are ind
tors of the overall behaviors of wrinkled membranes.

However, in actual situations, wrinkling phenomena are due
bifurcation and are intensely affected by small bending stiffne
For that reason, if wrinkling phenomena are to be investigate
detail, a geometrically nonlinear analysis based on the bifurca
theory must be carried out. In bifurcation theory, detailed wr
kling behaviors, whose indices are number and amplitude
wrinkles, can be clarified, while in tension field theory this kind
quantitative evaluation cannot be obtained. This is because
effects of structural scale~ratio of length to thickness! on wrin-
kling phenomena cannot be treated in tension field theory. Th
fore, clarifying limitations for the use of tension field theory fo
wrinkling analysis becomes important in order to accurately
derstand the meaning of conventional solutions calculated u
the tension field theory.

In this research, a comparative study on wrinkling analysis
ing bifurcation theory and tension field theory is carried out. T

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, May 1, 200
final revision, Jan. 30, 2004. Associate Editor: Z. Suo. Discussion on the p
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Unive
of California-Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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wrinkling of a stretched circular membrane with a center rotat
hub is investigated. The effect of the structural scale~ratio of
length to thickness! on the wrinkled membrane and the limitation
for use of the tension field theory in wrinkling analysis are inve
tigated with respect to the post-buckling study. The regions
which tension field theory is not applicable are discussed con
ering the actual stress state of the wrinkled membrane.

Numerical Approach

Analytical Model. Figure 1 shows an analytical model use
in this paper. Wrinkling phenomena, which appear after rotatin
center hub attached to the stretched circular membrane with s
torque force, are investigated. In this analysis the torque on
rotation hub is applied after the circular membrane is stretched
an initial uniform tensile stress. This analytical modeling proc
dure is typical of other wrinkling studies,@11–18#. In this paper,
the ratio of the radius of the circular membrane to that of the h
is set to constant (b/a56), although the deformation modes o
the wrinkled membranes are affected by this ratio,@19,20#. We
wanted to investigate the effects of the structural scale~length of
radial cross section/membrane thickness! on the wrinkled mem-
branes focusing on the membrane thickness. They are the sam
the different values ofb/a. It is assumed that the membrane
made from a polyester film, and is linearly elastic. Table 1 lists
numerical parameters used in the analysis.

Tension Field Theory. The tension field theory treated in thi
paper is based on Stein-Hedgepeth theory@11#, in which the sur-
face of a wrinkled membrane is divided into three states indica
by

s1.0, s2.0¯taut region (1)

s1.0, s2<0¯wrinkle region (2)

s1<0, s2<0¯slack region (3)

wheres1 ands2 are the principal stresses. From these equatio
the following equation is always satisfied in the wrinkled region

sx•sy5txy
2 (4)

On the other hand, the equilibrium equations in taut regions
the same as those on treated in conventional plane stress
lems. Therefore, the solutions based on tension field theory
given by solving two equations, which are Eq.~4! in the wrinkled
regions and the conventional equilibrium equation in taut regio
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At the same time, an appropriate material parameter, whic
Young’s modulus or Poisson’s ratio, is defined to be variable
the wrinkled regions.

For analysis based on Stein-Hedgepeth theory, a variable P
son’s ratio is used in wrinkled regions, and partial wrinkles on
stretched circular membrane are investigated,@11#. The validity of
this wrinkling theory is confirmed by Mikulas’ experimenta
study,@12#. As a result, analytical solutions based on tension fi
theory presented in this paper are referred to ‘‘Mikulas’ solutio

Geometrically Nonlinear Analysis
To investigate wrinkling behavior in detail, a geometrica

nonlinear analysis for studying on post-buckling phenomena
carried out. Figure 2 shows a finite element mesh model treate
this analysis. This mesh model has equivalent radial and circ
ferential divisions. In order to include the effect of small bendi
stiffness in membranes, MITC~mixed interpolation tensorial com
ponents! shell elements,@21–25#, are used. This element has
proven predictive capability for numerical results related to d

Fig. 1 Analytical model

Table 1 Numerical parameters

Material Unit Polyester Film

Young’s modulus @MPa# 5723
Radius of a membrane @mm# 300
Radius of a hub @mm# 50
Membrane thickness @mm# 75, 100, 175, 300, 500, 1000, 250

Fig. 2 Finite element mesh
Journal of Applied Mechanics
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tortion of shell elements associated with finite deformation in n
linear analysis. We consider that this element is most efficient
wrinkling analysis when displacements become very large co
pared to the thickness.

The geometrically nonlinear analysis in this study is perform
using the freely available finite element analysis program FEAP
~finite element analysis program personal version!, @26#. However,
since FEAPpv does not include MITC shell elements, the auth
have incorporated MITC shell elements into FEAPpv through
user-defined element function of the program. In the formulat
of this element, in order to improve the accuracy of numeri
results, a finite rotation increment of directors is considered in
calculation of tangent stiffness matrices,@27#.

In the case of a geometrically nonlinear analysis using s
elements for the post-buckling study in wrinkling phenomena,
merical results are intensely affected by mesh aspect ratio,
ratio of numerical analysis, and shape functions of the shell
ment. Therefore, we have investigated these effects on wrink
analysis focusing on the deformation modes of a wrinkled me
brane,@16#. From the study, it turned out that the deformatio
modes converged if a radial mesh aspect ratio~radial mesh width/
membrane thickness!,50, the circumferential mesh aspect rat
~circumferential mesh width/membrane thickness!,20, and the
step ratio of a numerical analysis~tangential increment displace
ment of the center rotation hub/circumferential mesh wid!
,0.001 were satisfied. And the effect of the shape function
shell elements, which are those of 4-nodes and 9-nodes M
shell elements, on wrinkling analysis is inconsequential. In t
paper, all results are given through numerical calculations, wh
use the appropriate mesh aspect ratio and a step ratio.

For the post-buckling study regarding wrinkling phenomen
initial imperfections with normal random numbers in the out-o
plane direction are installed at all nodal points on the circu
membrane, with magnitude ranging from 0.1 to 0.01 of the me
brane thickness. Using these initial imperfections we did the p
buckling analysis without doing any complicated perfect bifurc
tion analysis. Since wrinkling phenomena are affected by
initial imperfections, the effects of the initial imperfections o
wrinkling behavior have been investigated by the authors,@16#.
From the investigation, it is confirmed that the effects of init
imperfections with normal random number on wrinkling behav
do not appear when these magnitude are within 0.1 of the m
brane thickness.

The initial uniform tensile stress is provided by a given rad
displacement, which is applied at all nodal points on the ou
circumference of the circular membrane. A given tangential d
placement is applied at all nodal points on the inner circumf
ence. Table 2 shows the initial uniform tensile stress and the
tation angle of the hub. Values in parentheses indicate
displacements used in this analysis. These are the same v
used in previous studies,@14–18#. And also linear stress-strain
relations are considered, since the rotation angle used in the a
sis is assumed to be small.

Results and Discussion

Effect of Structural Scale on Wrinkling Phenomena. Fig-
ures 3 and 4 show bird-eye views of wrinkled membranes ma
fied by ten times in the out-of-plane direction. These figures sh
the effects of structural scale~length of radial cross section
membrane thickness! on the deformation modes of wrinkle
membranes. Figure 5 shows dependency of the numbe
wrinkles on the structural scale. From this figure, the number
winkles gradually increases as the structural scale becomes l

Table 2 Initial uniform tensile stress and rotation angle

Initial uniform tensile stress 2.938 Mpa~0.108 mm!
Rotating angle 1.145 deg~1.0 mm!
JULY 2004, Vol. 71 Õ 533



s

c

o

m

ne
cause
rane
the
the

the

r in
g
io

dial
ent

dis-

ure
and

ap-
es 8
the
m
of

out
en
l lo-
. It
e.
d

ess
s at
ile
es as
re-
This tendency occurs because the bending stiffness becomes
with increasing structural scale. In the membrane with initial te
sile stresses, the deformation mode is intensely affected by
bending stiffness, although this tendency do not appear in the
of a plate problem, which does not include the effects of init
tensile stresses,@19,20#.

Figure 6 shows nondimensional loading curves up to the r

Fig. 3 Bird-eye view of a wrinkled membrane „structural scale:
500…

Fig. 4 Bird-eye view of a wrinkled membrane „structural scale:
2500…

Fig. 5 Number of wrinkles
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tion angle of 1.145 deg. In this figure, the solution obtained fro
tension field theory~Mikulas’ solution! is also presented. From
these results, it is seen that torsional rigidity of the membra
decreases as the structural scale increases. This occurs be
these results are nondimensionalized with respect to memb
thickness, but not with respect to bending stiffness. When
structural scale becomes large, bifurcation points approach
solution obtained from tension field theory. On the other hand,
gradient of the curves~torsional rigidity! do not coincide with
those of tension field theory. The reason for this is clarified late
the subsection titled ‘‘Note on the Actual Mechanism of Wrinklin
Behavior.’’ Distribution of the out-of-plane displacement rat
~out-of-plane displacement/membrane thickness! is shown in Fig.
7. In this figure, the abscissa indicates the dimensionless ra
location, and the ordinate indicates the out-of-plane displacem
ratio, which is the average value of the absolute out-of-plane
placement~average amplitude of wrinkles! at the same circumfer-
ential locations divided by the membrane thickness. This fig
shows that the out-of-plane displacement ratio becomes large
the location having maximum out-of-plane displacement
proaches the center hub with increasing structural scale. Figur
and 9 indicate these behaviors, quantitatively. Figure 8 shows
maximum amplitude ratio of wrinkles. In this research, maximu
amplitude ratio of wrinkles is defined as the maximum value
the displacements shown in Fig. 7. From Fig. 8, it also turns
that the maximum amplitude ratio of wrinkles is increased wh
the structural scale becomes large. Figure 9 shows the radia
cation at which maximum out-of-plane displacement occurs
approaches the rotation hub as structural scale becomes larg

The distribution of minor principal stress ratios in the wrinkle
membrane is shown in Fig. 10. Here, the minor principal str
ratio indicates the average value of the minor principal stres
the same circumferential locations divided by the initial tens
stress. This figure shows that the compressive stress decreas
structural scale becomes large. Figure 11 shows the wrinkled

Fig. 6 Nondimensional M – f curves

Fig. 7 Out-of-plane displacement ratio of wrinkles
Transactions of the ASME
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gion of the membrane, which is indicated by locations in t
radial direction having compressive stresses to the radius of m
brane. In this study, we assume the wrinkled region to be that w
negative minor principal stresses. In tension field theory, this r
is a constant value because it does not depend on membrane
ness. As can be seen from this figure, numerical results from
geometrically nonlinear analysis are comparable to solutions
tained based on tension field theory, when the structural s
becomes large, or when the converged wrinkled region r
reaches the constant value of 0.58.

In the wrinkled region shown in Fig. 10 (r /b,0.58), there are
two wrinkled regions, one with large compressive stress and
other with small compressive stress. We can assume that th
cation and stress, which divide these two regions, are 0.33
20.5 MPa, respectively, when the structural scale is larger t
500. Under these values, minor principal stress ratio begin
decrease very much.

Fig. 8 Maximum amplitude ratio of wrinkles

Fig. 9 Location of maximum amplitude of wrinkles

Fig. 10 Minor principal stress
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Existence of Wrinkles in Wrinkled Membrane With No
Compressive Stress

Although the location of the wrinkled region calculated bas
on tension field theory is 0.58, Fig. 7 shows that wrinkles a
form outside of this region from 0.58 to 1.0 as shown in t
abscissa of Fig. 7. This is especially true when the structural s
is 3333, and the out-of-plane displacement for 0.58,r /b,1.0 is
about three times larger than the membrane thickness. This
plies that the geometrical nonlinearities in the membrane dis
tion appear in the unwrinkled region, although linearity is a
sumed for this region in tension field theory. For example, Fig.
shows the wave of wrinkles along the circumferential cross s
tion r /b50.83. Clearly, the wave of wrinkles exists in the su
posed unwrinkled region assumed in tension field theory. Th
waves of wrinkles occur in compliance with the wrinkling ph
nomena in the wrinkled regions, which are related to bifurcat
phenomena. Tension field theory cannot predict these wrink
behavior, because it treats wrinkling phenomena only as probl
of in-plane states of stress.

Applicability of Tension Field Theory
Figure 13 shows dependency of a nondimensionalized mom

within the wrinkled membrane on the structural scale. The val
for this nondimensionalized moment in this figure correspond
those at the final state~f51.145 deg, Table 2! shown in Fig. 6.
The solution based on tension field theory is also presented in
figure. These numerical results of the geometrically nonlin
analysis are gradually decreased simultaneously with an incr
in structural scale. When the structural scale is larger than 15
they converge to a constant value different from the solution
tained based on tension field theory. This tendency is also sh
in comparisons of the angle of wrinkles~Figs. 14 and 15! and of
the strain energy ratio within the wrinkled membrane~Fig. 16!.
The strain energy ratio is obtained by the following equation:

Fig. 11 Wrinkled region, 0 ËrËr w

Fig. 12 Wave of wrinkles at the radial location of r ÕbÄ0.83
JULY 2004, Vol. 71 Õ 535



t

t

late
truc-
the
ion
ral
ral
tiff-

mp-
eld

tudy
eld
the
lly

rin-
of

etri-
re-
in
are

in

ue
ed
gs.
w-
dU85
dU

Ui
5

U f2Ui

Ui
(5)

where
Ui : strain energy stored in the stretched membrane before

torque force is applied
U f : strain energy stored in the wrinkled membrane after

torque force is applied
andUi , f is given by

U5
1

2 E 1

E
~sx

21sy
222ysxsy!1

1

G
~txy

2 1txz
2 1tyz

2 !t•2prdr .

(6)

Here, Eq.~6! omits the notation ofi and f, which indicate initial
and final state of the circular membrane. Figure 16 shows
strain energy in the wrinkled membrane gradually increases w
the structural scale is smaller than 1500 due to effects of

Fig. 13 Comparison of nondimensional moment

Fig. 14 Angle of wrinkles „radial location: 0.4 …

Fig. 15 Angle of wrinkles „radial location: 0.8 …
536 Õ Vol. 71, JULY 2004
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relative bending stiffness in the membrane. In general, in p
theory membranes are treated as structural materials if their s
tural scale is larger than 100. However, when we consider
wrinkling phenomena of a membrane using conventional tens
field theory, it is better to deal with a membrane as a structu
material with structural scale larger than 1000. If the structu
scale is smaller than 1000, the effect of the relative bending s
ness on the strain energy increases and cannot be ignored.

Existence of Compressive Stresses Within Wrinkled Re-
gion

As can be seen in Figs. 13–16, not all numerical results asy
totically approach to the solution obtained based on tension fi
theory, and differences between the numerical results of this s
on post-buckling phenomena and the solution from tension fi
theory are clearly shown. These differences remain even if
structural scale becomes large, and imply limitations potentia
included in solutions based on tension field theory for actual w
kling phenomena. Since the wrinkling phenomena are kinds
out-of-plane problems, it should be considered that the geom
cally nonlinear analysis simulates the wrinkling phenomena p
cisely. From the viewpoint of the total strain energy ratio stored
the wrinkled membrane, differences between two solutions
investigated.

Figures 17 and 18 show the strain energy ratio stored only
the wrinkled region (0.166,r /b,0.58) and the unwrinkled re-
gion (0.58,r /b,1.0) of the membrane, respectively. The val
of 0.58 indicates the boundary of the wrinkled region obtain
from tension field theory. The summation of results shown in Fi
17 and 18 gives the result shown in Fig. 16. Therefore, a follo
ing equation is given:

dU85dUw8 1dUwn8 (7)

Fig. 16 Comparison of strain energy ratio

Fig. 17 Strain energy ratio in wrinkled region
Transactions of the ASME
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From these figures, it is clear that the difference between the
representative wrinkling theories appears in the wrinkled reg
but does not appear in the unwrinkled region when the struct
scale becomes large. Therefore these results imply that the d
ence of these theories shown in Fig. 16 occurs in the wrink
region (0.166,r /b,0.58).

In the post-buckling study, as can be seen from Fig. 10, th
are two wrinkled regions in the wrinkled membrane, One w
large compressive stress and another with small compres
stress, as stated before. Therefore, the effect of these compre
stresses on the differences of two wrinkling theories is inve
gated. The strain energy ratiodUwl8 (us2u: Large! in Fig. 19 cor-
responds to that in the part of the wrinkled region whose mi
principal stresses correspond to large compressive stre
~wrinkled region with large compressive stresses,us2u
.0.5 MPa). The strain energy ratiodUws8 (us2u: Small! in Fig. 20
corresponds to that in another part of the wrinkled region wh
minor principal stresses correspond to small compressive stre
~wrinkled region with small compressive stresses,us2u
,0.5 MPa). Therefore, the summation of the strain energy rati
Figs. 19 and 20 is equal todUw8 in Fig. 17. Therefore, the follow-
ing equation is given:

dUw8 5dUwl8 1dUws8 . (8)

From the comparison regarding to the strain energy in the
wrinkled regions~Figs. 19 and 20!, it turns out that the difference
of these theories appear in the wrinkled region with large co
pressive stresses (us2u.0.5 MPa), while in the region with smal
compressive stress the solutions based on tension field theor
in good agreement with the results of this study on post-buck
phenomena. From these results, we conclude that the differen
these theories is caused by the existence of the large compre
stress in the wrinkled region. And it turns out that the analyti

Fig. 18 Strain energy ratio in unwrinkled region

Fig. 19 Strain energy in wrinkled region with large compres-
sive stress
Journal of Applied Mechanics
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method of tension field theory, in which the material paramete
adjusted in the wrinkled region, simulates the nonlinear charac
istics of the wrinkles adequately in the wrinkled regions w
small compressive stresses (us2u,0.5 MPa).

The difference, which appears in the wrinkled region, depe
on the tension field theory definition for the membrane as a st
tural material, which can carry no compressive stress. Howeve
actual situations, as can be seen in Fig. 10, the membrane
carry some compressive stress, which becomes larger than
minimum buckling stress of the membrane. The threshold va
stated above should correspond to the minimum buckling str
These phenomena occur because the wave of wrinkles is
strained by our given geometrical condition. Figure 21 shows
wave of wrinkles along the line of the minor principal stresses
the circular membrane. Points A, B, C, and D indicate the bou
ary of the hub, location having maximum out-of-plane displac
ment, boundary of the wrinkled region and outer circumference
the circular membrane, respectively. If tension field theory can
true, it is considered that inextensional theory is applied along
line of the minor principal stresses in wrinkled regions. In the ca
of the circular membrane, the compressive strain, which co
sponds to the wrinkling strain in tension field theory, becom
large toward the center hub, because the moment along the r
direction is a constant. At that time, out-of-plane displaceme
increase toward the center hub, and it becomes maximum at P
A, if inextensional theory is applied. However, as can be se
from Fig. 22, which is the same figure shown in Fig. 21, t
amplitude of the out-of-plane displacement in the region from A
B gradually decreases toward the hub. This means wave
wrinkles within the regions from A to B has some geometric
constraints by the hub, and is not in agreement with wave
wrinkles obtained from the conditions of inextentional theory.

Fig. 20 Strain energy in wrinkled region with small compres-
sive stress

Fig. 21 Wave of wrinkles
JULY 2004, Vol. 71 Õ 537
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In general, it is considered that the membrane releases com
sive stresses by forming wrinkles. However, in the case of
stretched circular membrane, the wave of wrinkles around
center rotation hub is constrained by the existence of the
itself. For that reason, the wave of wrinkles, which is initial
necessary to release compressive stresses in the wrinkled re
cannot occur, and the membrane must carry some compre
stresses. For the deformation mode subjected to the geome
constraint, these compressive stresses become larger tha
minimum buckling stress of the membrane, which is because
deformation mode with respect to the minimum buckling stres
not equal to the actual one. Considering this, it turns out that
membrane is a structural material that can carry compres
stresses larger than the minimum buckling stress. The region
ing larger compressive stresses than some threshold value, a
plained before, nearly represents the region subjected to the
metrical constraint. In addition, Figs. 7, 10, and 22 show that
region having compressive stress is roughly equal to the re
between the boundary of the hub and the radial location hav
the maximum out-of-plane displacement. These three regions
fined above coincide with one another almost perfectly.

Figure 23 shows that the radial location having the maxim
out-of-plane displacement changes when the structural scale
comes large. In this figure, the change of the wrinkled region
the boundary of the hub are also presented. Also, this figure sh
that the change of the radial location having the maximum out
plane displacement roughly indicates the same tendency c
pared with that of the strain energy ratio shown in Fig. 19. Sin
the strain energy ratio shown in Fig. 19 is calculated in the reg
having some compressive stresses, it is also confirmed tha
three regions stated before coincide with one another with res
to strain energy.

In general, tension field theory treats the ideal membra
which has no bending stiffness and can carry no compres
stress. In the situation, it is considered that the amplitude
wrinkles is nearly zero and the number of wrinkles is infini
@28#. Therefore, for detailed quantitative evaluation of the diffe
ences between the two representative theories, the discrepan
strain energy ratio for the case where the structural scale is infi
must be explained. From this viewpoint, it must be clarifi
whether the wrinkles exist when the structural scale becomes
finite. From the previous considerations, if the wave of wrink

Fig. 22 Geometrical constraint

Fig. 23 Location of maximum amplitude of wrinkles and
wrinkled region
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does not converge to a flat plane state, some geometrical
straint caused by the hub exists in the wrinkled region, and
membrane absolutely has some compressive stresses. In th
lowing section, using inextensional theory stated above, it is
vestigated whether the wave of wrinkles can exist or not when
structural scale becomes infinite.

Note on the Actual Mechanism of Wrinkling Behavior
Figure 24 shows the mechanism of wrinkling behavior based

inextensional theory. This figure corresponds to Fig. 21. The
fore, it is assumed that inextensional theory describes the beha
of wrinkles along the line of minor principal stresses in t
wrinkled region. In this subsection, focusing on whether wrink
exist or not when the structural scale becomes infinite, a sim
wave shape, sine wave, is considered for wrinkles. Then, a sh
function of the cross section of wrinkles~from A to C in Fig. 24!
is expressed by

w~x!5dn sin
np

l w
x (9)

where,dn , n, andl w indicate the amplitude, number, and length
wrinkles, respectively. From inextensional theory, the followi
equation is given:

l 5E
0

l wA11S ]w

]x D 2

dx. (10)

Substitution of Eq.~9! into Eq. ~10! yields

l 5E
0

l wA11S dn

np

l w
cos

np

l w
xD 2

dx. (11)

Using the following nondimensional parameter

X5
x

l w
, dn85

dn

l w
(12)

and defininga as

l w5a• l , (13)

we can get the following equation:

l 5a l wE
0

1

A11~npdn8!2 cos2~npX!dX. (14)

Now, we assume the following relations

~npdn8!2 cos2~npX!!1 (15)

Then Eq.~14! becomes

Fig. 24 Mechanism of wrinkling behavior
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l 5a l wE
0

1F11
1

2
~npdn8!2 cos2~npX!GdX

5a l wF11
1

4
~npdn8!2G . (16)

Here, Eq.~15! indicates the following relation:

0.8,a,1. (17)

From Eq.~16!, the nondimensional amplitude of wrinkles is e
pressed by

dn85
2

np
A12a

a
(18)

and the amplitude of wrinkles is given by

dn5
2l

np
Aa~12a!. (19)

From this equation, the shape function of wrinkles is finally o
tained by

w~x!5dn sin
np

l w
x5

2l

np
Aa~12a! sin

np

l w
x (20)

and this gradient is expressed by

]w~x!

]x
5dn

np

l w
cos

np

l w
x

5
2l

l w
Aa~12a! cos

np

l w
x

52A~12a!

a
cos

np

l w
x

5 d̄n cos
np

l w
x (21)

where

d̄n52A~12a!

a
¯ gradient factor. (22)

As can be seen from Eqs.~19! and ~20!, if the structural scale
becomes large~the relative bending stiffness is decreased!, the
amplitude of the wrinkles approaches zero because the numb
wrinkles becomes infinite. However, Eq.~22! shows that the gra-
dient factor is constant, even if the structural scale becomes
nite. This implies that the gradient factor of wrinkles does n
depend on the number of wrinkles, and remains non-zero exce
a51. Whena51, no wrinkling behavior will occur. Therefore
the wave of wrinkles also exists absolutely when the structu
scale becomes infinite, because the gradient factor of wrin
does not depend on the number of wrinkles~which is affected by
the structural scale!. The existence of the wave of wrinkles im
plies the existence of the region having the geometrical constr
shown in Fig. 22. This also represents the existence of the re
having some compressive stress, which is larger than the m
mum buckling stress of the membrane. For these results,
wrinkled regions, in which tension field theory is not applie
exist absolutely in the membrane even if the structural scale
comes infinite. This implies that the rigidity of the wrinkled mem
brane calculated based on tension field theory does not app
mate the exact solution ast→0.

Furthermore, in the case of the circular membrane, the c
pressive strain within the wrinkled regions, which corresponds
the wrinkling strain in tension field theory, becomes large wh
the rotation angle of the hub increases. As stated before, if in
tentional theory is applied, out-of plane displacements around
rotation hub become large with increasing compressive str
Journal of Applied Mechanics
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However, since the region around the hub has a geometrical
straint, effects of the constraint become large with increasing
tation angle of the hub. This implies that as the wrinkling ph
nomena progress, the behavior increasingly differs from
solutions of tension field theory. This implication appears in t
difference of the values for torsional rigidity after bifurcatio
shown in Fig. 6, in which the torsional rigidity based on o
post-buckling study is apparently larger than that of tension fi
theory. This is confirmed by the results shown in Fig. 13, in wh
the difference of the nondimensional moment at the final sta
exists when the structural scale becomes large.

Conclusions
A comparative study of two representative theories, bifurcat

theory and tension field theory is carried out quantitatively. T
effect of the structural scale on the wrinkling behavior of
stretched circular membrane with the center rotation hub is inv
tigated, and the limitation of conventional tension field theory
quantitatively clarified. The detailed conclusions obtained in t
study are summarized below.

1. Effect of the structural scale on the wrinkling behavior
The number and amplitude ratio of wrinkles gradually i

creases, and the radial location having the maximum amplitud
wrinkles approaches the edge of the rotation hub when the st
tural scale becomes large.

2. Existence of wrinkles in the wrinkled membrane with n
compressive stress

It turns out that the wrinkles do exist in the supposed u
wrinkled region provided by the tension field theory. These wr
kling phenomena are linked to the wrinkling phenomena
wrinkled regions, which are related to the bifurcation. The tens
field theory cannot predict this wrinkling behavior, since it trea
wrinkling phenomena only as problems of in-plane states
stress.

3. Applicability of tension field theory
We conclude that it is better to deal with the membrane a

structural material with a structural scale larger than 1000, w
tension field theory is applied to wrinkling analysis, although it
considered in plate theory that the membrane is treated as a s
tural material with a structural scale larger than 100. If the str
tural scale is smaller than 1000, the effect of relative bend
stiffness on the strain energy stored in the wrinkled membr
increases and cannot be ignored.

4. Existence of compressive stresses within the wrinkled reg
There are wrinkled regions having larger compressive str

than a given threshold value with respect to strain energy store
the wrinkled membrane. These regions represent the trans
between the boundary of the hub and the radial location hav
the maximum amplitude of wrinkles. Conventionally, tension fie
theory is not properly applied to these regions. The wrinkled
gions having some compressive stresses appear because the
of wrinkles is constrained by the geometrical condition.

5. Note on the actual mechanism of wrinkling behavior
It is clarified using inextensional theory that there are t

wrinkled regions, in which tension field theory is not proper
applied, even as the structural scale becomes infinite. Actual
sional rigidity of a wrinkled membrane does not coincide with t
solution of tension field theory, and the difference of the solutio
based on two wrinkling theories, bifurcation theory and tens
field theory, becomes large when wrinkling progresses.
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Nomenclature

a 5 radius of hub
b 5 radius of circular membrane
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E 5 Young’s modulus
G 5 shear modulus
l 5 length of cross section of wrinkles

l w 5 length of wrinkles
M 5 moment
n 5 number of wrinkles
R 5 radial cross-section length of circular membrane

(b–a)
r 5 radial location
T 5 initial uniform tensile stress
t 5 membrane thickness

w 5 out-of-plane displacement
R/t 5 structural scale

a 5 factor of wrinkles~Eq. ~10!!
dn 5 amplitude of wrinkles
dn8 5 nondimensional amplitude of wrinkles~Eq. ~9!!

d̄n 5 gradient factor~Eq. ~19!!
w 5 rotation angle of hub
u 5 circumferential location

sx 5 stress inX component
sy 5 stress inY component
s1 5 major principal stress
s2 5 minor principal stress
txy 5 shear stress

n 5 Poisson’s ratio
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On Some Peculiar Aspects of
Axial Motions of Closed Loops of
String in the Presence of a
Singular Supply of Momentum
We consider the dynamics of a closed loop of inextensible string which is undergoin
axial motion. At each instant, one material point of the string is in contact with a sing
supply of linear momentum (also known as an external constraint). Several pec
features of this problem which have not been previously discussed are presented.
include the possible presence of an arbitrary number of kinks, the vanishing nature o
singular supply of momentum, and the critical nature of the tension in the string. W
the linear momentum is supplied by a mass-spring-dashpot system, we are also a
establish an exact expression for the frequency of the resulting vibrations, prove
dissipation cannot be present, show that these vibrations only occur for discrete spe
axial motion, and establish that Coulomb friction is absent.@DOI: 10.1115/1.1756139#
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1 Introduction

The subject of axially moving media has attracted considera
attention. Earlier works on this subject considered the linear
bration about a steady axial motion of a segment of string wh
no body forces or surface tractions were present. A recent tren
this research area has been to examine the influence of dis
mechanical systems which contact the moving string at a sin
point. The present paper contributes to this topic by examining
effects of a point source~or singular supply! of linear momentum,
denoted byF, on the linear vibrations of a closed loop of axial
moving string. We point out several interesting degeneracie
this problem and the consequences that they have on the dyna
of the string. Among our observations are the possible presenc
an arbitrary number of kinks, the vanishing nature ofF, and the
critical nature of the tensionn0 in the string. When the linea
momentum is supplied by a mass-spring-dashpot system, we
tablish, among other results, an exact expression for the disc
frequency of the resulting vibrations.

Our work is a contribution to understanding the dynamics o
system described in a 1984 paper by Schajer@1#. He considered
the effects of a contact~or external constraint! at a single point of
a closed circular loop of inextensible string~see Fig. 1!. This
system, albeit idealized, was regarded as a prototype syste
improve understanding of the more difficult problems associa
with vibrations induced by contact in spinning flexible disks. Su
sequent papers by Perkins and Mote@2# and Hutton and his co-
workers,@3–6# generalized Schajer’s work. Other authors, such
Chen@7# and Cheng and Perkins@8#, considered the related prob
lem where the steady motion of the string described a straight
~the so-called moving threadline problem! and one point of the
string was in contact with a mass-spring-dashpot system.

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, May 12, 200
final revision, October 23, 2003. Editor: R. M. McMeeking. Discussion on the pa
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Unive
of California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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In Refs.@1–6#, the equations of motion of the string are linea
ized about a steady axial motion. During this motion, the str
forms a closed circular loop of radiusR. The tension in the string
during the steady motion is assumed to be a constantn0 , as is the
axial speedV5RV. One of the assumptions employed in th
vibration analyses in@1–6# is thatn0 is independent ofV ~or V!.
In this paper, we use a classical result~see, e.g., Lamb@9#! to
show that if there are no surface tractions or body forces on
string, then this is not the case. Indeed, we show thatn0 is always
equal to its critical valuer0V2. This result has several interestin
consequences when the string is in contact with a mass-sp
dashpot system. However, only in Yang and Hutton@4# has this
critical case been analyzed. In this paper, we supplement t
results by showing that vibrations of the string which were d
missed in@4# are indeed possible. In fact, the frequency of the
vibrations is the natural frequencyAk/m of the mass-spring sys
tem. In the closing section of the paper we show how an exte
force can be introduced to achieve the steady motions discuss
@1–6#.

We note that for the moving threadline problem, discussed
e.g., @7,10,11#, n0 can be varied independently ofr0V2 and the
degeneracies we report here don’t apply for this problem. Si
larly, for the axially moving string in a gravitational field dis
cussed by O’Reilly@12#, n0Þr0V2. Finally, n05r0V2 for a
steady motion of a circular loop of string in the absence of bo
forces and singular supplies of momentum, and Healey@13# has
proven that this motion is nonlinearly stable.

An outline of this paper is as follows: We first formulate th
problem of a closed loop of inextensible string that is in moti
with one point in contact with a supply of linear momentum. Th
supply exerts a forceF on the string at the material pointj5g.
The presence of the supply serves to model the effect of a m
spring-dashpot in contact with the string. It also introduces sev
algebraic jump conditions into the equations of motion. We th
turn to solving for the steady motion of the string, and first sh
that n05r0V2 even in the presence of the source of linear m
mentum. This result implies that during a steady motionF50 and
moreover that the string can have an arbitrary finite number
points where the tangent vectoret is not continuous~i.e., the
closed loop of steadily moving string can have an arbitrary fin
number of kinks!. We then discuss the equations governing t
small amplitude linear vibrations of the string about the stea
motion. Becausen05r0V2, these equations also exhibit sever
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degeneracies. Among the degeneracies we find are the exis
of vibrations at a fixed frequency which only occur for certa
discrete speedsV. The closing section of the paper gives a phy
cal interpretation of the necessary conditions we found for th
vibrations. There, we also explicitly calculate the external fo
field needed to achieve the steady motions discussed in@1–6#.

2 The Governing Equations
For an inextensible string, we denote the position vector of e

material point by the vectorr . This vector can be described as
function of an arc length parameterj in an undeformed configu
ration and the timet. The arc length parameter of the string in i
present configuration is denoted bys, and the~uniform! mass
density of the string is denoted byr0 .

The contact forcen in the string has the representationn5net
whereet5]r /]s is the unit tangent vector to the string, andn is
the tension in the string. We assume that at the points5sg , which
corresponds to the material pointj5g(t), the string experiences
singular supply of linear momentumF ~see Fig. 2!. This force
represents the force exerted on the string by the mass-sp
dashpot systems discussed in@1–6#. It is assumed that no othe
body forces or surface tractions act on the string.

The nontrivial equations governing the motion of the string
the inextensibility constraint and compatibility conditions,

]r

]j
•

]r

]j
51, vr b50, F F ṙ1ġ

]r

]jG G50, (1)

Fig. 1 Schematic of a closed loop of inextensible string which
is in contact with a mass-spring-dashpot system. The contact
of the system and the string occurs at the material point j
Äg„t … of the string. The system shown in this figure is similar
to those discussed in †1–6‡.

Fig. 2 Schematic of a closed loop of inextensible string which
experiences a singular supply of momentum F at the point jÄg.
The system shown in this figure can be considered a generali-
zation of that shown in Fig. 1.
542 Õ Vol. 71, JULY 2004
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and the local balance law and jump condition for line
momentum,2

]n

]s
5r0r̈ , vnb1vr0ṙ bġ1F50. (2)

In these equations, the superposed dot denotes the material
derivative andv fb5f(g1,t)2f(g2,t) denotes the jump inf(j,t)
across the material pointj5g(t).

3 The Steady Motion
The steady motion of the string of interest is an axial moti

where the string moves at a constant speedV along its length and
describes a fixed curver5r0 in space:

ġ5ġ0 , ṙ5V
]r0

]s
5Vet0 , r̈5V2

]et0

]s
,

(3)
n5n0et0 , F5F0 ,

andet05]r0/]s is the unit tangent vector to the string. Here, a
henceforth, the subscript 0 denotes quantities associated with
steady motion.

From the compatibility condition Eq.~1!,3 we find that

ġ052V. (4)

Substituting Eq.~3! and ġ52V into Eq. ~2!, we find that

]

]s
~~n02r0V2!et0!50,

(5)
@@~n02r0V2!et0##1F050.

The other two equations, Eqs.~1!,1,2 are trivially satisfied.
Equation ~5! provide six equations to solve for the six un

knownsn0 , et0 andF5F0 . First, becauseet0 changes along the
length of the closed loop of string, Eq.~5! implies that

n05r0V2, (6)

throughout the entire length of string. With this solution forn0 , it
is easy to see that anyet0 satisfies Eq.~5!1 . As a result, the closed
loop of string can take any spatial form providedn05r0V2. This
result is classical~see, e.g., Section 50 of Lamb@9#!.3 In addition,
becausen05r0V2, we find from Eq.~5!2 that the singular supply
of linear momentum is

F050. (7)

In other words, in order for the string to execute a steady a
motion, the singular supply of momentum must vanish. We a
observe thatet0 is not necessarily continuous atj5g. Indeed,
becausen05r0V2 we have the unusual feature that the stea
motion of the string can have an arbitrary finite number of poi
where et0 is not continuous. This situation is analogous to t
possibility of an arbitrary number of kinks in a slack string di
cussed by Reeken@17#. It is also similar to the discontinuities with
a discontinuous tangent vector discussed by Purohit and Bh
charya@18#.4

For the circular loop of string of radiusR considered in@1–6# it
is convenient to define the rotational speedV5V/R. Our analysis
implies that an assumption used in these papers, which date
Schajer’s paper@1#, namely that the tensionn0 is independent of
V, is, as noted in@4#, artificial.5

2These equations can be obtained from the thermomechanical theory for a s
discussed in O’Reilly and Varadi@14# ~see also@15#!.

3In 1990, it was extended to closed loops of nonlinearly elastic strings by He
and Papadopoulos@16#.

4We are grateful to an anonymous reviewer for bringing this paper to our at
tion.

5Schajer’s paper has an error in the jump condition at the contact point~see Eq.
~7! of @1#!. However, this error was corrected in the papers by Hutton et al.@3–6#.
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4 Linearized Equations of Motion
It is interesting to establish the equations governing the sm

amplitude vibrations of the string about the steady motion.
assist with these equations, we follow standard practice and de
the coordinateu:

u5j1Vt mod~L !, (8)

whereL is the length of the closed loop of string. Next, we co
sider asymptotic expansions of the displacement and force v
ables:

r5r01eu1O~e2!,

g5g01eg11O~e2!,
(9)

n5n01en11O~e2!,

F5F01eF11O~e2!.

Substituting Eq.~9! into Eq. ~1! and Eq.~2!, using Eq.~5! and
ignoring terms ofO(e2), we find that

]r0

]u
•

]u

]u
50,

]

]u S n1

]r0

]u
1n0

]u

]u D5r0S V2
]2u

]u2
12V

]2u

]u]t
1

]2u

]t2 D ,

vub50, (10)

F F]u

]t
1ġ1

]r0

]u G G50,

F F ~n11r0Vġ1!
]r0

]u
1~n02r0V2!

]u

]u
2r0V

]u

]t G G1F150.

Notice that we have not yet imposed the conditionn05r0V2 in
Eq. ~10!.

Equation ~10! constitutes a system of equations for the u
knownsu, n1 , andg1 . For closure in the present circumstance
we require thatF1 is prescribed as a function of the kinematics
the string. It is also prudent to note the well known result that
first of Eq.~10! implies that the displacementu is perpendicular to
the steady motionr0 .

5 Solutions of the Linearized Equations
We henceforth restrict our attention to the case wherer0 lies

entirely on a plane andu is perpendicular to this plane:u5uE
where E is a constant unit vector.6 After first presenting some
general results for a supply of momentum, we shall turn to
specific case of a mass-spring-dashpot system.

To start, we note that a consequence of our planarity assu
tion, the linearized constraint Eq.~10!1 is identically satisfied.
Using Eq.~6!, Eq. ~10!2 can be divided into two equations:

]

]u
~n1et0!50,

(11)

r0S 2V
]2u

]u]t
1

]2u

]t2 D 50.

It is interesting to note that Eq.~11!2 implies that a~continuous!
function of u can be added tou and Eq. ~11!2 will still be
satisfied.7 We can split each of the jump conditions Eqs.~10!4,5

into two equations in a similar manner with the goal of solvi
Eq. ~10!. It is to this task that we now turn.

First, we notice that Eq.~11!1 is easily solved to determine th
tensionn1 :

6This encompasses the situations discussed in@1–6#.
7This function is the functiong2 discussed below.
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n150. (12)

The method of solution parallels the argument we used earlie
determine n0 . This result implies thatn5n0et01O(e2). In
words,n is equal to its critical value to second order.

Before solving the partial differential equation Eq.~11!,2 we
first turn to the jump conditions. There, we find from Eqs.~10!3,4

thatu and]u/]t are continuous atj5g. As n05r0V2, the remain-
ing jump conditions simplify to

v ġ1et0b50,
(13)

vn1et0b1F150.

However, we already showed thatn150, so we can conclude
from Eq. ~13!2 that

F150. (14)

Turning to Eq.~13!,1 we find that if the tangent vectoret0 to the
steady motion of the string is continuous atj5g, then this jump
condition is trivially satisfied and the speedġ1 is indeterminate.
On the other hand, ifet0 is not continuous atj5g, thenġ150.

The solution of Eq.~11!2 which satisfies the continuity condi
tion vub50 is easily found:

u~u,t !5~g1~u22Vt!1g2~u!!E. (15)

Here,g1 andg2 are functions, determined from the initial cond
tions on the string’s motion, which satisfy the periodicity cond
tion

u~u,t !5u~u1L,t !. (16)

The displacement atj5g can be found from Eq.~15! after noting
that this point corresponds tou5g1Vt:

ug5u~g1Vt,t !5~g1~g2Vt!1g2~g1Vt!!E. (17)

For completeness, we also note that

g~ t !5g~ t0!2V~ t2t0!1eE
t0

t

ġ1~z!dz1O~e2!, (18)

where t0 and g(t0) are constants. It is not possible to conclu
from Eq. ~17! that ug is zero.

Thus far we have shown thatF501O(e2) and n5r0V2et0

1O(e2). In addition, ġ1 may be indeterminate.8 To obtain con-
crete results onu we need to consider a specific supply of line
momentum. We choose the prototypical situation whereF is sup-
plied by a mass-spring-dashpot system. Our results for this sys
have an overlap with the critical case discussed in Section 3.
Yang and Hutton@4#. However, these authors did not consider t
possibility for the vibrations that we find below. Further, our r
sults apply when the steady motion of the string lies on a plan
this motion does not have to be circular. We also note that beca
F50 to second order ine, the mass-spring-dashpot system do
not exert a normal force on the string. Consequently, when ass
ing a friction force which is proportional to a normal load, there
no friction force acting on the string.

5.1 A Mass-Spring-Dashpot System. We now restrict our
attention to the case whereF is supplied by a mass-spring-dashp
system aligned in theE direction. For the mass-spring-dashp
system, the mass is denoted bym, the linear spring has a stiffnes
k and the dashpot has a viscous coefficientd. We denote byexE
the displacement of the mass particle and assume that the sy
only moves in theE direction. It is not too difficult to see that

xE5ug , F502e~mẍ1dẋ1kx!E. (19)

8A similar indeterminacy arises in studies on phase transformations~see, e.g.,
@19,20#! and folded strings~see, e.g.,@14,17,18#!. There, it is removed by prescribing
a singular supply of energy and then using the jump condition from the ene
equation~see, for instance, Eq.~5.5! of @14#!. However, for the problem at hand, suc
an approach does not resolve the indeterminacy.
JULY 2004, Vol. 71 Õ 543
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However, our previous results showed thatF150. Consequently,

mẍ1dẋ1kx50. (20)

Substituting Eq.~17! and Eq. ~18! into Eq. ~20! and dropping
terms ofO(e), we find that

4V2mg19~t!22Vdg18~t!1kg1~t!1kg2~t12Vt!50, (21)

where

t5g0~ t !2Vt5g~0!22Vt1O~e!, (22)

and the prime denotes the derivative of a functiong5g(t) with
respect tot.

After noting thatt12Vt5g(0)1O(e), it is easy to solve Eq.
~21!:

g15ĝ1~t!5edt~a1 sin~xt!1a2 cos~xt!!2g2~g~0!!. (23)

In this equation,a1,2 are real-valued constants which are det
mined by the initial conditions, and

l5d1 ix5
d

4mV S 211A12
4km

d2 D . (24)

In Eq. ~24!, x andd are the imaginary and real parts, respective
of l.

Returning to the vibration of the string, we now find from E
~15! that

u~u,t !5~ ĝ1~u22Vt!1g2~u!!E

5a1ed~g~0!22Vt! sin~x~g~0!22Vt!!E1a2ed~g~0!22Vt!

3cos~x~g~0!22Vt!!E1~g2~u!2g2~g~0!!!E. (25)

As mentioned earlier, this solution must satisfy the periodic
conditions Eq.~16!, anda1 , a2 , andg2 are determined from the
initial conditions. Choosinga1 anda2 to be zero, we find that it is
necessary thatg2(u)5g2(u1L). Settingg250, it is not too dif-
ficult to see from Eq.~23! and Eq.~25! that the following restric-
tions are necessary:

sin~xL !50, edL cos~xL !51. (26)

The parametersx andd in this equation are specified by Eq.~24!.
We noted earlier that the solution ofu was determined from Eq
~11!2 to an arbitrary added function ofu. Consequently, in Eq.
~25! we can, without loss in generality, setg250. As a result, the
restrictions Eq.~26! become both necessary and sufficient.

Clearly Eq.~26! can only be satisfied ifd5Re~l!50. In other
words, if the dashpot is absent andx51/2VAk/m. Even in this
case, Eq.~26! requires the parameters of the mass-spring sys
to be related to the length of the string in order for a time vary
vibration to be present:

2Np

L
5

1

2V
Ak

m
. (27)

We can interpret this relation to be an equation for the speedV
such that for a givenk, m, and L, a time-dependent vibrationu
exists in the string. The resulting vibration, which can also
interpreted as a forward travelling wave9 superposed on a standin
wave (g2(u)2g2(g(0)))E. The explicit form ofu is found from
Eq. ~23!, Eq. ~25!, and Eq.~27!:

u~u,t !5a1 sinS 1

2V
Ak

m
~u22Vt! DE1a2 cosS 1

2V
Ak

m
~u

22Vt! DE1~g2~u!2g2~g~0!!!E, (28)

9Becauseu5j1Vt, this is a forward travelling wave both for an observer who
moving with the steady axial motion of the string and a fixed observer.
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whereV is a solution of Eq.~27! for some integern. It is also
interesting to note that the frequency of these vibrations is
natural frequency of the mass-spring system.

When the steady motion is circular of radiusR with an axial
speedV5VR, then Eq.~27! simplifies to

V5
1

2N
Ak

m
. (29)

From this relation we conclude that, given the appropriate ini
conditions foru, a nontrivial vibration of the string is possibl
provided the natural frequency of the mass-spring system is
even integer multiple of the speedV.

6 Closing Comments and Interpretations
For the vibrations of the string in contact with the mass-spr

system, it is easy to give interpretations of the conditions Eq.~27!
and Eq.~29!. If we imagine the mass-spring system vibrating wi
a frequencyAk/m, this will induce a vibration in the string which
is carried by the axial motion. For the vibration to continue
exist, it must, after traversing the length of the string with a spe
V, have the same magnitude as the vibration of the mass sprin
the instant it returns to the contact pointj5g. The conditions Eq.
~27! and Eq.~29! ensure that this is the case.

Ultimately, becauseF50, the mass-spring system oscillates
its resonant frequency and the axial speedV must be synchronized
with this frequency. By extension, and by virtue of linear sup
position, if the spring is replaced with any elastic structure with
discrete number of natural frequenciesvk then a relation similar
to Eq. ~27! would hold withvk replacingAk/m.

Throughout this paper we have argued that, and explored
consequences of,n05r0V2. We also commented that@1–6# as-
sume that for closed loops of string,n0Þr0V2 in general. To
achieve a tensionn0 in the string which satisfies this assumptio
a distributed forcer0f needs to be applied to the lateral surface
the string. This force is determined by the balance of linear m
mentum for the string~cf. Eq. ~5!!:

r0f52
]

]s
~~n02r0V2!et0!. (30)

We interpret this equation as one where prescribing the ste
state motion’s parametersn02rV2 andet0 , we can find the force
r0f needed to achieve this motion. For the circular loops of str
considered in@1–6#, n02r0V2 is assumed to be a~nonzero! con-
stant andet0 is the unit tangent vector to the circular motio
Consequently it is easy to calculate the forcer0f needed to sustain
the steady motions discussed in@1–6#. Indeed, a mechanism to
achieve this force is discussed in@3#.
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Interaction Between Dislocations
in a Couple Stress Medium
Taylor’s theory of crystal plasticity is reformulated for dislocations in a couple str
medium. The divergence between Taylor’s approach and an approach that include
effects of couple stresses on dislocation interactions is demonstrated. It is show
dislocations separated by a distance that is comparable to a characteristic mat
length scale, have mutual interaction somewhat weaker than that predicted by cla
elasticity. @DOI: 10.1115/1.1767172#
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1 Introduction
Classical elasticity has been traditionally used to model

stress field in the vicinity of a dislocation. This stress field h
provided a basic understanding of the interaction between d
cations. Taylor@1#, starting from the classical elasticity theory o
dislocations, showed that the flow stress of a material is pro
tional to the square root of the dislocation density. A finite dis
cation density may result either from a random trapping of dis
cations~statistically stored dislocations! or due to an accumulation
of dislocations for ensuring geometrical compatibility~geometri-
cally necessary dislocations!, @2#. The latter phenomenon is im
portant when large strain-gradients occur in a material,@3#. In
problems involving a large strain gradient and/or large disloca
densities, the effect of couple stresses on elastic properties of
locations may be significant.

Mindlin @4,5# showed that the inclusion of couple stresses c
introduce significant changes in the elastic stress state of a p
lem, especially at length scales on the same order as a chara
istic ‘‘material length scale.’’ For instance, the elastic stress c
centration factor of a circular hole in an infinite sheet und
uniaxial tension is somewhat lower in a couple stress mediun
that predicted otherwise. This divergence becomes particul
conspicuous when the size of the hole is comparable to the c
acteristic length scale of the medium,@5#. Dislocations, being an
atomic scale phenomenon should, hence, be expected to b
fected by the presence of couple stresses.

Mindlin @4,5# suggested a number of possible sources of
characteristic material length scale depending on the type of
problem, with values of the length scale ranging any where fr
the lattice spacing in a perfect crystalline lattice to the grain s
in a polycrystalline material. In this study, the length scale~l! is
assumed to be equal to 500 nm~Table 1!, which is typical of the
cell size in a highly work hardened material. While the charac
istic length scale enters the calculations as a parameter tha
cides the range and strength of the couple stress terms, its sp
value is not likely to affect the general conclusions that are arri
at in the ensuing analysis.

Here, couple stresses are included in the formulation of
problem of an edge dislocation. It is shown that the presenc
couple stresses introduces a so-called ‘‘weak-interaction’’ par
eter in the elastic stress field that is operative only at very sm

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, May 22, 200
final revision; December 17, 2003. Associate Editor: M.-J. Pindera. Discussion o
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and w
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
546 Õ Vol. 71, JULY 2004 Copyright © 20
the
as
slo-
f
or-
o-
lo-

ion
dis-

an
rob-
cter-
n-
er
han
rly

har-

af-

the
the
m

ize

er-
de-
cific
ed

the
of

m-
all

distances and whose principal effect is to depress the stress
around the dislocation. On the basis of this observation, it is
ferred that the stress required to operate a Frank-Read source
couple stress medium is generally smaller than that required
erwise. This is not to mean that there is a softening of the mate
at large dislocation densities. What is suggested is that as
dislocation density increases, strain gradient effects appear to
duce the ability of dislocations to pin each other vis-a-vis t
classical solution.

2 Couple Stress Theory
The stresses and couple stresses on an element in equilib

are shown in Fig. 1. Couple stresses or couple per unit area
denoted bym r and mu . The remaining stresses have the usu
meaning. For this two-dimensional formulation, these stresses
be derived from stress functionsF andC satisfying@5#:

¹4F50 (1)

]

]r
~C2 l 2¹2C!522~12n!l 2

1

r

]

]u
¹2F (2)

1

r

]

]u
~C2 l 2¹2C!52~12n!l 2

1

r

]

]u
¹2F (3)

¹2C2 l 2¹4C50 (4)

where,n is the Poisson’s ratio, andl is a length scale characteristi
of the material defined as@5#:

l 25
M

G
. (5)

G andM, respectively, are the shear modulus and bending mo
lus of the material.

The stresses corresponding toC andF are

s r5
1

r

]F

]r
1

1

r 2

]2F

]u2
2

1

r

]2C

]r ]u
1

1

r 2

]C

]u
(6)

su5
]2F

]r 2
1

1

r

]2C

]r ]u
2

1

r 2

]C

]u
(7)

t ru52
1

r

]2F

]r ]u
1

1

r 2

]F

]u
2

1

r

]C

]r
2

1

r 2

]2C

]u2
(8)

tur52
1

r

]2F

]r ]u
1
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r 2
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]u
1

]2C

]r 2
(9)
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Mindlin @4,5# has provided a detailed derivation of Eqs.~1!–~11!.

3 Stress Functions for a Dislocation in a Couple Stress
Medium

Consider the problem of a dislocation similar to the one c
sidered by Taylor@1#, i.e., an elastic isotropic cylinder with
dislocation as shown in Fig. 2.

If the radius R of the cylinder is large, then the Airy stre
function ~F! is

F52Dr log r sinu2
B sinu

r
. (12)

Couple stress effects can be included by introducingC:

C5
E

r
cosu1FK1S r

l D cosu (13)

where,D, B, E, andF are constants that can be calculated sub
to the boundary conditions.Kn(x) is a modified Bessel function o
the second kind and thenth order.

The stress function in Eq.~13! is similar, if not the same as tha
postulated by Mindlin@5# for the problem of a circular hole in
an infinite sheet subjected to uniaxial tension in a couple st
medium.

At r 5a, the following boundary conditions hold:

1. m r ur 5a50: It may be shown using Eqs.~13!, ~12!, and~10!
that in the limit a→0, F→2E/ l .

2. t ruur 5a50: It may be shown using Eqs.~13!, ~12!, and~8!
that this boundary condition and the following bounda
condition lead to the same criterion.

3. s r ur 5a50: It may be shown using Eqs.~13!, ~12!, and ~6!
that in the limit a→0, B→0.

Fig. 1 Stress and couple stress in polar coordinates

Table 1 Material parameters assumed for copper

Shear modulus~G! 44 GPa
Poisson’s ratio~n! 0.34
Length of the dislocation~l! 0.256 nm
Material length scale~l! 500 nm
Journal of Applied Mechanics
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Equations~2! and~3! lead to a 4th relationship that is intrinsic t
the ensemble:

E524~12n!l 2D. (14)

D may be evaluated from the fact that atu52p, the relative dis-
placement in ther-direction,ur uu52p2ur uu505l ~Fig. 2!. Hence,

D5
Gl

2p~12n!
. (15)

The coefficientsD, E, andF were calculated for material pa
rameters typical of copper~Table 1! and are given in Table 2. Note
that the coefficientsD andF are positive whileE is negative.

4 Taylor’s Theory in a Couple-Stress Medium
Consider two edge dislocations of opposite signs atO andA in

an infinite medium devoid of couple stress, whose glide-planes
spaced a distanceh apart as shown in Fig. 3. Let us assume t
dislocations are kept apart under the action of a remote s
stressS acting along the glide plane. It was suggested by Tay
that this shear stress would pull the two dislocations apart a
tancex ~Fig. 3! such that

S5
Dx

~x21h2!
. (16)

It was further argued that the maximum~or critical! value ofS
is D/(2h) and if S were less than this critical value, then the tw
centers of dislocation cannot escape their mutual attraction,@1#.

A similar definition of the critical shear stress needed to p
apart two dislocations of opposite signs may be attempted fo
couple stress medium as follows. Sincetur andt ru are not equal
in a couple-stress medium, we define two stress parametersts and
ta as

ts5~tur1t ru!/2

Fig. 2 Elastic cylinder with dislocation

Table 2 Coefficients for copper

D 2.7162 N/m
E 21.79310212 Nm
F 3.5831026 N
JULY 2004, Vol. 71 Õ 547
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ta5~tur2t ru!/2.

Then, using the stress functions in Eqs.~12! and ~13!, we get

ts5
1

2 S 2~2E1Dr 2!

r 3
1

FK1~r / l !

l 2
1

2FK2~r / l !

lr D cosu (17)

ta5
FK1~r / l !cosu

2l 2
. (18)

The Bessel function contribution to the shear stresses in Eq.~17!
is negligible compared to the contribution from the other tw
terms involvingD and E even at a distance ofr;3l from the
dislocation. Hence, we will not consider the contribution fro
terms involving the Bessel functionKn(r / l ).

We takets to be the analog ofS in Fig. 3. This analogy arises
directly as a result of Mindlin’s formulation,@4#. In this formula-
tion, the symmetric part of the shear stress (ts) produces the usua
shear strain (g ru), that in classical elasticity is produced bys ru
~of course, in classical elasticitys ru5sur).

That is

g ru5gur5
ts

G
. (19)

Thus, to a first approximation, if a comparison is to be ma
between the classical result of Taylor and one involving cou
stresses, it has to be betweenS andts . In this approximation we
have, of course, neglected the terms arising from the interactio
the curvatures in the vicinity of the dislocation atA with the
couple stresses produced by the dislocation atO in Fig. 3, since
both of them are rapidly decaying quantities.

By discarding the terms involving the Bessel functions in E
~17! we get

ts5
D cosu

r
1

2E cosu

r 3
. (20)

It can be immediately seen using Eq.~20! and Table 2 that, be-
tween two dislocations of opposite signs, the term involvingE in
Eq. ~20! is a repulsive interaction. This term leads to a ‘‘we
interaction’’ that gains significance at large dislocation densi
when the distances between dislocations are small. The term
volving D in Eq. ~20! is the ‘‘Taylor interaction’’ which causes
two dislocations of opposite signs to always attract each othe

Fig. 3 Positive and negative dislocations in the presence of a
remote shear stress
548 Õ Vol. 71, JULY 2004
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We can rewritets ~Eq. ~20!! in Cartesian coordinates as

ts5
Dx

x21y2
1

2Ex

~x21y2!2
. (21)

The equivalent of Eq.~16! for Fig. 3 in a couple stress medium
can be obtained by settingy5h in Eq. ~21!:

Scouple-stress5
Dx

x21h2
1

2Ex

~x21h2!2
. (22)

5 Weak Interaction Between Dislocations
Equation~22! can be broken into two parts, namely the Tayl

interaction and the weak interaction. That is

Scouple-stress5T~x!1R~x! (23)

whereT(x)5Dx/(x21h2), is the Taylor interaction~same as Eq.
~16!!, and R(x)52Ex/(x21h2)2, is the repulsive weak interac
tion.

S8 and Scouple-stress8 , the nondimensional interaction she
stresses, are defined as the nondimensionalized counterpartsS
andScouple-stresssuch that

S85
h

Gl
S (24)

Scouple-stress8 5
h

Gl
Scouple-stress. (25)

If the distanceh, between the glide planes is very large com
pared to the material length scale parameterl, i.e., sayh.10l ,
thenR~x! is negligible and the solution forScouple-stress8 practically
coincides with that obtained from Taylor’s theory (S8). This is
apparent from Fig. 4 where the variation of the nondimensio
interaction shear stresses (S8 andScouple-stress8 ) with (x/h) is plotted
for h510l . However, when the distanceh, between the glide
planes becomes comparable tol, i.e., sayh53l , then the contri-
bution of the repulsive weak interaction term,R(x), in Eq. ~23! is
seen to be significant~Fig. 5!.

The effect of theR(x) term, hence, appears to be one of redu
ing the interaction stress between dislocations. Forh53l this ef-
fect is seen to be;25% based on the maximum value of th
nondimensional interaction stress~Fig. 5!.

The variation of the maximum value ofS8 andScouple-stress8 with
(h/ l ) is plotted in Fig. 6. Since Taylor’s theory does not involve
characteristic material length scale, the maximum value ofS8 has
no dependence on the value ofh/ l , and hence, is a constant equ
to ;0.12. However, in the presence of couple stresses it can
seen~Fig. 6! that the maximum value ofScouple-stress8 decreases as
h/ l decreases.

6 Consequences of Weak Interaction for Strain-
Gradient Plasticity

Classically, the line tension of a dislocation line is proportion
to the elastic self energy of the dislocation line. The stronger
elastic stress field around a dislocation, the stronger it inter
with other dislocations and the larger is the stress required to b
a dislocation line to the critical extent. Cottrell@6# has calculated
the elastic self energy of an edge dislocation by treating it as
work done in displacing the faces of a cut~made as in Fig. 2! by
l against the resistance of the shear stress field of the disloca
While such an approach yields the correct result in classical e
ticity, similar simplistic calculations in the presence of coup
stresses will lead to grossly misleading results. Since exact s
tions for the self energy and line tension are extremely com
cated, we will only attempt to qualitatively gauge the effect
couple stresses on dislocation interactions.
Transactions of the ASME
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Fig. 4 Variation of nondimensional interaction shear stress with x Õh for h
Ä10l. The material parameters used are those for copper given in Tables 1
and 2.
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The maximum value of the interaction shear stress is repre
tative of the stress required to disentangle a pair of dissim
dislocations. As illustrated in Fig. 6, the maximum value
Scouple-stress8 becomes smaller ash/ l decreases. Hence, the stre
required to disentangle a pair of dissimilar dislocations is gen
ally smaller than that predicted by classical elasticity when
spacing between the dislocations becomes comparable to the
acteristic material length scale~l!.

This would imply that in the case of a large dislocation dens
as is typical of highly strained materials or of many proble
involving a significant strain gradient, when the distances betw
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en-
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dislocations become comparable to the characteristic length s
of the material, the presence of couple stresses would ten
reduce the interaction between dislocations and reduce the ab
of dislocations to pin each other. However, it is not likely that th
‘‘softening’’ produced by the reduced dislocation interactions w
be comparable in magnitude to the hardening produced by
large dislocation density.

While there have been attempts at understanding the effec
couple stresses close to the dislocation core by Eringen@7#, Gut-
kin and Aifantis@8#, and others, the importance of the correctio
resulting from strain gradient effects vis-a-vis anharmonic effe
Fig. 5 Variation of nondimensional interaction shear stress with x Õh for h
Ä3l. The material parameters used are those for copper in Tables 1 and 2.
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Fig. 6 Variation of the maximum nondimensional interaction shear stress
with h Õ l . The material properties used are those for copper given in Tables 1
and 2.
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close to the core remain questionable. Hence, we have con
ourselves here to trying to understand the effect of couple stre
on dislocation interactions occuring in regions far from the dis
cation core where simplifying assumptions can be made to m
the problem tractable.

Due to the mathematical complexity involved, it is not a
tempted in this study to explicitly derive the expression for li
tension in a couple stress medium. However, the results der
are sufficient to predict the nature of the change in interacti
between dislocations in a couple stress medium at large disl
tion densities.

7 Conclusions
Taylor’s theory of plasticity has been reformulated for a coup

stress medium with a characteristic material length scale.
analysis has revealed the following:

1. The shear stress required to disentangle a pair of dissim
dislocations is estimated to be smaller when couple stre
are considered. This reduction is attributed to the presenc
a repulsive elementR(x) ~Eq. ~20!! in the interaction shea
stress.

2. R(x) becomes significant only at large dislocation densit
(h,10l wherel is a material length scale!.

3. The proposed model degenerates to the Taylor model at
dislocation densities where the average distance betw
dislocations is much greater than the material length sca

4. At large dislocation densities, the ability of dislocations
pin each other is estimated to be smaller than that predi
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by classical elasticity. This by no means predicts any sign
cant softening of materials at large dislocation densities. B
materials will behave somewhat softer than expected at la
dislocation densities.

Acknowledgment
We would like to thank the reviewers for their very constructi

comments and suggestions. The support of the National Scie
Foundation through grants CMS 0200509 and DMI 0115467
gratefully acknowledged.

References
@1# Taylor, G. I., 1934, ‘‘The Mechanism of Plastic Deformation of Crystals

Proc. R. Soc. London, Ser. A,145, pp. 362–404.
@2# Ashby, M. F., 1970, ‘‘The Deformation of Plastically Non-Homogeneous A

loys,’’ Philos. Mag.,21, pp. 399–424.
@3# Fleck, N. A., Muller, G. M., Ashby, M. F., and Hutchinson, J. W., 199

‘‘Strain Gradient Plasticity: Theory and Experiment,’’ Acta Metall. Mate
42~2!, pp. 475–487.

@4# Mindlin, R. D., and Tiersten, H. F., 1962, ‘‘Effects of Couple Stresses in Line
Elasticity,’’ Arch. Ration. Mech. Anal.,11, pp. 415–448.

@5# Mindlin, R. D., 1963, ‘‘Influence of Couple-Stresses on Stress Concen
tions,’’ Exp. Mech.,3, pp. 1–7.

@6# Cottrell, A. H., 1956,Dislocations and Plastic Flow in Crystals, Oxford Uni-
versity Press, Oxford, UK.

@7# Eringen, A. C., 1983, ‘‘On Differential Equations of Nonlocal Elasticity an
Solutions of Screw Dislocations and Surface Waves,’’ J. Appl. Phys.,54~9!, pp.
4703–4710.

@8# Gutkin, M. Y., and Aifantis, E. C., 1999, ‘‘Dislocations in the Theory of Gra
dient Elasticity,’’ Scr. Mater.,40, pp. 559–566.
Transactions of the ASME



s with
lates)
ures

es of
mon

ssible
ear
(of
but

near
ratio
for

ent of
n for

s. (The
these
ano
Zhongping Bao
Graduate Student

e-mail: zb22@cornell.edu

Subrata Mukherjee
Professor

Fellow ASME
e-mail: sm85@cornell.edu

Department of Theoretical and Applied
Mechanics,

Cornell University,
Ithaca, NY 14853

Max Roman
Graduate Student

e-mail: mxr6074@njit.edu

Nadine Aubry
Professor

Mem. ASME
e-mail: aubry@njit.edu

Department of Mechanical Engineering,
New Jersey Institute of Technology,

Newark, NJ 07102

Nonlinear Vibrations of Beams,
Strings, Plates, and Membranes
Without Initial Tension
The subject of this paper is nonlinear vibrations of beams, strings (defined as beam
very thin uniform cross sections), plates and membranes (defined as very thin p
without initial tension. Such problems are of great current interest in minute struct
with some dimensions in the range of nanometers (nm) to micrometers (mm). A general
discussion of these problems is followed by finite element method (FEM) analys
beams and square plates with different boundary conditions. It is shown that the com
practice of neglecting the bending stiffness of strings and membranes, while permi
in the presence of significant initial tension, is not appropriate in the case of nonlin
vibrations of such objects, with no initial tension, and with moderately large amplitude
the order of the diameter of a string or the thickness of a plate). Approximate,
accurate analytical expressions are presented in this paper for the ratio of the nonli
to the linear natural fundamental frequency of beams and plates, as functions of the
of amplitude to radius of gyration for beams, or the ratio of amplitude to thickness
square plates, for various boundary conditions. These expressions are independ
system parameters—the Young’s modulus, density, length, and radius of gyratio
beams; the Young’s modulus, density, length of side, and thickness for square plate
plate formula exhibits explicit dependence on the Poisson’s ratio.) It is expected that
results will prove to be useful for the design of macro as well as micro and n
structures.@DOI: 10.1115/1.1767167#
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1 Introduction
Vibrations of structures with some dimensions in the range

nanometers~nm! to micrometers~mm!, is of great current interes
in applications in nano and micro-electro-mechanical syste
~NEMS and MEMS!. Examples are vibrations of carbon nan
tubes, @1#, and nanowires; and vibrations of very thin~usually
silicon or polysilicon! membranes,@2#. Applications of the latter
include microspeakers,@3#, and synthetic microjets~e.g., for mix-
ing, cooling of electronic components, micropropulsion, and fl
control!.

Figure 1 ~from McEuen@4#! shows~a! a schematic and~b! a
scanning electron microscope~SEM! image of a carbon nanotub
suspended over a pre-existing trench in the substrate. Typica
single-walled carbon nanotube~SWNT! is a hollow tube that is
about 2 nm in diameter and .335 nm in thickness. Also, it gen
ally has very small~if any! initial tension. The typical thickness o
a 3 mm33 mm square polysilicon plate, in an electrostatica
actuated synthetic microjet, is of the order of 2mm, @2#. There-
fore, this object is really a thin membrane. Also, it generally h
no initial tension. Finally, vibrations of such strings and me
branes without initial tension, in MEMS and NEMS application
are generally nonlinear~moderately large amplitude! since the
amplitudes are of the order of the diameter~for strings! or of the
thickness~for membranes!.

Consider a macroscale beam made of a linearly elastic mate
with uniform cross section, and let its radius of gyration be ve
small relative to its length. Typically, such an object is called
string in the literature, and its bending stiffness is neglected.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, August 12, 20
final revision, January 21, 2004. Editor: R. M. McMeeking. Discussion on the pa
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Unive
of California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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shown in the present paper that neglecting of the bending s
ness, while permissible in the presence of significant initial t
sion, is not appropriate when nonlinear vibrations of a thin bea
with no initial tension, and with moderately large amplitude~of
the order of its radius of gyration!, is considered. Similarly, a thin
plate is called a membrane in the literature and the bending s
ness of a membrane is typically neglected. It is also shown in
present paper that neglecting of the bending stiffness is not ap
priate when nonlinear vibrations of a thin plate, with no initi
tension, and with moderately large amplitude~of the order of its
thickness!, is considered

The primary objective of the present paper is to obtain natu
frequencies of such vibrating strings and membranes, with no
tial tension, as functions of its amplitude of vibration. Continuu
mechanics modeling is used throughout and it is understood
the results presented here are only valid within this assumpt
Typically, results from continuum mechanics compare well w
experiments for objects with some dimensions of the order
microns~mm! or larger, and start deviating from experiments f
lower values. Under some circumstances, however, continu
theory ~surprisingly! performs well even for objects with diam
eters in the order of 1–2 nm~such as carbon nanotubes!, @1#.

Nonlinear vibrations of standard beams and plates is of cou
a well-studied subject, and numerous papers and books exi
this area in the literature~see, e.g., Nayfeh and Mook@5#!. Only a
few representative samples are cited here. A very nice crit
review of studies of large amplitude free vibrations of beams
presented by Singh et al.@6#. Researchers have employed vario
models such as inclusion or exclusion of axial displacement,
linear or nonlinear kinematic~strain-displacement! relations.
Starting with the work of Woinosky-Krieger@7# who used elliptic
integrals, researchers have used various methods such as p
bation, Ritz-Galerkin and the finite element method~FEM, see,
e.g., @8#! to study this problem. The reader is referred to@6# for
appropriate references. A good general reference for the nonli
vibration of plates is Chia@9#, while a nice study of nonlinear
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h

y

r

t

q

d

o

g’s
tes.
is

n of

is-
im-

ction
der

e-

t

t of
per-

lu-

th

t
ain

ion

i-
r
n of
vibrations of plates with the FEM is Han and Petyt@10#. The FEM
is the primary tool that is employed in order to carry out t
numerical analyses in the present paper.

Section 2 of the present paper discusses nonlinear vibration
beams and strings. A brief description of the adopted mode
well-known analytical solution for a beam that is simpl
supported at both ends, and a FEM formulation for a beam w
general boundary conditions follow. It is shown that the cor
sponding eigenvalue problem leads to an unique variation
v/v0 , as a function ofA/j, that is independent of system param
eters, for various boundary conditions. Here,v is the nonlinear
~amplitude dependent! fundamental natural frequency,v0 is the
corresponding natural frequency from the linear theory,A is the
vibration amplitude~at the center of the beam for a beam wi
symmetric boundary conditions! andj is the radius of gyration of
the beam. FEM results are presented and discussed for beams
immovable end-points that are either simply-supported at b
ends or clamped at both ends.

Section 3 presents nonlinear vibrations of square plates
membranes of rectangular cross sections. The outline here is
similar to the previous section on beams and strings. The varia
of v/v0 as a function ofA/h is considered this time.~Hereh is
the plate thickness andA is the vibration amplitude at the cente
for a plate with symmetric boundary conditions.! FEM results are
presented and discussed for three kinds of immovable boun
conditions—clamped on all edges~C!, simply-supported on all
edges~S!, or simply-supported on two opposite parallel edges a
clamped on the other two~SC!.

Approximate, but accurate analytical expressions are prese
in this paper forv/v0 as a function ofA/j ~for beams! or A/h
~for square plates!, for various boundary conditions. These expre
sions are independent of system parameters—the Young’s m

Fig. 1 A suspended nanotube between two electrical contacts.
„a… Schematic „b… SEM image.
552 Õ Vol. 71, JULY 2004
e

s of
l, a
-
ith
e-
of
-

h

with
oth

and
uite

tion

r

ary

nd

nted

s-
du-

lus, density, length, and radius of gyration for beams; the Youn
modulus, density, length of side and thickness for square pla
The Poisson’s ratio appears explicitly in the plate formula. It
expected that these results will prove to be useful for the desig
macro as well as micro and nano structures.

2 Beams and Strings
Nonlinear vibration of beams, without initial tension, are d

cussed in this section. The beams are linearly elastic, have
movable ends and are of uniform cross section. The cross se
is symmetric such that there is no twisting of the beam un
applied bending moments.

2.1 The Model. Following @6#, the kinematic equations
adopted here, for a beam with immovable ends, are

exx5u,x1~1/2!~w,x!
2 (1)

kx52w,xx (2)

where u(x,t) and w(x,t) are the axial and transverse displac
ments of the beam, respectively,exx is the midplane axial strain
andkx is the curvature. Here,,x denotes a derivative with respec
to the axial coordinatex.

The strain energyE(s) and the kinetic energyE(k) of an uniform
beam of lengthL are

E~s!5
ES

2 E
0

L

@~u,x!
21u,x~w,x!

21~1/4!~w,x!
4#dx

1
EI

2 E
0

L

~w,xx!
2dx (3)

E~k!5
rS

2 E
0

L

@~ u̇!21~ẇ!2#dx (4)

whereE, r, L, S, andI are the Young’s modulus, density~mass per
unit volume!, length, area of cross section, and area momen
inertia of the cross section of the beam, respectively, and a su
posed dot denotes differentiation with respect to timet.

2.2 Analytical Solution for Simply-Supported Beam. A
very important result relevant to this work is the analytical so
tion for a beam of uniform cross section, that issimply-supported
at both ends, @11,6#:

v

v0
5A11aS A

j D 2

(5)

wherea53/16, andj5AI /S is the radius of gyration of the beam
cross-section.

Also, in this case,@12#,

v05
p2j

L2 AE

r
. (6)

It is important to note, for what follows, that Eq.~5! provides a
‘‘master curve’’ that is valid for all simply-supported beams wi
parametersE, L, r, and j. Thus, it is applicable even for very
small j ~e.g., a nanotube or a nanowire! provided, of course, tha
the assumptions used to construct this theoretical model rem
valid. It is shown later in this paper that the formula~5!, with an
appropriate value ofa, remains valid~within a very good approxi-
mation! for clamped-clamped beams as well. A similar discuss
for plates follows in Section 3.

2.3 FEM Model for Beams With Immovable Ends. The
procedure followed in this section, for FEM discretization of v
brating beams, is standard~see, e.g., Zienkiewicz and Taylo
@13#!. Some details are necessary, however, for the discussio
eigenvalue problems that follows.
Transactions of the ASME
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FEM Discretization. Each beam element has two end nod
with three degrees-of-freedom at each node. These areu, w, and
u5w,x . For each element, one has

F u
wG5FN~ I ! 0

0 N~O!G F q~ I !

q~O!G (7)

with

@N~ I !~x!#5@N1 ,N2#, @N~O!~x!#5@P1 ,P2 ,P3 ,P4# (8)

@q~ I !~ t !#5@u1 ,u2#T, @q~O!~ t !#5@w1 ,u1 ,w2 ,u2#T. (9)

HereNk and Pk are the usual linear and cubic~Hermite poly-
nomial! interpolation functions, and@q(I )# and@q(O)# contain the
appropriate nodal degrees-of-freedom.

Define

D5w,x, @G#5@N,x
~O!#, @B~ I !#5@N,x

~ I !#, @B~O!#52@N,xx
~O!#.
(10)

Substituting the interpolations~7! into the energy expression
~3!, ~4!, and applying Hamilton’s principle, results in the eleme
level equations:

FM ~ I ! 0

0 M ~O!G F q̈~ I !

q̈~O!G1FK ~ I ! 0

0 K ~O!G F q~ I !

q~O!G1F 0 K ~ IO !

2K ~ IO !T K ~NI !G
3F q~ I !

q~O!G5F00G . (11)

The various submatrices in~11! are ~here , the length of an
element!:

@M ~ I !#5
rS

2 E
0

,

@N~ I !#T@N~ I !#dx,

@M ~O!#5
rS

2 E
0

,

@N~O!#T@N~O!#dx (12)

@K ~ I !#5ESE
0

,

@B~ I !#T@B~ I !#dx,

@K ~O!#5EIE
0

,

@B~O!#T@B~O!#dx (13)

@K ~ IO !#5
ES

2 E
0

,

@B~ I !#T@DG#dx,

@K ~NI !#5
ES

2 E
0

,

@DG#T@DG#dx. (14)

Note that the in-plane~axial! and out-of-plane~bending! matri-
ces @K (I )# and @K (O)# are }S and Sj2, respectively, the matrix
@K (IO)#}AS represents coupling between the axial and bend
displacements, and the matrix@K (NI)#}A2S arises purely from the
nonlinear axial strains.

It is well known that for the linear theory@K (O)#!@K (I )# asj
→0. It is very interesting, however, to note that ifA/j remains
O~1!, the bending matrix@K (O)#, which arises from the linea
theory, and the matrix@K (NI)# from the nonlinear theory, remain
of the same order asj→0. This fact has important consequenc
for the modeling of nanotubes and nanowires, as can be see
the following section.

Eigenvalue Problem. Following the procedure detailed in@10#
~this approach neglects axial inertia, see the Appendix!, the fol-
lowing eigenvalue equations are obtained:

~@K ~O!#1@K ~NL!#2v2@M ~O!# !@q~O!#5@0# (15)

where
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@K ~NL!#5~3/4!~@K ~NI !#22@K ~ IO !#T@K ~ I !#21@K ~ IO !# !. (16)

The next task is to investigate the dependence of the fundam
tal eigenvalue of~15! on system parameters. To this end, the s
tem of Eqs.~15! is modified such that each element of a giv
global matrix has the same physical dimension. This is done
follows.

The vector@q(O)#5@w1 ,u1 ,w2 ,u2#T is not dimensionally ho-
mogeneous. It can, however, be written in homogeneous form
@w1 ,Lu1 ,w2 ,Lu2# and the appropriate columns o
@K (O)#,@K (NL)#,@M (O)#, suitably divided byL. Also, certain rows
of the entire system~15! are divided byL. One now has, for
example,

K̂11
~O!5

12EI

,3 , K̂12
~O!5K̂21

~O!5
6EI

L,2 . (17)

Next, each element of these matrices are further scaled~multi-
plied, appropriately, by suitable powers ofL/L), so that one gets
for example,

K̂11
~O!5

12EI

L3 S L

, D 3

, K̂12
~O!5K̂21

~O!5
6EI

L3 S L

, D 2

. (18)

It is assumed that the ratio,k /L ~where,k is the length of the
kth beam element! is kept fixed, even if the lengthL of the beam
is changed~isotropic expansion or contraction!. Next, the global
matrices are formed and appropriate boundary conditions~simply-
supported or clamped are considered in this work, together w
u50 at both ends of the beam! are imposed. One now has

@K̂ ~ I !#~G!}
ES

L
, @K̂ ~ IO !#~G!}

EAS

L2

@K̂ ~O!#~G!}
ESj2

L3 , @K̂ ~NL!#~G!}
EA2S

L3 , @M̂ ~O!#~G!}rSL.

(19)

Multiply the new global eigenvalue equation byL3/(ESj2),
note the forms of the matrices@K̂ (O)# (G),@K̂ (NL)# (G),@M̂ (O)# (G),
and that 1/v0

2}(rL4)/(Ej2) for beams with many different
boundary conditions,@12#. Also, letA/j5g, a fixed number. Now
one gets the equation

~@M1#2~v2/v0
2!@M2# !@v#5@0# (20)

in which the matrices@M1#,@M2# are independentof the system
~beam! parametersE, r, L, j; the dependence on these paramet
being wholly captured inv0

2 ~provided, of course, thatA/j re-
mains fixed.! Therefore, for any values of the system paramet
~within the limits of validity of the beam model employed in th
work!, and with a fixed value ofA/j, the eigenvalue problem~20!
yields asingle unique fundamental eigenvalue, here calledv̂2/v0

2.
In other words, a point on a plot ofv/v0 versusA/j, for a fixed
value ofA/j, is invariant with respect to variations of the system
parameters. Equivalently, a plot ofv/v0 , as a function ofA/j, is
invariant with respect to the system parametersE, r, L, j, for
many different boundary conditions, including beams that
simply-supported at both ends~of course, this is a known fact—
see~5!!, or clamped at both ends.

Please note that@M1# is a function of@v# with maxkuvku51, so
that iterations are needed to solve~20!.

It is now conjectured that the form of Eq.~5! remains valid, of
course with a different value ofa, for clamped-clamped beams a
well. This conjecture is numerically investigated in the next s
tion. ~Such an equation possibly remains valid for other bound
conditions as well—but this has not been investigated in
present work!.

2.4 Numerical Results. The eigenvalue problem~20! is
solved by employing the iterative algorithm proposed in@10#. The
JULY 2004, Vol. 71 Õ 553
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FEM calculations are first verified against the analytical solut
~5! for a simply-supported beam with circular cross section~here
j5d/4, whered is the diameter of the beam cross section!. The
match between the analytical solution and the FEM solution w
50 elements is excellent. It is next verified that the plot ofv/v0 as
a function ofA/j, obtained from the FEM, is invariant with re
spect to the system parametersE, r, L, j.

Results for a clamped beam appear in Fig. 2~a!. The FEM re-
sults, obtained here for a beam of solid circular cross sect
match very well with Eq.~5! with j5d/4 and a50.04406~as
obtained from a least-squares fit!. Table 1 shows the data fo
simply-supported and clamped beams. The root mean sq
~RMS! error is defined here as

Fig. 2 Vibration of a clamped-clamped beam—fundamental
mode. „a… Master curve—FEM 50 elements; xx Eq. „5… with a
Ä0.04406; „b… SWNT: Eq. „5… with aÄ0.04406, EÄ705 GPa, r
Ä1330 Kg Õm3, LÄ600 nm, d oÄ2 nm, hÄ0.335 nm.

Table 1 The parameter a and the RMS error in the fit of Eq. „5…
for vibrations of a beam under different boundary conditions

Boundary Condition a «

Simply-supported 0.1876 6.37931024

Clamped 0.04406 1.325731023
554 Õ Vol. 71, JULY 2004
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k51

n

~«k!
2

n
(21)

where«k is the difference between the FEM value and the va
from Eq.~5!, at a point on Fig. 2~a!, andn is the number of points.
With v/v0;O(1), the RMSerrors in Table 1 are of the order o
0.1%. ~Of course, the simply-supported case basically serve
verify the computer code!.

Results for a practical example, vibration of a clamped sing
walled carbon nanotube~SWNT!, from Eq. ~5!, with a
50.04406, are presented in Fig. 2~b!. The SWNT is a hollow
tube. Its parameters~shown in the caption of Fig. 2! have been
obtained from @14#. For this tube, the radius of gyrationj
50.6 nm and v0522.37AE/rj/L2, @12#, f 05v0/2p
5136.6 MHz. Note that the bending stiffnessEI}ESj2 while
v0}AE/rj/L2, so that even though the bending stiffness of t
nanotube is small, the fundamental natural frequencyv0 , ob-
tained here from the standard linear beam theory, is a large n
ber.

3 Plates and Membranes
Nonlinear vibration of plates, without initial in-plane forces, a

discussed in this section. The plates are square (side5L), linearly
elastic, are of uniform rectangular cross section~thicknessh!, and
have immovable edges. The three boundary conditions consid
here are all edges clamped~C!, all edges simply-supported~S! and
two opposite edges simply-supported and the other two clam
~SC!. Also, the edges are immovable, i.e.,u5v50 on all edges of
the plate.

3.1 The Model. Following @6#, the kinematic equations
adopted here, for a plate with immovable edges, are,@10#,

F exx

eyy

gxy

G5F u,x1
1

2
~w,x!

2

v ,y1
1

2
~w,y!2

u,y1v ,x1w,xw,y

G , F kxx

kyy

kxy

G5F 2w,xx

2w,yy

22w,xy

G (22)

where u(x,y,t),v(x,y,t) are the in-plane andw(x,y,t) out-of-
plane displacements, respectively,@e#5@exx ,eyy ,gxy#

T is the in-
plane strain ~measured at the mid-plane!, and @k#
5@kxx ,kyy ,kxy#

T are the curvatures.
The constitutive equations are

@N#5H ~ I !@C#@e#, @M #5H ~O!@C#@k# (23)

where@N#5@Nxx ,Nyy ,Nxy#
T5h@sxx ,syy ,sxy#

T are the in-plane
forces per unit length,s i j are the components of stress and@M #
5@Mxx ,M yy ,Mxy#

T are the bending and twisting moments. Als

C5F 1 n 0

n 1 0

0 0
1

2
~12n!

G , H ~ I !5
Eh

12n2 , H ~O!5
Eh3

12~12n2!

(24)

with n the Poisson’s ratio of the plate material.
The membrane strain energyE(I ), the bending strain energy

E(O), and the kinetic energyE(k) are,@15#,

E~ I !5
1

2 ED
@Nxexx1Nyeyy1Nxygxy#dxdy (25)

E~O!5
1

2 ED
@Mxkxx1M ykyy1Mxykxy#dxdy (26)
Transactions of the ASME
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E~k!5
rh

2 E
D
@ u̇21 v̇21ẇ2#dxdy (27)

whereD is the area of the plate surface.
Using Eqs.~22!–~24!, the energy expressions~25!–~26! can be

written in terms of the plate parametersE, n, h and the displace-
ment derivatives. These expressions are available in@15# on pages
313 and 95, respectively.

3.2 FEM Model for Plates With Immovable Edges. The
procedure followed in this section is quite analogous to that
beams described before in Section 2.3.

FEM Discretization. Each plate element has four corn
nodes with six degrees-of-freedom at each node. These areu, v,
w, w,x , w,y , w,xy . For each element, one has

F u
v
w
G5FN~ I ! 0

0 N~O!G F q~ I !

q~O!G (28)

with

@N~ I !~x,y!#5FN1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4
G ,

@N~O!~x,y!#5@P1 ,P2 , . . . ,P16# (29)

@q~ I !~ t !#5@u1 ,v1 , . . . ,u4 ,v4#T,

@q~O!~ t !#5@w1 ,~w,x!1 ,~w,y!1 ,~w,xy!1 , . . . ,w4 ,~w,x!4 ,

~w,y!4 ,~w,xy!4#T. (30)

Here Nk and Pk are bilinear interpolation functions,@16#, and
@q(I )# and @q(O)# contain the appropriate nodal degrees-
freedom.

Define

@D#5F w,x 0

0 w,y

w,y w,x

G , @G#5FN,x
~O!

N,y
~O!G (31)

@B~ I !#5F N1,x 0 N2,x 0 N3,x 0 N4,x 0

0 N1,y 0 N2,y 0 N3,y 0 N4,y

N1,y N1,x N2,y N2,x N3,y N3,x N4,y N4,x

G ,

@B~O!#52F N,xx
~O!

N,yy
~O!

2N,xy
~O!

G . (32)

Substituting the interpolations~28! into the energy expression
~25!–~27!, and applying Hamilton’s principle, results in the el
ment level equations:

FM ~ I ! 0

0 M ~O!G F q̈~ I !

q̈~O!G1FK ~ I ! 0

0 K ~O!G F q~ I !

q~O!G1F 0 K ~ IO !

2K ~ IO !T K ~NI !G
3F q~ I !

q~O!G5F00G . (33)

The various submatrices in~33! are

@M ~ I !#5
rh

2 E
D~e!

@N~ I !#T@N~ I !#dxdy,

@M ~O!#5
rh

2 E
D~e!

@N~O!#T@N~O!#dxdy (34)

@K ~ I !#5H ~ I !E
D~e!

@B~ I !#T@C#@B~ I !#dxdy,
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@K ~O!#5H ~O!E
D~e!

@B~O!#T@C#@B~O!#dxdy (35)

@K ~ IO !#5
H ~ I !

2 E
D~e!

@B~ I !#T@C#@D#@G#dxdy,

@K ~NI !#5
H ~ I !

2 E
D~e!

~ @D#@G# !T@C#@D#@G#dxdy (36)

whereD (e) is the area of a finite element. For the purpose of
discussion to follow, only an uniform mesh of identical squa
elements, of side,, is considered here. Of course, the FEM co
allows elements of very general shape.

Note that the in-plane and out-of-plane~bending! matrices
@K (I )# and @K (O)# are }h and h3, respectively, the matrix
@K (IO)#}Ah represents coupling between the in-plane and out
plane displacements, and the matrix@K (NI)#}A2h arises purely
from the nonlinear axial strains.

It is well known that for the linear theory@K (O)#!@K (I )# ash
→0. It is very interesting, however, to note that ifA/h remains
O~1!, the bending matrix@K (O)#, which arises from the linear
theory, and the matrix@K (NI)# from the nonlinear theory, remain
of the same order ash→0. This fact has important consequenc
for the modeling of very thin plates, as can be seen in the follo
ing section.

Eigenvalue Problem. Following the procedure detailed in@10#
~this approach neglects in-plane inertia, see the Appendix!, the
following eigenvalue equations are obtained:

~@K ~O!#1@K ~NL!#2v2@M ~O!# !@q~O!#5@0# (37)

where

@K ~NL!#5~3/4!~@K ~NI !#22@K ~ IO !#T@K ~ I !#21@K ~ IO !# !. (38)

The next task is to investigate the dependence of the fundam
tal eigenvalue of~37! on system parameters. The procedure f
lowed now is analogous to that for beams outlined in Section

The vector@q(O)# is first written in dimensionally homogeneou
form as

@w1 ,L~w,x!1 ,L~w,y!1 ,L2~w,xy!1 , . . . ,w4 ,L~w,x!4 ,

L~w,y!4 ,L2~w,xy!4#T (39)

and the appropriate columns of@K (O)#, @K (NL)#, @M (O)# are suit-
ably divided byL or L2. Also, as for beams, certain rows of th
entire system~37! are divided by suitable powers ofL.

Each element of these matrices are now further scaled~multi-
plied, appropriately, by suitable powers ofL/L). As in the case of
beams, it is assumed that,/L ~where, is the length of the side of
a plate element! is kept fixed, even ifL is changed~isotropic
expansion or contraction!. Next, the global matrices are forme
and appropriate immovable boundary conditions~S, C, or SC! are
imposed. One now has

@K̂ ~O!#~G!}
Eh3

L2 , @K̂ ~NL!#~G!}
EA2h

L2 , @M̂ ~O!#~G!}rL2h.

(40)

Note that the first two matrices above also depend on the P
son’s ration but that this dependency is complicated in view
the form of the constitutive matrix@C# in Eq. ~24a!. It is, of
course, well known thatv0 is obtained by solving the linearize
problem ~~37! with @K (NL)#5@0#). It is interesting to point out
that for a square S plate, one has the exact solution for the fu
mental mode,@17#:

v05
)p2h

3L2

1

A~12n2!
AE

r
(41)
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for which the dependence onn is the same as that ofAH (O) ~see
~24c!!. However,v0 can, for certain boundary conditions, have
more complicated dependence on the Poisson’s ratio~@17#, p 250!.

Multiply the new global eigenvalue equation byL2/(Eh3), note
the forms of the matrices@K̂ (O)# (G), @K̂ (NL)# (G), @M̂ (O)# (G), and
that 1/v0

2}(rL4)/(Eh2) for many different boundary condition
that include S and SC but not proved for C plates~@17#, pp 249–
250!—this fact can be deduced from the discussion on pl
waves in~@17#, p. 245!.

One now gets the equation

~@M1#2~v2/v0
2!@M2# !@v#5@0# (42)

in which, for a fixed value ofA/h, the matrices@M1#, @M2# are
independentof the system~plate! parametersE, r, L, h; the de-
pendence on these parameters being wholly captured inv0

2 ~pro-
vided, of course, thatA/h remains fixed.! Therefore, for any val-
ues of the system parameters~within the limits of validity of the
plate model employed in this work!, and with a fixed value of
A/h, the eigenvalue problem~42! yields asingle unique funda-
mental eigenvalue, here calledv̂2/v0

2. In other words, a point on
a plot of v/v0 versusA/h, for a fixed value ofA/h, is invariant
with respect to variations of these system parameters. Equ
lently, a plot ofv/v0 , as a function ofA/h, for a square plate
with many different boundary conditions, including S and SC
invariant with respect to the system parametersE, r, L, h. Note
that the Poisson’s rationn is not included in this list of system
parameters, i.e. that this ‘‘master curve’’ is not, in general, in
pendent of the Poisson’s ratio.

Please note that, as for beams,@M1# is a function of@v# with
max

k
uvku51, so that iterations are needed to solve~42!.

3.3 Numerical Results. The eigenvalue problem~42! is
solved by employing the iterative algorithm proposed in@10#. The
FEM calculations are verified against the FEM solution forv/v0
as a function ofA/h, for a fully clamped~C! square plate, as
presented in Fig. 3 in@10#. The agreement between the two n
merical solutions, with an 838 array of finite elements, is exce
lent. It is next observed numerically that the plot ofv/v0 as a
function of A/h, for a square C plate, obtained from the FEM,
invariant with respect to the system parametersE, r, L, h. As
stated before, proof of existence of this master curve is only p
sible for square S and SC plates, but this fact appears to be
for C plates as well.

Based on the existence of this master curve~of the form
v/v05g(A/h,n) for a specified boundary condition—S or SC!,
and inspired by the form of Eq.~5! for beams, it is conjectured
that the variation ofv/v0 , as a function ofA/h, for nonlinear
vibrations of square S, SC, as well as C plates, has the form

v

v0
5A11 f ~a0 ,n!S A

h D 2

(43)

where the parametera0 depends only on the imposed bounda
conditions~and not on any of the system parametersE, n, r, h, or
L!. Next, the choicef (a0 ,n)5a0 /A12n2 leads to

v

v0
5A11

a0

A~12n2!
S A

h D 2

. (44)

Equation~44! is an intuitive conjecture, inspired by the depe
dence of the flexural rigidityD on the Poisson’s ration, that is
tested a posteriori. First, as seen in Fig. 3~a!, the FEM results for
a clamped square plate compare very well with Eq.~44! for n
50.22 with a050.3670. ~The value ofa0 is obtained from a
least-squares fit!. Next, FEM calculations are carried out for var
ous boundary conditions and for various values of Poisson’s ra
and the results are compared to those from Eq.~44!. Table 2
shows the data for S,C and SC square plates. Eq.~44! is seen to
556 Õ Vol. 71, JULY 2004
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describe the FEM results in excellent fashion-the maximum R
error ~see Eq.~21!! being less than 1% in all cases.

Finally, a practical situation, that of a vibrating thin MEM
plate ~really a membrane!, made of polysilicon, appears in Fig
3~b!. Here, f 053.2194 KHz, is obtained from the FEM, and the
the full curve is obtained from~44!. ~A FEM calculation is veri-
fied to yield the same results within plotting accuracy!. The ma-
terial properties of polysilicon are obtained from@18,19# and the
membrane dimensions from@2#.

4 Conclusions
The primary contributions of the present paper are as follow

Inclusion or Exclusion of Bending Stiffness in the Vibration
of Strings and Membranes. Start with a beam with immovable
supports and letT0 ~Newtons! be the initial tension in the beam
The contribution ofT0 to E(s) in Eq. ~3! is (T0/2)*0

L(w,x)
2dx, so

that, in this case the eigenvalue equation~15! is modified to read

~@K ~O!#1@K ~F !#1@K ~NL!#2v2@M ~O!# !@q~O!#5@0# (45)

where the new element matrix due to the initial tension is

@K ~F !#5T0E
0

,

@G#T@G#dx (46)

Fig. 3 Vibration of a square plate clamped on all sides—
fundamental mode. „a… Master curve—FEM 8 Ã8 elements, n
Ä0.22; xx Eq. „44… with a0Ä0.3670; „b… MEMS plate: Eq. „44…
with a0Ä0.3670, EÄ169 GPa, nÄ0.22, rÄ2300 Kg Õm3, L
Ä3 mm, hÄ2 mm.
Transactions of the ASME



Journal of Appl
Table 2 The parameter a0 and the RMS error in the fit of Eq. „44… for vibrations of a square
plate under different boundary conditions

Boundary Condition a0 n «

All edges simply-supported 0.9621 0.12 7.76631023

0.22 1.10431023

0.32 2.69031023

All edges clamped 0.3670 0.12 9.70731024

0.22 2.30231024

0.32 9.70731024

0.12 4.41031023

Two opposite edges clamped 0.6369 0.22 2.52431023

and the other two 0.32 2.52431023
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with @G# defined in Eq.~10b!.
It can be shown that@K̂ (F)# (G)}T0 /L. Therefore, with a suffi-

ciently large value ofT0 (T0@T(c)[EI/L2), @K̂ (O)# (G) and
@K̂ (NL)# (G) become very small~see~19!! relative to@K̂ (F)# (G), as
j→0 with A/j;O(1); and can beneglected, as is commonl
done for strings. The remaining linear equation yields the us
result,@12#:

f 05
1

2L
AT0

r̂
(47)

where r̂ is the mass per unit length of the string. It is cle
however, that withT0→0, and withA/j;O(1), @K̂ (O)# (G) and
@K̂ (NL)# (G) remain of the same order asj→0 ~see~19!!, and the
bending stiffness matrix@K̂ (O)# (G) cannot be neglected in thi
case.

The above discussion applies to vibrations of strings. A v
similar argument can be made for membranes as well.

It is interesting to compare the above discussion with that i
recently published nice paper by Sapmaz et al.@20#. These authors
correctly include both the bending and nonlinear effects~but not
the axial displacement! in their analysis. They compare thein-
duced tension, ~calledT in their work and given by their Eq.~2!
which is T5(ES/(2L))*0

L(w,x)
2dx) with EI/L2. ~Note thatT(c)

is defined asEI/L2 in the present work!. It should also be ob-
served that their induced tension isT}EA2S/L25EIA2/(j2L2).
Therefore,~case one! T!T(c) for A!j ~i.e., in the linear vibration
limit ! and of the same order~case two! for A/j;O(1). Also,
~case three! T@T(c) for A@j. The present authors feel that th
last regime is inappropriate in@20# since their model~i.e., their
Eq. ~1!! is only good for small or moderately large vibration am
plitude, i.e., for cases one and two only.

Sapmaz et al.@20# also conclude~see their Eq.~19!! that a
carbon nanotube vibrates like a ‘‘loose string’’ forinduced tension
T!T(c). This statement, however, is somewhat misleading, in
a ‘‘loose string’’ conjures up images of a low natural frequency
vibration. In fact, Eq.~19! of @20# without the correction term~this
equation, as expected, being the same as the standard formu
v0 for a clamped beam,@12#, p. 223!, yields a value off 0
5136.6 MHz for the carbon nanotube example~Fig. 2~b!! in the
present paper. This is, indeed, a large number, and calling
object a ‘‘wire’’ rather than a ‘‘loose string’’ is more appropriate

It should be mentioned again that the present authors feel
@20# presents a nice analytical study of this problem. The ab
two paragraphs are meant to clarify some issues in Sapmaz
@20#, not to criticize their work.

Summary of Various Cases of Vibrations of Beams, Strings,
Plates, and Membranes. Table 3 summarizes various cas
which are defined as:

1. nonlinear vibrations of beams or plates withA'j or A
'h,
ied Mechanics
ual

r,

ry
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e

-

hat
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a for
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.
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ve
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2. linear vibrations of beams or plates withA!j or A!h,
3. nonlinear vibrations of strings or membranes withA'j or

A'h, and
4. linear vibrations of strings or membranes withA!j or A

!h.

Please refer to Eqs.~19!, ~40!, and ~45! for the following dis-
cussion and consider the interesting cases 3 and 4. For case 3
sufficiently high initial tension, one can perhaps argue thatK (O)

and K (NL) are both!K (F) and one can neglectK (O) but keep
K (NL) without having significant impact on the numerical resul
This is not allowed, however, whenT0 is small. Also, case 4
clearly cannot be modeled ifT050.

Proof of the Existence of Certain ‘‘Master Curves’’. It is
proved that for beams that are clamped at both ends, the varia
of v/v0 , as a function ofA/j, is invariant with respect to the
system parametersE, r, L, j. It is also proved for square S and S
plates, and conjectured for C plates, that the variation ofv/v0 , as
a function ofA/h, is invariant with respect to the system param
etersE, r, L, h. Examples of these ‘‘master curves’’ appear
Figs. 2~a! and 3~a!.

It is important to note here that the above proof for squ
plates has been carried out for a uniform FEM mesh with ident
square finite elements. The FEM solution for this problem, ho
ever, is expected to converge to the exact solution in the limi
mesh refinement, for any reasonable starting mesh. Therefore
master curves are a feature of the exact solution of the prob
and the proof given in this paper is not limited by the particu
choice of mesh, but should be valid in general.

Approximate Formulas for vÕv0 as a Function of AÕj or
AÕh. Certain approximate Eqs.~5! and~44!, have been proposed
for the variation ofv/v0 , as a function ofA/j, for beams; and for
v/v0 , as a function ofA/h, for plates, respectively. These equ
tions are shown to be very accurate for the cases consider
clamped beams~Eq. ~5! is well known for simply-supported
beams!, and S, C, and SC plates. These equations should prov
be useful for the design and analysis of macro as well as m
and nano structures that include beams or plates.

Table 3 Summary of various cases

Case Initial Tension Bending Nonlinearity Usual Model OK

1 high yes yes yes
2 high yes no yes
3 high no yes ?
4 high no no yes
1 low yes yes yes
2 low yes no yes
3 low no yes no
4 0 no no no
JULY 2004, Vol. 71 Õ 557
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Appendix

Beams. One of the reviewers of this paper has kindly point
out an interesting alternative approach to proving the existenc
master curves. This is based on appropriate nondimensionaliz
of the governing differential equations of the problem. For t
beam problem, the analysis,as provided by this reviewer, pro-
ceeds as follows.

The governing equations for a vibrating beam~for the model
adopted in the present paper! are:

axial motion: Eu,xx5ru,tt

transverse motion: EIw,xxxx2~Nw,x! ,x1rSw,tt50

constitutive and kinematic laws: N5ESexx5ES@u,x1~1/2!

3~w,x!
2]

(A1)

where the only new symbol isN, the axial force.
The following nondimensionalization is used:

x5Lx̂, w5Aŵ, u5~A2/L !û, N5ES~A2/L2!N̂, t5 t̂ /v̄
(A2)

with v̄5(j/L2)A(E/r).
Applying Eqs.~A2! to ~A1! results in

axial motion:
]N̂

] x̂
5S j

L
D 2

]2û

]2 t̂2

transverse motion:
]4ŵ

] x̂4
2S A

j
D 2

]

] x̂
S N̂

]ŵ

] x̂
D 1

]2ŵ

] t̂2
50

constitutive and kinematic laws: N̂5
]û

] x̂
1

1

2
S ]ŵ

] x̂
D 2

(A3)

It can be seen from (A3)1 that for j/L!1 ~in this caseu
'O(w2)), axial inertia, i.e.,u,tt , can be neglected. Therefore
N̂5N̂(t). Now integrating (A3)3 from x̂50 to x̂51 and using
the fact that the ends of the beam are immovable~i.e., û(0,t̂ )
5û(1,t̂ )50), yields

N̂5
1

2 E0

1S ]ŵ

] x̂ D 2

dx̂. (A4)

Finally, use of (A4) in (A3)2 leads to a single partial differen
tial equation governingŵ:

]4ŵ

] x̂4
2

1

2
S A

j
D 2

]2ŵ

] x̂2 E
0

1S ]ŵ

] x̂
D 2

dx̂1
]2ŵ

] t̂2
50. (A5)

It can be seen thatA/j is the only relevant parameter in Eq
~A5!. It is clear at this stage that master curves exist forv/v0 as
functions ofA/j for clamped and simply supported beams.
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For completeness, the dimensional form of (A5) is

EIw,xxxx2
SE

2L
w,xxE

0

L

~w,x!
2dx1rSw,tt50. (A6)

Equation (A6) is available in many references~see, for ex-
ample, Nayfeh and Mook@5#, p. 453, where it appears in a dimen
sionless form different from (A5)).

Plates. A nice account of nonlinear vibrations of plates
available in@5#, pp. 500–507. The model employed in the prese
work is the dynamic von Karman model~@5#, pp. 502–503! with-
out in-plane inertia, i.e., withu,tt5v ,tt50. A further simplification
can be obtained with the Berger assumptionexxeyy2(1/4)gxy

2

50 ~with the strain components defined in terms of displaceme
in Eq. ~22!!. The Berger simplification, together with neglectin
in-plane inertia, leads to a single governing partial different
equation for the transverse displacementw(x,y,t) ~@5#, p. 507!:

D¹4w2
hEe

12n2 ¹2w1rhw,tt50 (A7)

with

e~ t !5
1

2D E
D
¹2wdA. (A8)

Rand@21#, using the nondimensionalization (A2) in (A7), has
shown that the Berger model, without in-plane inertia, leads
existence of master curves forv/v0 as functions ofA/h. Further-
more, these curves areindependentof Poisson’s ratio for plates
with boundary conditions that do not involven. As pointed out in
@5#, however, the Berger assumption sometimes produces err
ous results and the von Karman model is more reliable.Interest-
ingly, the von Karman model without in-plane inertia, employ
in the present work, leads to dependence ofv/v0 on n, as seen in
Eq. (44)!
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Effect of Residual Stress on
Cavitation Instabilities in
Constrained Metal Wires
Numerical calculations are carried out for a test specimen geometry used by Ashby
to study effects of ductile reinforcements in brittle materials. A lead wire well bonde
an outer glass cylinder was used to investigate crack bridging by ductile particles.
main focus here is on a single void growing very large in the metal wire, in the cr
plane, perhaps involving a cavitation instability. Therefore, full finite strain elastic-pla
theory is used for the analyses, and remeshing procedures are applied to avoid una
able mesh distortion. Residual stresses induced by thermal contraction mismatch d
cooling from the processing temperature can have a noticeable influence on the re
and this is quantified by the analyses.@DOI: 10.1115/1.1767845#
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1 Introduction
For a single void in an infinite elastic-plastic solid cavitatio

instabilities have been predicted in cases where the stress l
are sufficiently high such that the work released in the field s
rounding the expanding void is enough to drive continued exp
sion. At this critical stress level the void grows without boun
while the remote strain remains stationary. The existence of s
instabilities has been recognized by Bishop et al.@1# for spheri-
cally symmetric conditions, and analyses by Huang et al.@2# and
Tvergaard et al.@3# have shown similar cavitation instabilities fo
spherical voids subject to axisymmetric stress conditions, as
as the ratio of the transverse stress and the axial tensile stre
near unity. There has also been a number of related spheri
symmetric studies in the context of nonlinear elasticity~e.g., Ball
@4#, Horgan and Abeyaratne@5#, and Chou-Wang and Horgan@6#!,
where the occurrence of a cavitation instability has been in
preted either as a bifurcation from a homogeneously stressed
to a solid containing a void, or as the growth of a preexisting vo

In experiments by Flinn et al.@7# for Al2O3 reinforced by Al
particles scanning electron microscopy has been used to o
quantitative information about the plastic stretch of partic
bridging a crack in the brittle matrix, and the extent of debond
from the matrix during bridging. It was observed that the failu
of axisymmetric reinforcement zones often involves the nuc
ation of a single hole at the center of the neck, which rapi
expands to final failure. This type of behavior has been analy
in some detail by Tvergaard@8#. A set of experiments by Ashby
et al. @9# were designed to obtain insight in the toughening
brittle matrix materials obtained by ductile reinforcements brid
ing a crack. In these experiments lead wires were well bonde
a thick outer glass cylinder and the glass was cracked circum
entially, so that during a tensile test all load in the crack plane w
carried in the highly constrained metal wire. Several of the
specimens failed by the enlargement of a single void in the w
near the crack plane, and this failure mechanism will be analy
in the present paper. Experiments by Dalgleish et al.@10# for a
thin ductile metal layer used to bond two ceramic blocks toget
have indicated that also here the constraint on plastic flow du

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, November
2003; final revision, March 8, 2004. Editor: R. M. McMeeking. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and w
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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tension normal to the layer is high enough to make cavitatio
likely failure mechanism, and analyses by Tvergaard@11–13#
have confirmed this mechanism in thin ductile bond layers.

In photographs,@9# of the final fracture surface for well bonde
metal wires show that the diameter of the single void in the w
has reached values up to 0.53 times the diameter of the wire
better understand these results a full numerical analysis of
tensile tests is carried out here, accounting for the interaction
the elastic-plastic metal wire with the surrounding elastic glass
producing the test specimens slow cooling from the melting te
perature of lead was applied to minimize thermal stresses, re
ing from the contraction mismatch. However, as the observed fi
void size seems large, the effect of residual stresses in the
specimen is investigated. Furthermore, to be able to rather a
rately evaluate the final void size predicted by the computatio
remeshing procedures are used~Pedersen@14# and Tvergaard
@12#! to be able to resolve the huge strains developing around
void without unacceptable mesh distortion.

2 Problem Formulation
Some of the earlier analyses of unstable cavity growth h

focussed on a single void in an infinite elastic-plastic solid, but
present analyses consider directly the specimen geometry use
Ashby et al.@9#, as shown in Fig. 1. The purpose of these expe
ments was to get some understanding of the toughening effe
ductile reinforcements in brittle materials such as ceramics, b
crack bridging mechanism. Lead wires were well bonded to
thick outer glass cylinder, then the glass was cracked circum
entially so that all load at the crack plane would be carried by
bridging metal wire, and the specimen was pulled in tension
failure. In many of the tests the bond strength was high enoug
that no debonding occurred, leading to highly constrained pla
flow in the wire near the crack plane, and for several specim
the fracture surface showed large growth of a single void. In
present analyses the glass is modeled as linearly elastic, while
metal wire is described as elastic-plastic.

A Lagrangian convected coordinate formulation of the fie
equations is used for the finite strain analyses. A material poin
identified by cylindrical coordinatesxi in the reference frame, and
the corresponding displacement components areui . The Lagrang-
ian strain tensor is given by

h i j 5
1

2
~ui , j1uj ,i1u,i

k uk, j ! (2.1)

where ( ),i denotes covariant differentiation in the referen
frame, Latin indices range from 1 to 3, and the summation c
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vention is used for repeated indices. The metric tensors in
current configuration and the reference configuration are den
by Gi j andgi j , respectively, with determinantsG andg, and the
contravariant components of the Kirchhoff stress tensort i j and
the Cauchy stress tensors i j are related byt i j 5AG/gs i j . Equi-
librium is expressed in terms of the principle of virtual work

E
V
t i j dh i j dV5E

S
TiduidS (2.2)

whereV and S are the volume and surface, respectively, in t
reference configuration, andTi are the nominal traction compo
nents on the surface.

The deformations of the metal wire are described in terms o
finite strain generalization of the classicalJ2 flow theory of the
form ṫ i j 5Li jkl ḣkl ~see Hutchinson@15#!, making use of Young’s
modulusE, Poisson’s ration, the initial yield stresssy , and the
strain hardening exponentN. The effective Mises stress isse

5(3si j s
i j /2)1/2, wheresi j 5t i j 2Gi j tk

k/3 is the stress deviator. Th
tangent modulusEt is the slope of the uniaxial stress strain curv
which is here taken to be represented by a power law

«5H s

E
for s<sy

sy

E F s

sy
G1/N

for s.sy

. (2.3)

For the numerical solution a linear incremental finite elem
method is used, based on an incremental version of the princ
of virtual work ~2.2!. In each increment equilibrium correctio
terms are applied to prevent drifting away from the true equi
rium path ~e.g., see@11#!. The displacement fields are approx
mated in terms of axisymmetric eight-noded isoparametric
ments, as in@16#. The volume integral in the incremental versio
of ~2.2! is carried out by using 232 point Gauss integration~i.e.,
‘‘reduced integration’’! within each element.

The initial geometry of the axisymmetric problem analyzed
shown in Fig. 2, with a mesh drawn in. The radius of the me
wire is A0 , the outer radius of the glass cylinder isB0 , and the
half-length of the test specimen isH0 . At the center of the meta
wire, in the crack plane, the presence of a void with initial rad
Rv is assumed. Furthermore, at the location where the crack in
glass meets the surface of the metal wire, an initial rounding
the crack-tip with radiusRc is assumed, to be able to represent t
large plastic strains that develop at this point as soon as the c
starts to open. The geometry considered in all analyses he
specified by the valuesB0 /A054.8 andH0 /A055.0. In the cy-

Fig. 1 Sketch of the tensile test specimen used by Ashby et al.
†9‡
Journal of Applied Mechanics
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lindrical coordinate system used as reference here~Fig. 2!, x1 is
the axial coordinate,x2 is the radius andx3 is the circumferential
angle.

In the metal wire, symmetry conditions are assumed at
plane ahead of the crack

u150, T250, for x150. (2.4)

At the top, the specimen is pulled by the grip, and the bound
conditions are taken to be

u15U, T250, for x15H0 (2.5)

whereU is the prescribed uniform end displacement. The cyl
drical sides of the specimen, the crack surfaces and the void
face are load free, so that the remaining boundary conditions

T15T250, on all other surfaces. (2.6

The average nominal tractionTa on the wire in the crack plane
is obtained from the expression

Ta5
1

2A0
2 E

0

A0

@2T1#x1502px2dx2. (2.7)

The variation of this nominal traction with the end displacemenU
will be used to illustrate the test behavior.

When residual stresses due to thermal contraction mism
between glass and metal are included here, they are introduc
the following manner. In the metal initial principal true stress
s* are applied in both axial, radial and circumferential directio
while the glass is stress free. This is only possible with additio
forces applied on all internal and external surfaces of the m
wire. First these additional forces are stepped down to zero o
many increments, whileU50, to allow for corresponding plastic
yielding to develop around the void and the crack-tip. Sub
quently, the overall tensile loading is applied by incrementa
prescribing an increasing value ofU. At a later stage, the incre
ment U̇ may become zero or negative while the void grows ra
idly. To avoid numerical instabilities in such situations, a mix
Rayleigh Ritz–finite element method is applied with the possib
ity of prescribing node displacements on the void surface,@17#.

3 Remeshing
Previous numerical studies of spherical ductile particles bri

ing a crack in a brittle matrix,@8,18#, have approximated the ma
trix as rigid, but are otherwise somewhat similar to the pres
investigation, and these earlier studies have been limited by st

Fig. 2 Axisymmetric model of the half test specimen analyzed,
showing the initial dimensions, the coordinate system and a
finite element mesh. The ductile wire occupies the region 0
Ïx 2ÏA 0 .
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l

d

a

g
o
i

i

e

t

n

t

o
-

a
h

r
e
n
t

a

e

l

ters

onds
ves
s, in
-

he

avi-
at
rain
ding
for
mesh distortions during bridging. Therefore, the present inve
gation makes use of a remeshing procedure to be able to fo
the void growth further into the failure process.

The remeshing procedure has been incorporated into the
gram applied here by Pedersen@14#. In this procedure, also use
by Tvergaard@12,13#, the values of field quantities in the integra
tion points of the new mesh are determined by interpolation in
old mesh. First, a bilinear surface in terms of the local elem
coordinatesj and h is used to extrapolate values~such as stress
components! in the old mesh from integration points to nod
points, where the region of the element is specified by21<j<1
and 21<h<1. Then, values of the field quantities in the nod
points of the new mesh are determined by interpolation in the
mesh, using the shape functions. Finally, the values in the inte
tion points of the new mesh are determined by interpolation fr
the new nodal points, using the shape functions. To do this,
necessary to determine the location of each new nodal point in
old mesh, i.e., the element number and the appropriate value
the local coordinatesj andh inside that element.

The old coordinates of a new nodal point are determined by
procedure@12# that first the nearest old nodal point represent
an element corner is found, and then a Newton-Raphson itera
is used to determine the old values ofj and h. This is done for
each adjacent element in the old mesh, until the element is fo
that contains the new point. If none of these adjacent elem
contain the new point, the results of the iterations are used
select another corner point for one of these elements, and
iterations are repeated for elements adjacent to that point.

As in @12# a remeshing is carried out whenD«e>(D«e)max in
any integration point, where«e5*(2ḣ i j ḣ

i j /3)1/2dt is an effective
strain, andD«e denotes the amount of this strain accumula
since last remeshing. Here, the limiting value (D«e)max is mostly
taken to be 0.2, but sometimes as low as 0.1, depending on
much mesh distortion is tolerated by the solution.

In a new mesh the points on the void surface and on the blu
crack-tip are calculated by interpolation between old points
these surfaces. The new mesh is stretched such that elemen
relatively finer in the regions where very large strains develop

4 Results
For the glass the elastic material parameters are Young’s m

lus Eg and Poisson’s rationg , while for the metal wire the corre
sponding elastic material parameters are denotedE and n, the
initial yield stress issy and the power hardening exponent isN.
With a lead wire in glass the ratio of the elastic moduli is taken
be Eg /E54.3 andng50.23 is used. For the metal wire two se
of material parameters are used, first a model material w
sy /E50.003,n50.3 andN50.1, which makes the cavitation pre
dictions comparable to those in Tvergaard et al.@3#. The second
set of elastic-plastic material parameters for the metal are b
on material tables for lead and on the specifications of As
et al. @9#, sy /E50.0004,n50.42 andN50.2.

When residual stresses are applied by the procedure desc
in Section 2, just below Eq.~2.7!, the residual stresses in the wir
after that the additional forces have been stepped down, ca
calculated by simple formulas for long elastic tubes, making
approximation that the specimen is long compared to its rad
and neglecting plasticity. For the model material parameters~n
50.3! this gives the following values of the residual princip
stress components in the wires1

R50.7777s* , s2
R5s3

R

50.6295s* , and thus the mean residual stresssm
R50.6789s*

~wheres* is the hydrostatic stress level first applied in the wir!.
A purely elastic computation for the specimen geometry and
boundary conditions considered here has shown that these res
stress values are obtained with very good approximation, e
though the specimen is not much longer than its radius.

For the second set of material parameters~n50.42! the same
procedure leads to the following residual principal stressess1

R
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50.5179s* , s2
R5s3

R50.4261s* , and thus the mean residua
stresssm

R50.4567s* . In the following figures the level of re-
sidual stress is specified by the value of the ratiosm

R/sy .
Figure 3 shows results using the first set of material parame

for the metal wire, and usingRv /A05Rc /A050.01. The figure
shows the evolution of the average nominal tractionTa in the
metal wire and the ratioV/V0 of the current and the initial void
volumes, versus the end displacementU, where 2U gives a rather
good estimate of the crack opening. One set of curves corresp
to an initially stress free wire, while the other three sets of cur
are obtained for various levels of tensile residual stresses. Thu
one of cases, wheres* /sy54 was applied initially, the expres
sions given above resulted insm

R/sy52.72. The curves forsm
R

50 in Fig. 3 show that at the maximum traction the value of t
ratio V/V0 grows by two or three orders of magnitude whileU
increases only very slowly. Thus, the behavior is close to a c
tation instability, but a real cavitation instability would occur
constantU, corresponding to a constant remote stress and st
state. When a residual stress is applied before the tensile loa
Fig. 3~a! shows that the maximum traction reached increases

Fig. 3 Effect of different residual stress levels for initial void
size Rv ÕA 0Ä0.01 and crack-tip radius Rc ÕA 0Ä0.01, with metal
wire material parameters sy ÕEÄ0.003, nÄ0.3 and NÄ0.1. „a…
Average nominal stress versus end displacement. „b… Void vol-
ume growth.
Transactions of the ASME
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increasing level of the tensile residual stress, and Fig. 3~b! shows
that the rapid increase of the void volume occurs at a sma
value ofU. Also, the value ofU is closer to being constant durin
the rapid void growth, when the residual stress level is higher.
model material used here for the metal wire is identical to o
considered by Tvergaard et al.@3#, so it is known that a cavitation
instability occurs at a mean stresssm55.2sy . Therefore, it is not
surprising that the critical value ofU/A0 decreases towards zer
in Fig. 3~b! when the mean value of the applied residual stre
sm

R , approaches the value that would give a cavitation instab
before applying any tensile load.

For the calculation in Fig. 3 with no residual stress Fig. 4 sho
the initial mesh and three stages of the deformed mesh, when
void volume has increased by a factor 100, when the void volu
has increased by a factor 104, and at the end of the computatio
defined here as the stage where the average nominal tractio
decayed to the levelTa /sy51. It is seen that while the void
grows in the center of the metal wire, the blunted crack tip dev
ops into something like a toroidal void, as has also been found
a ductile particle bridging a crack in a rigid matrix,@18#.

Figure 5 shows comparisons of the deformed meshes forsm
R

50 and sm
R/sy54.07, at the stage where the void volume h

increased by a factor 104 and at the end of the computation
Thus, Figs. 5~a! and 5~c! are identical to Figs. 4~c! and 4~d!,
respectively. Figure 5~b! shows clearly that whenV/V05104 has
been reached, the toroidal void at the crack-tip has grown m

Fig. 4 Deformed meshes at four different stages for sm
RÄ0.

The initial void size and crack tip radius are Rv ÕA 0Ä0.01 and
Rc ÕA 0Ä0.01, and parameters for the metal wire are sy ÕE
Ä0.003, nÄ0.3, and NÄ0.1. „a… Initial mesh. „b… Stage where
VÕV0Ä100. „c… Stage where VÕV0Ä104. „d… End of computation.
Journal of Applied Mechanics
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less than that in Fig. 5~a!, in agreement with the much smalle
value of the crack opening 2U. The same tendency is visibl
when comparing Figs. 5~c! and 5~d!, but more interesting is the
fact that the void radius in Fig. 5~d! has reached the value 0.41A0 ,
while in Fig. 5~c! the void radius has reached the smaller va
0.34A0 .

The sensitivity to the initial void radius is considered in Fig.
by comparing results for three different values ofRv /A0 . Thus,
one set of curves in Fig. 6 is identical to the curves forsm

R/sy
52.72 in Fig. 3, and comparison is made with results for a sma
and a larger initial void size. Figure 6~a! shows hardly any sensi
tivity of the average traction versus end displacement curve, w
Fig. 6~b! shows significant differences between the values reac
for V/V0 . These differences are expected, as the deformed me
at the end of the computation are quite similar to Fig. 5~d! in all
three cases, but reaching the same final void size requires a m
larger increase of the void size when the void was initia
smaller. It is also seen in Fig. 6~b! that the value ofU during rapid
void growth is closer to being constant when the void is initia
smaller, which reflects the fact that the smaller void can gr
more before the remote stress state is affected by the void si

Figure 7 keeps the initial void radius fixed atRv /A050.01, but
studies the sensitivity to the assumed initial rounding of the cra
tip by comparing predictions for three different values ofRc /A0 .
As in Fig. 6 the comparison is made forsm

R/sy52.72, and thus
the set of curves forRc /A050.01 in Fig. 7 appears also in Figs.
and 3. The peak value of the average tractionTa shows some
sensitivity in Fig. 7~a!, with rather little difference between th
peak values forRc /A050.003 andRc /A050.01, but with a no-
ticeably lower peak forRc /A050.03. The void size vs. end dis
placement curves in Fig. 7~b! show practically no sensitivity to
the value ofRc /A0 , although the curve corresponding to the low
est peak in Fig. 7~a! differs a little.

The second set of material parameters for the metal wire, m
realistic for lead based on material tables, is considered in Fig
As in Fig. 3, the comparison here is carried out forRv /A0

Fig. 5 Comparison of deformed meshes for two different val-
ues of sm

R . The initial void size and crack-tip radius are
Rv ÕA 0Ä0.01 and Rc ÕA 0Ä0.01, and parameters for the metal
wire are sy ÕEÄ0.003, nÄ0.3 and NÄ0.1. „a… Stage where VÕV0

Ä104 for sm
RÄ0. „b… Stage where VÕV0Ä104 for sm

R ÕsyÄ4.07. „c…
End of computation for sm

RÄ0. „d… End of computation for
sm

R ÕsyÄ4.07.
JULY 2004, Vol. 71 Õ 563
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5Rc /A050.01, and the different sets of curves correspond to
ferent levels of the initial residual stress field. The initial values
s* /sy applied here are much larger than those applied for
reference material in Fig. 3, but this relates to the finding
Huang et al.@2# that a lower value ofsy /E gives a higher value
of the critical stress levelsm /sy for the occurrence of a cavitatio
instability, and also the increased value of the power harden
exponentN gives a significant increase of the critical stress lev
The highest residual stress level,sm

R/sy58.22, considered here i
obtained by first applying the hydrostatic stress levels* /sy518
and then stepping down additional forces to obtain equilibrium
described above. This highest level ofsm

R/sy is only slightly be-
low the critical cavitation level, and therefore the nearly vertic
part of the corresponding growth curve in Fig. 8~b! occurs at a
very small value ofU/A0 . The difference between the four dif
ferent sets of curves in Fig. 8 is analogous to that found in Fig
Thus, the peak value of the average nominal tractionTa in the
metal wire increases for increasing level of the residual stress,
the higher peaks occur at lower values ofU/A0 . However, the

Fig. 6 Effect of different values of the initial void size, for
sm

R ÕsyÄ2.72 and Rc ÕA 0Ä0.01. Parameters for the metal wire
are sy ÕEÄ0.003, nÄ0.3 and NÄ0.1. „a… Average nominal stress
versus end displacement. „b… Void volume growth.
564 Õ Vol. 71, JULY 2004
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differences between the levels of the peaks are not quite as
nounced in Fig. 8 as in Fig. 3. The curves in Fig. 8~b! for the three
lower values ofsm

R/sy are not vertical at any stage, but fo
sm

R/sy58.22 an early part, below log10(V/V0)52, shows void
growth at a constant value ofU, so here a cavitation instability ha
occurred.

Figure 9 shows deformed meshes analogous to those in Fi
comparing results forsm

R50 and sm
R/sy58.22, with the initial

geometry identical to that considered in Fig. 8. Figures 9~a! and
9~b! illustrate stages whereV/V05104, which is well beyond the
rapid void growth range and well beyond the traction peaks, a
seen in Fig. 8. For the high residual stress~Fig. 8~b!! this void size
is reached at a stage where the toroidal void at the crack-tip
grown much less than found in the absence of residual str
Some of this tendency is also seen at the end of the computat
for Ta /sy51, where Fig. 9~d! shows that the void radius on th
symmetry plane has reached the value 0.49A0 , while in Fig. 9~c!
this void radius has only reached the value 0.46A0 .

The comparison in Fig. 10 is somewhat analogous to tha
Fig. 7. Thus, the initial void radius is kept fixed atRv /A0
50.01, while two values 0.01 and 0.0002 are considered for
initial rounding of the crack-tip,Rc /A0 . It is seen that the smalle
value of Rc /A0 does give a higher peak value of the avera

Fig. 7 Effect of different values of the initial crack-tip radius,
for sm

R ÕsyÄ2.72 and Rv ÕA 0Ä0.01. Parameters for the metal
wire are sy ÕEÄ0.003, nÄ0.3 and NÄ0.1. „a… Average nominal
stress versus end displacement. „b… Void volume growth.
Transactions of the ASME
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tractionTa , and also part of the corresponding void growth cur
in Fig. 10~b! is practically vertical. Thus, a sharper crack-tip i
creases the tendency to observe a real cavitation instability in
center of the metal wire.

5 Discussion
An earlier investigation of cavity growth in ductile particle

bridging a brittle matrix crack~Tvergaard@8#! had some features
in common with the present study, including that effects of
sidual tensile stresses in the ductile particles were accounted
However, the elastic deformations of the surrounding cera
were not incorporated in these previous analyses and at large
expansions the accuracy of the results was limited by strong m
distortion, as had also been true in other early studies of cavita
instabilities. In the analyses here, the ability to evaluate the fi
size and shape of the void in the special tensile test specime
Ashby et al.@9# is entirely dependent on the application of a r
meshing procedure.

In the experiments modelled here the specimens were co
slowly from the processing temperature to minimize the resid
stresses due to thermal contraction mismatch between the lea
the glass. However, some level of tensile residual stresses
have been left in the metal wire, and such residual stresses
been incorporated in the present analyses to get a parametri
derstanding of their influence on the growth of a single void in
center of the wire, in the crack plane. It has been found tha
tensile residual stress increases the peak value of the ave

Fig. 8 Effect of different residual stress levels for initial void
size Rv ÕA 0Ä0.01 and crack-tip radius Rc ÕA 0Ä0.01, with metal
wire material parameters sy ÕEÄ0.0004, nÄ0.42 and NÄ0.2. „a…
Average nominal stress versus end displacement. „b… Void vol-
ume growth.
Journal of Applied Mechanics
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nominal traction in the metal wire, and reduces the end displa
ment needed to reach a cavitation instability, since the resid
stress may be high enough to be nearly at the cavitation l
when the tensile test starts.

Perhaps more interesting is the fact that the experiments h
shown a final diameter of the single void in the wire more th
half of the wire diameter, and that the parametric studies show
increasing value of the final void diameter for increasing values
the tensile residual stress. Also, the predicted final void diame
approach half the wire diameter at the highest levels of resid
stress considered here. It is noted that the end of the computa
is rather arbitrarily defined as the stage where the average tra
has dropped to the valueTa5sy , but if a smaller value had bee
chosen, the final void diameters would have been larger. The
geometries shown in Figs. 5~c!, 5~d!, 9~c!, and 9~d! do not exactly
agree with the photographs of the final fracture surfaces show
Ashby et al.@9#. Thus, in the experiments the void has not grow
exactly in the center of the wire, and the remaining ligament
pears to have failed by shearing off. But parts of the obser
fracture surfaces do indicate the type of crack growth by a blu
ing mechanism shown in Figs. 5 and 9 by a toroidal void grow
from the initially sharp crack-tip.

The cavitation instability or near cavitation instability behavi
occurs at the vertical or near vertical parts of the curves in F
3~b! and 8~b!, and it is noted that the calculated final void shap
with large diameters occur far beyond these vertical parts. In f
even the stages illustrated in Figs. 5~a!, 5~b!, 9~a!, and 9~b! occur
well beyond the vertical parts of the void growth curves. Th
when the large voids in these lead wires are seen as exampl
experimentally observed cavitation instabilities, the instabil

Fig. 9 Comparison of deformed meshes for two different val-
ues of sm

R . The initial void size and crack-tip radius are
Rv ÕA 0Ä0.01 and Rc ÕA 0Ä0.01, and parameters for the metal
wire are sy ÕEÄ0.0004, nÄ0.42 and NÄ0.2. „a… Stage where
VÕV0Ä104 for sm

RÄ0. „b… Stage where VÕV0Ä104 for sm
R Õsy

Ä8.22. „c… End of computation for sm
RÄ0. „d… End of computa-

tion for sm
R ÕsyÄ8.22.
JULY 2004, Vol. 71 Õ 565
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mechanism is really only active in the beginning of cavity grow
until the void diameter has reached about 10% of the metal w
diameter.

Two sets of material parameters for the elastic-plastic beha
of the metal wire are considered here. The first set of mate
parameters are those also used by Tvergaard et al.@3#, and indeed
the peak values of the average nominal tractionTa reached in Fig.
3 are in good agreement with the levels of the cavitation insta
ity limits predicted in the previous study. The second set of m
terial parameters are based on material tables for lead and o
specifications of Ashby et al.@9#, and here the peak values ofTa
predicted in Fig. 8 are a bit on the high side of most of t
experimental results.

Fig. 10 Effect of different crack-tip radii, for the initial void
size Rv ÕA 0Ä0.01, with metal wire material parameters sy ÕE
Ä0.0004, nÄ0.42 and NÄ0.2. „a… Average nominal stress versus
end displacement. „b… Void volume growth.
566 Õ Vol. 71, JULY 2004
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The level of tensile residual stress to be expected in a duc
reinforcing particle in a ceramic, due to cooling from the proce
ing temperature, has been estimated in@8#, by an elastic analysis
for a spherical well bonded Al particle in an Al2O3 matrix. When
the cooling range isDT5500°C it was found thatsR /sy52.7 if
sy /E50.005, whilesR /sy513.5 if sy /E50.001. Thus, the lev-
els of residual stresses considered in the present paper ar
unrealistic. In addition to the effect on early occurrence of a ca
tation instability the tensile residual stresses increase the p
value of the nominal traction for the crack-bridging mechani
~Figs. 3 and 8!. But the figures also show that the area under
traction separation curve is reduced, so that the energy need
break the bridging particle is smaller.
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1 Introduction
The dynamic response of a penny-shaped crack in a th

dimensional piezoelectric ceramic strip under nonaxisymme
normal mechanical and electrical impact loads is analyzed ba
on the continuous electric boundary conditions on the crack
face. The potential theory and Hankel and Laplace transforms
used to obtain the systems of dual integral equations, which
then expressed to Fredholm integral equations. The singular
chanical and electric fields and all sorts of dynamic field intens
factors of Mode I are obtained, and the numerical values of v
ous field intensity factors for PZT-6B piezoelectric ceramic a
graphically shown for transverse bending impact loads.

2 Problem Statements and Method of Solution
Consider a piezoelectric strip of thickness 2h containing a cen-

ter penny-shaped crack of diameter 2a subjected to the nonaxi
symmetric combined mechanical and electrical impact loads.
cylindrical coordinates (r ,u,z) is set at the center of the crack
The piezoelectric strip is transversely isotropic with hexago
symmetry, and the z-axis is oriented in the poling direction. T
strip is subjected to a nonaxisymmetric normal impact stress
strain at the edges, and the electrical boundary condition o

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec. 1
2000; final revision, Dec. 12, 2001. Associate Editor: K. Ravi-Chandar.
Copyright © 2Journal of Applied Mechanics
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nonaxisymmetric electric displacement or electric field for the
ezoelectric layer is considered. In the absence of body forces
governing equations for nonaxisymmetric loads are

ni

]2F̃i

]z2
2j2F̃i50, ~ i 51,2,3!

(1)

c44

]2F̃4

]z2
2j2Fc112c12

2
2rq2GF̃450

where

ni~j,p!5
e33k1i1d33k2i

e15k1i1e151e311d11k2i

5
c33k1i2e33k2i

c44k1i1c131c442e15k2i1rq2k1i

5
c441~c131c44!k1i2~e151e31!k2i

c111rq2
, (2)

q25p2/j2, (c11,c12,c13,c33,c44) are the elastic moduli measure
in a constant electric field, (d11,d33) are the dielectric permittivi-
ties measured at a constant strain, (e15,e31,e33) are the piezoelec-
tric constants,ki j ( i 51,2, j 51,2,3) are the unknown constants
be determined from Eq.~2!, F̃i(j,z,p) ( i 51,2,3,4) is the function
transformed fromf̄ i(r ,z,t) ( i 51,2,3,4) by Hankel and Laplace
transforms, and f̄ i is related to the potential function
fk(r ,u,z) (k51,2,3,4) as follows:

fk5f̄k exp~ inu!, k51,2,3,4, n50,1,2, . . . . (3)

According to Gao and Fan@1#, we set up the following bound-
ary conditions:

sz* ~r ,u,0,p!50 ~0<r ,a!,
(4)

uz* ~r ,u,0,p!50 ~a<r ,`!,

Dz* ~r ,u,01,p!5Dz* ~r ,u,02,p! ~0<r ,a!,

Er* ~r ,u,01,p!5Er* ~r ,u,02,p! ~0<r ,a!, (5)

f* ~r ,u,0,p!50 ~a<r ,`!,

s rz* ~r ,u,0,p!50, (6)

suz* ~r ,u,0,p!50, (7)

s rz* ~r ,u,h,p!50, (8)
3,
004 by ASME JULY 2004, Vol. 71 Õ 567
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Fig. 1 Infinite piezoelectric strip with a penny-shaped crack subjected to combined
mechanical transverse bending and electrical impact loads
,
he
f

suz* ~r ,u,h,p!50, (9)

Case 1: sz* ~r ,u,h,p!5
s̄~r ,u!

p
, Dz* ~r ,u,h,p!5

D̄~r ,u!

p
,

(10)

Case 2: «z* ~r ,u,h,p!5
«̄~r ,u!

p
, Ez* ~r ,u,h,p!5

Ē~r ,u!

p
,

(11)

Case 3: sz* ~r ,u,h,p!5
s̄~r ,u!

p
, Ez* ~r ,u,h,p!5

Ē~r ,u!

p
,

(12)

Case 4: «z* ~r ,u,h,p!5
«̄~r ,u!

p
, Dz* ~r ,u,h,p!5

D̄~r ,u!

p
,

(13)

wheres r , su , sz are normal stresses,s ru , s rz , suz are shear
stresses,Dk (k5r ,u,z) are electric displacements,uk (k5r ,u,z)
are displacements,f is electric potential, superscript* means the
Laplace domain,s̄(r ,u), «̄(r ,u), D̄(r ,u), and Ē(r ,u) are the
magnitudes of applied stress, strain, electric displacement,
electric field, respectively. The field equations are obtained fr
Eqs.~1! as follows:

uz* 5(
n50

` H Hn
21S 1

j (
i 51

3

k1isi@Ain sinh~sijz!

1Bin cosh~sijz!# D J cosnu1
ā~r ,u!

p
z, (14)

f* 52(
n50

` H Hn
21S 1

j (
i 51

3

k2isi@Ain sinh~sijz!

1Bin cosh~sijz!# D J cosnu2
b̄~r ,u!

z, (15)

p

LY 2004
and
om

where

si~j,p!5
1

Ani~j,p!
, ~ i 51,2,3!, (16)

Ain , Bin ( i 51,2,3,n51,2,3, . . . ) are theunknowns to be solved
ā and b̄ are real constants, which will be determined from t
edge loading conditions,Hn

21 is the inverse Hankel transform o

Fig. 2 Change of the normalized dynamic stress intensity fac-
tor with the normalized time, the ratio of crack radius to layer
thickness, and the ratio of s1 Õs0 for PZT-6B ceramic under
transverse bending loads of Case 1
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Fig. 3 Change of the maximum normalized dynamic stress intensity factor
for the time with the polar angle u and the ratio aÕr 1 for PZT-6B ceramic under
transverse bending loads of Case 1
rse
t as

d as
order n. Applying Eqs.~3!–~13!, we obtainnth systems of dual
integral equations, which are then expressed to the followingnth
Fredholm integral equations of the second kind:

fn~a,p!1E
0

a

fn~b,p!l n~a,b!db

5A2

p S 2
1

pm0
Da1/22nE

0

a r 11n

Aa22r 2
cn~r !dr (17)

where

l n~a,b!5aE
0

`

j@N~j,p!21#Jn11/2~aj!Jn11/2~bj!dj

(18)

N~j,p!5@F11~j,p!M41~j,p!1F12~j,p!M42~j,p!

1F13~j,p!M43~j,p!#/m0 , (19)

m05 lim
j→`

F(
i 51

3

F1i~j,p!M4i~j,p!G , (20)

B1n~j,p!5j1/2E
0

a

cn~a,p!Jn11/2~ja!da, (21)

Jn( ) is the Bessel function of ordern of the first kind,Fi j ( i , j
51,2,3) andM4 j ( j 51,2,3) have the same forms as those
Yang and Lee@2#. Here, we assume that the applied loads can
expanded with Fourier series as follows:
anics
of
be

s̄~r ,u!5(
n50

`

sn~r !cosnu, «̄~r ,u!5(
n50

`

«n~r !cosnu,

(22)

D̄~r ,u!5(
n50

`

Dn~r !cosnu, Ē~r ,u!5(
n50

`

En~r !cosnu.

3 Numerical Results and Discussion
Material properties of PZT-6B,@3#, and the normalized time is

defined as follows:

T5tct /a, (23)

wheret is time,a is crack radius, andct([A(c441e15
2 /d11)/r) is

the shear wave velocity defined from the governing equation.

Example 1: Nonaxisymmetric Transverse Bending Impact
Loads. Let the mechanical loads be nonaxisymmetric transve
bending impact and the electrical loads be axisymmetric impac
shown in Fig. 1. Then, the applied loads can be expresse
follows:

sz~r ,u,h,t !5S s01s1

r

r 1
cosu DH~ t !, ~ for Case 1,3!,

«z~r ,u,h,t !5S «01«1

r

r 1
cosu DH~ t !, ~ for Case 2,4!,

(24)

Dz~r ,u,h,t !5D0H~ t !, ~ for Case 1,4!,

Ez~r ,u,h,t !5E0H~ t !, ~ for Case 2,3!,
JULY 2004, Vol. 71 Õ 569



Fig. 4 Change of the maximum normalized dynamic stress intensity factor for the time with the electric field E0 for PZT-6B
ceramic under transverse bending loads of Case 2
l

whereH(t) is the Heaviside unit step function,s0 ands1 are the
magnitudes of applied stress,D0 is the magnitude of applied elec
tric displacement at initial time, andr 1 is shown in Fig. 1. From
Eqs.~22! by using the inversion of Laplace transform for Eq.~24!,
the first and second terms in the Fourier series are remained
two systems of Fredholm integral equations are obtained fon
50 and n51. The Fredholm integral equation forn50 is the
same form as that of Yang and Lee@2# and the Fredholm integra
equation forn51 is in the form
570 Õ Vol. 71, JULY 2004
-

and
r

C1~J,p!1E
0

1

C1~H,p!L1~J,H,p!dH5J2, (25)

where

L1~J,H,p!5E
0

`

AJHSFNS S

a
,pD21GJ3/2~JS!J3/2~HS!dS,

(26)
NS S

a
,pD5

F11S S

a
,pD M41S S

a
,pD1F12S S

a
,pD M42S S

a
,pD1F13S S

a
,pD M43S S

a
,pD

m0
, (27)
as
S5ja, J5
a

a
, H5

b

a
,

(28)

C1~J,p!52A p

2aJ

3pm0r 1

2a2c1

c1~a,p!,

C1~H,p!52A p

2aH

3pm0r 1

2a2c1

c1~b,p!,

c15s1 , ~Case 1,3!,

5c33«1 , ~Case 2!, (29)
5
~c33d331e33

2 !«1

d33
, ~Case 4!.

The field intensity factors in the Laplace domain become
follows:

Ks* 5
2

p
Apa

1

p Fc0C0~1,p!1
2ac1

3r 1
C1~1,p!cosuG , (30)

KD* 5
2

p
Apa

1

p

m1

m0
Fc0C0~1,p!1

2ac1

3r 1
C1~1,p!cosuG ,

(31)

K«* 5
2

p
Apa

1

p

m2

m0
Fc0C0~1,p!1

2ac1

3r 1
C1~1,p!cosuG ,

(32)
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KE* 5
2

p
Apa

1

p

m3

m0
Fc0C0~1,p!1

2ac1

3r 1
C1~1,p!cosuG ,

(33)

where

c05s0 , ~Case 1,3!,

5c33«02e33E0 , ~Case 2!, (34)

5
~c33d331e33

2 !«02e33D0

d33
, ~Case 4!.

These shows that both the mechanical and electrical loads e
the field intensity factors, respectively.

Two systems of Fredholm integral equations are solved num
cally using Gaussian quadrature formula. Then dynamic field
tensity factors are obtained for time from Eqs.~30!–~33!. The
accuracy of this numerical dynamic field intensity factor valu
are affected by the numerical inversion parameters such asN and
d, and Gauss Legendre and Laguerre integrating points. We
quasi-static field intensity factor values as a criterion to choose
value of N and d. In this paper, we used values ofN56 and
d50.4;1.8 to fit the quasi-static field intensity factor values.

The change of the normalized dynamic stress intensity fac
Ks(t)/(2c0)(a/p)1/2, with the normalized time, the ratioa/h and
the ratio s1 /s0 under transverse bending loads in Case 1
shown in Fig. 2. It is shown that the normalized dynamic str
intensity factor increases with increase of the ratioa/h and the
time of peak value changes a little with the ratioa/h. And as the
ratio s1 /s0 increases, the normalized dynamic stress inten
factor increases gradually.

The change of the peak value of the normalized dynamic st
intensity factor for the time with the polar angleu and the ratio
Journal of Applied Mechanics
ffect

eri-
in-

es

use
the

tor,

is
ss

ity

ess

a/r 1 is shown in Fig. 3. The peak value increases as the ratioa/r 1

increases in the range 0 deg,u,90 deg, but the tendency is op
posite in the range 90 deg,u,180 deg.

The change of the peak value of the normalized dynamic st
intensity factor for the time with the electric fieldE0 for PZT-6B
ceramic in Case 2 is shown in Fig. 4. The dynamic stress inten
factor increases as the magnitude of the electric field increases
it is concluded that the dynamic stress intensity factor chan
with the direction of the electric field. And this also shows that t
electrical load effects the mechanical field strongly. In Case 4,
tendency of the changes of the field intensity factors with
electric displacement is similar as that of the electric field
Case 2.

4 Conclusions
The normalized dynamic field intensity factors increase w

increase of the ratio of crack radius to the strip thickness. For
case of constant stress loading, the dynamic electric field inten
factor and the dynamic electric displacement intensity factor
pend on the material constants and the applied mechanical l
but not on the applied electrical load. For the case of cons
strain loading, the dynamic field intensity factors depend on
applied mechanical and electrical loads.
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Analysis of the M-Integral in Plane
Elasticity

Y. Z. Chen
Division of Engineering Mechanics, Jiangsu University,
Zhenjiang, Jiangsu 212013, P. R. China

Kang Yong Lee
Department of Mechanical Engineering, Yonsei
University, Seoul 120-749, South Korea

In this paper, analysis of the M-integral in plane elasticity is ca
ried out. An infinite plate with any number of inclusions a
cracks and with any applied forces and remote tractions is c
sidered. To study the problem, the mutual work difference inte
(abbreviated as MWDI) is introduced, which is defined by
difference of works done by each other stress field on a la
circle. The concept of the derivative stress field is also introduc
which is a real elasticity solution and is derived from the physi
stress field. It is found that the M-integral on a large circle
equal to a MWDI from the physical stress field and a derivat
stress field. Finally, the expression for M-integral on a large circ
is obtained. The variation for the M-integral with respect to t
coordinate transformation is addressed. An illustrative exam
for the use of M-integral is presented.@DOI: 10.1115/1.1748271#

1 Introduction
In plane elasticity, many path independent integrals were inv

tigated,@1–10#. The integrals include theJ-integrals,L-integral,
M-integral, and some others. These integrals have a general p
erty that the values of the mentioned integrals do not depend
the path, provided there is no singularity between two integra
paths. Naturally, if the closed path encloses some singula
points or cavities, these integrals must not vanish.

Some particular problems for theM-integral were investigated
@11–13#. It was felt that in some complicated cases solutions
the M-integral were still unknown. In this paper, analysis of t
M-integral in plane elasticity is carried out. An infinite plate wi
any number of inclusions and cracks and with any applied for
and remote tractions is considered. After some manipulations
expression forM-integral on a large circle is obtained. The vari
tion for theM-integral with respect to the coordinate transform
tion is addressed. An illustrative example for the use ofM-integral
is present.

2 Evaluation of M-integral on a Large Circle
TheM-integral in plane elasticity is a path independent integ

which was introduced previously~@3#!

M ~L !5E
~x0 ,y0!,~L !

~x,y!

~Wxini2ui ,kxks i j nj !ds (1)

M ~CH!5 R
~CH!

~Wxini2ui ,kxks i j nj !ds (2)

whereW5ui , js i j /2 denotes the strain energy density,ui the dis-
placements,s i j the stresses,nj the direction cosines, andui , j
5]ui /]xj . In Eq. ~1!, the path ‘‘L’’ is generally defined as a path

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 1
2001; final revision, December 13, 2003. Associate Editor: B. M. Moran.
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with the starting point (xo ,yo) and the end point~x, y! ~Fig. 1!. In
Eq. ~2!, a closed path ‘‘CH’’ is defined such that it may enclose
some holes, cracks or inclusions~Fig. 1!.

The following analysis depends on the complex variable fu
tion method in plane elasticity,@14#. In the method, the stresse
(sx ,sy ,sxy), the resultant forces~X, Y! and the displacement
(u,v) are expressed in terms of two complex potentialsf(z) and
c(z) such that

sx1sy54 Ref8~z!

sy2sx12isxy52@ z̄f9~z!1c8~z!# (3)

f 52Y1 iX5f~z!1zf8~z!1c~z! (4)

2G~u1 iv !5kf~z!2zf8~z!2c~z! (5)

whereG is the shear modulus of elasticity,k5(32n)/(11n) is
for the plane stress problem,k5324n is for the plane strain
problem, andn is the Poisson’s ratio.

In the following analysis, two stress fields are introduced. T
first field is the physical field, which is defined from the geome
and the loading condition shown in Fig. 1, and it is called t
a-field hereafter. Clearly, for thea-field we can write

ui ~a!5ui , s i j ~a!5s i j . (6)

Meantime, the relevant complex potentials for thea-field can be
expressed in the form~@14#!

f~a!~z!5f~z!5A1z1A2 log z1a01(
k51

`
ak

zk (7)

c~a!~z!5c~z!5B1z1B2 log z1b01(
k51

`
bk

zk (8)

where

A15
sx

`1sy
`

4
, A252

Fx1 iF y

2p~k11!
(9)

B15
sy

`2sx
`

2
1 isxy

` , B252kĀ25
k~Fx2 iF y!

2p~k11!
. (10)

In Eqs.~9! and~10!, sx
` , sy

` , andsxy
` are the remote stresse

andFx andFy are the resultant forces applied on the finite regi
of the infinite plate. Also, the coefficientsak andbk (k51,2,..) in
Eqs.~9! and ~10! will be determined from a concrete solution.

The second field is defined as a derivative field to the phys
field, which is called theb-field hereafter,@7,15,16#. The complex
potentials for theb-field is defined such that

f~b!~z!5zf8~z!5A1z1A22(
k51

`
kak

zk (11)

c~b!~z!5zc8~z!5B1z1B22(
k51

`
kbk

zk . (12)

Note that theb-field is not independent and is derived from th
a-field. Thus, by using Eqs.~3! and ~5! the displacements and
stresses for theb-field can be expressed as

ui ~b!5x
]ui

]x
1y

]ui

]y
~or ui ~b!5ui , j xj ! (13)

s i j ~b!5s i j 1x
]s i j

]x
1y

]s i j

]y
~or s i j ~b!5s i j 1s i j ,kxk!.

(14)

In addition, one may introduce the following integral~Fig. 1!:
2,
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Fig. 1 An infinite plate containing cracks, holes, and inclusions
i-

f

ges
ates
e

o-
N~CH!5 R
~CH!

1

2
~ui ~a!s i j ~b!2ui ~b!s i j ~a!!njds

5 R
~CH!

1

2
~ui~s i j 1s i j ,kxk!nj2ui ,kxks i j nj !ds.

(15)

From the Betti’s reciprocal theorem in elasticity, one can conclu
that the integralN(CH) takes the same value if the closed pa
‘‘ CH’’ includes the same defects. Clearly,N(CH) shown by Eq.
~15! is a kind of a mutual work difference integral~MWDI! for
two physical stress fields~a-field andb-field!.

A relation betweenM (CH)-integral and theN(CH)-integral
has been found, and it reads

M ~CH!5N~CH!. (16)

The equality~16! can be proved in a similar manner as show
previously,@15,16#.

Since the equality~16! is proved, and the closed path ‘‘CR’’ is
a particular type of ‘‘CH’’ ~Fig. 1!, thus, we have

M ~CR!5N~CR! (17)

where

M ~CR!5 R
~CR!

~Wxini2ui ,kxks i j nj !ds (18)

N~CR!5 R
~CR!

1

2
~ui ~a!s i j ~b!2ui ~b!s i j ~a!!njds

5 R
~CR!

1

2
~ui~s i j 1s i j ,kxk!nj2ui ,kxks i j nj !ds.

(19)
echanics
de
th

n

In Eqs.~18! and~19! the circle ‘‘CR’’ is sufficiently large such
that all the defects are included in the circle. Equation~17! shows
that instead of evaluating the integralM (CR) we can evaluate its
equivalent valueN(CR). This is the aim of the mentioned der
vation.

Since the complex potentials for thea-field andb-field were
shown by Eqs.~7!, ~8!, ~11!, and~12!, the relevantMWDI shown
by Eq. ~19! can be evaluated. Using a known result,@15,16#, we
have

M ~CR!5N~CR!5
p~k11!

G
Re@2A1b12B1a11A2B2#.

(20)

In Eq. ~20!, A1 ,A2 ,a1 ~or B1 ,B2 ,b1) have the dimensions o
stresses, resultant forces and moments, respectively.

3 Relation of the M „CR… Integral With the Coordi-
nate Transformation

The M (CR) shown by Eq. ~18! is evaluated in thexoy-
coordinates~Fig. 1!. Consider now how theM-integral corre-
sponding to a given state of stress for the infinite plate chan
under transformation from one system of rectangular coordin
to another. Let~x, y! and (x* ,y* ) be the coordinates of the sam
point in the~xoy! and (x* o* y* ) systems and let

z* 5z1zd ~with z* 5x* 1 iy* , z5x1 iy , zd5xd1 iyd!
(21)

wherezd represents a translation of the coordinate system~Fig. 1!.
In addition, the complex potentialsf* (z* ), c* (z* ) in the

(x* o* y* ) system can be obtained from the known complex p
tentialsf(z), c(z) in the ~xoy! system,@14#. Using the obtained
complex potentialsf* (z* ), c* (z* ) and Eq.~20!, it is found

M* ~CR!5M ~CR!1Ma (22)
JULY 2004, Vol. 71 Õ 573
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Ma5
1

8G
$@~k11!sx

`1~k23!sy
`#Fxxd1@~k11!sy

`

1~k23!sx
`#Fyyd14sxy

` ~Fyxd1Fxyd!%. (23)

In Eq. ~23! the termMa is caused by the translation of the coo
dinates. From Eqs.~22! and ~23! we see that only if the resultan
forces are equal to zero (Fx5Fy50) theM (CR) is an invariant
with respect to the translation of coordinates.

Secondly, consider now how theM-integral changes under ro
tational transformation from one system of rectangular coo
nates to another~Fig. 1!. Let ~x, y! and (xr ,yr) be the coordinates
of the same point in the~xoy! and (xroyr) systems and let

zr5z exp~ ia! ~with zr5xr1 iy r , z5x1 iy ,! (24)

where the anglea represents a rotation of the coordinate syst
~Fig. 1!.

A similar derivation will give the following result~@14#!:

M ~r !~CR!5M ~CR!5
p~k11!

G
Re@2A1b12B1a11A2B2#.

(25)

In Eq. ~25!, M (r )(CR) denotes the value ofM-integral evaluated
in the (xr ,yr) coordinates. Also, from Eq.~25! we see that the
M (CR) value is an invariant with respect to the rotation of t
coordinates.

4 Discussion
It is found that the value ofM (CR) under the remote loading

sx
`5sy

`5p is a suitable measure to evaluate the included da
age. An example is introduced below. In the example, an ellip
hole in an infinite plate is subjected to the remote loadingsx

`

5sy
`5p. Three cases:~a! a circle hole with a radiusao , ~b! a

elliptical hole with major and minor axes ‘‘a’’ and ‘‘ b,’’ and ~c! a
crack with the half-length radiusacr , are considered for compari
son. After some manipulation, for the three cases we have

M ~CR!~a!5
p~k11!

8G
@4ao

2p2# (26)

M ~CR!~b!5
p~k11!

8G F4~11m2!

~11m!2 a2p2G , ~m5~a2b!/~a1b!!

(27)

M ~CR!~c!5
p~k11!

8G
@2acr

2 p2#. (28)
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It is assumed that, for two damaged mediums, if the values
M (CR) are the same they are said to be in the equivalent dam
situation. Therefore, after letting M (CR)(a)5M (CR)(b)
5M (CR)(c) , it is found that

a5
11m

A11m2
ao , acr5&ao . (29)

Equation ~29! reveals that a crack with half-lengthacr
(5&ao) is equivalent to a circle with radiusao on the basis of
the above-mentioned assumption. Similarly, an elliptical no
with major and minor axesa and b (a5((11m)ao)/A11m2,b
5((12m)a)/(11m)) is equivalent to a circle with radiusao .
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Impermeable Crack and Permeable
Crack Assumptions, Which
One is More Realistic?

Bao-Lin Wang
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Yiu-Wing Mai
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This paper investigates the applicability and effect of the cra
free electrical boundary conditions in piezoelectric fracture.
treating flaws in a medium as notches with a finite width,
results from different electrical boundary condition assumptio
on the crack faces are compared. It is found that the electrica
impermeable boundary is a reasonable one for engineering p
lems. Unless the flaw interior is filled with conductive media,
permeable crack assumption may not be directly applied to
fracture of piezoelectric materials in engineering applications.
@DOI: 10.1115/1.1748294#

1 Introduction
Due to the rapid growth in applications, the mechanical a

fracture properties of piezoelectric ceramics are becoming m
and more important. The material is brittle. In order to address
issues concerning durability and reliability of piezoelectric ma
rials, fracture behaviors of those materials should be investig
and understood thoroughly. The effect of electromechanical fi
on the fracture behavior of piezoelectric ceramics is highly co
plex. The understanding of the cracking under mechanical
electrical loads is of both academic and practical importance.

An important issue in studying fracture mechanics of piezoe
tric materials is the crack-face electric boundary conditions. Th
are two idealized crack-face boundary conditions that are ex
sively used in the literatures. One commonly used boundary c
dition is the specification that the normal component of elec
displacement along the crack faces equals to zero~see, e.g.,
@1–11#!. This boundary condition ignores the permittivity in th
medium interior to the crack. The other commonly used bound
condition treats the crack as being electrically permeable,@12–
15#. For permeable crack, the electric field and the electric d
placement intensity factors are found to depend only on the
plied mechanical loads. The stress intensity factor and the en
release rate become independent of the electrical loads. This
contrast to the test results,@8#. Other approach towards resolvin
the piezoelectric crack problems considers the deformation of
crack, @9,16–18#. This approach is based on the assumption t
under applied mechanical and electrical loads, the crack will o
and there is an electrical potential difference on the upper sur
and the lower surface of the crack.

In this paper, we reconsider the usually used two electr
boundary condition assumptions on the crack faces. Conside
the fact that flaws in experiments are not like cleavage crack
zero gap width, we treat the crack as a notch with a finite thi

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June
2002; final revision, September 18, 2003. Associate Editor: K. Ravi-Chandar.
Copyright © 2Journal of Applied Mechanics
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ness. The results from different electrical boundary condition
sumptions on the crack faces are compared. Some conclusion
made.

2 Piezoelectric Crack Problem
We consider a plane-strain problem shown in Fig. 1. Assu

that all field variables are functions ofx andy only. Constitutive
equations for piezoelectric materials polarized alongy direction
subjected to mechanical and electrical fields can be written a

~sxx syy txy Dx Dy!T5C~«xx «yy 2«xy Ex Ey!, (1)

where

C5F c11 c13 0 0 2e31

c13 c33 0 0 2e33

0 0 c44 2e15 0

0 0 e15 e11 0

e31 e33 0 0 e33

G , (2)

s i j and Di are stresses and electric displacements, respectiv
ci j , ei j , ande i i are elastic constants, piezoelectric constants,
dielectric permittivities, respectively. The strain« i j is related to
the mechanical displacementui by « i j 5(ui , j1uj ,i)/2, where a
comma indicates partial derivative. The electric fieldEi is related
to the electric potentialf by Ei52f ,i .

The governing equations for displacements and electric po
tial are

c11

]2u

]x2 1c44

]2u

]y2 1~c131c44!
]2v

]x]y
1~e311e15!

]2f

]x]y
50

~c131c44!
]2u

]x]y
1c44

]2v

]x2 1c33

]2v

]y2 1e15

]2f

]x2 1e33

]2f

]y2 50

~e311e15!
]2u

]x]y
1e15

]2v

]x2 1e33

]2v

]y2 2e11

]2f

]x2 2e33

]2f

]y2 50
6 ,

(3)

whereu andv are displacement inx andy direction, respectively.
Assume that the piezoelectric medium is loaded by a rem

uniform stressessy5s` and a uniform electric displacementDy
5D` . DenoteD0 as the normal component of the electric di
placement inside the crack (D0 is unknown!. The boundary con-
ditions along the cracked planey50 is stated as follows:

v~x,0!50, f~x,0!50, uxu>a, (4)

syy~x,0!50, uxu<a, (5)

Dy~x,0!5D0 , uxu<a. (6)

For this problem, the solutions can be obtained by means of c
plex variables as outlines in@5#,

~u, v, f!T52 Re~AF!, (7)

~sxx, Dx!
T52 Re~B1F!, (8)

~sxy, syy, Dy!T52 Re~BF!, (9)

whereA5@Aj a# and B5@Bj a# are (333) matrices,B1 is a (2
33) matrix,

F5@Fa~za!#5~F1~z1!, F2~z2!, F3~z3!!T, (10)

f5@ f a~za!#5~F18~z1!, F28~z2!, F38~z3!!T, (11)

za5x1pay, a51,2,3. (12)

The vectorsf andF are determined by
4,
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f a~za!5Hat0S za

Aza
22a2

21D , (13)

Fa~za!5Hat0~Aza
22a22za!, (14)

in which H is a (332) matrix, andHa is theath row of matrixH,

t05~s}, D}2D0!. (15)

Since the vectort0 contains an unknownD0 , additional as-
sumptions are needed to solve Eq.~13!. This will be discussed in
Secs. 3 and 4 of this paper. Oncef a(za) and Fa(za) are evalu-
ated, the full field solution of the cracked piezoelectric mate
can be determined. In particular, the electric potential jumpDf
across the crack are obtained as follows:

Dv524Aa22x1
2 ImS (

a51

3

A2aHat0D , (16)

Df524Aa22x1
2 ImS (

a51

3

A3aHat0D . (17)

In order to obtain the stress and electric displacement distr
tions near the crack front, we introducing the polar coordinater
andu such that

x5a1r cosu, y5r sinu, (18)

then the functionf a(za) may be expanded for small values ofr:

f a~za!5Hat0

Aa

A2r

1

Acosu1pa sinu
. (19)

Using the conventionally defined stress intensity factors and e
tric displacement intensity factor, stress and electric displacem
at the crack tip in the crack plane,u50, are given by

~syy, Dy!5
~K I, K IV !

A2r
, (20)

whereK I is the mode I stress intensity factor,K IV is the electric
displacement intensity factor. They take the following values

~K I , K IV !5~s`, D`2D0!Aa. (21)

It is clear thatK I depends only on the applied stress. The electr
boundary conditions on the crack surfaces have no effect on
stress intensity factors.

From Eq.~8!, the stress vectorsxx andDx at the crack tip takes
in u50 plane takes the following values:

Fig. 1 A piezoelectric medium with a notch of finite thickness
576 Õ Vol. 71, JULY 2004
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~sxx , Dx!
T52 Re~B1H!t0

Aa

A2r
. (22)

The energy release rate can be calculated by the crack clo
integral to yield

G52pa ImF S s`(
a51

3

A2a1~D`2D0!(
a51

3

A3aD Hat0G .

(23)

3 Solutions Based on Electrically Impermeable and
Electrically Permeable Crack Assumptions

Conventionally, there are two kinds of electrical boundary co
dition assumptions used to the fracture of piezoelectric ceram
i.e., the impermeable crack assumption and the permeable c
assumption. The simplest way to solve the problem is that
crack is assumed to be electrical impermeable and the ele
field inside the crack is zero. Therefore, in Eq.~15! D050, f a and
Fa can be determined immediately from Eqs.~13! and ~14!.

On the other hand, the permeable crack assumption treats
crack as being electrically permeable and there is no electric
tential jump across the crack. It can be shown from Eq.~17! that

ImS (
a51

3

A3aHaD t050. (24)

DenoteHa j as theath row and thej th column element of matrix
H. The unknown electric displacementD0 inside the crack can be
determined from Eq.~24!. The result is

D05D`1

ImS (
a51

3

A3aHa1D s`

ImS (
a51

3

A3aHa2D . (25)

OnceD0 is determined, Eqs.~13! and~14! can be used to evaluat
the unknown constantsf a andFa . The electric displacement in
tensity factor is

K IV5

2ImS (
a51

3

A3aHa1D s`

ImS (
a51

3

A3aHa2D
Aa. (26)

It can be shown from Eqs.~13! to ~15! that the full field solution
depends on the electrical load only through the termD`2D0 . It is
clear from Eq.~25! that D`2D0 can be expressed in terms o
applied mechanical loads. Therefore, solutions for an electric
permeable crack depend only on the mechanical loads, but no
the applied electrical load.

4 A Notch of Finite Thickness
In the last section, we considered a flaw in the piezoelec

media as a cleavage crack of zero gap width. In fracture mech
ics experiments, however, a flaw in a specimen is usually cut w
a tool of finite thickness. Thus, flaws in the experiments are
like cleavage cracks of zero gap width, but rather like notch
with a finite width.

Suppose the thicknessd of the notch is sufficiently small, ex-
cept near the tip of the notch, the gradient of crack opening al
the crack is small. Along they direction the electric fieldE and the
electric displacementD0 on the upper notch surface can be writte
as ~@19#!
Transactions of the ASME
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E~x!52
Df~x,0!

d~x!
, D0~x!52e0

Df~x,0!

d~x!
, (27)

wheree0 is the dielectric permittivity of the medium inside th
notch, which is usually the air or vacuum. By substituting fro
Eq. ~17! into Eq. ~27!, we obtain

D0~x!54Aa22x1
2e0

3

ImS (
a51

3

A3aHa1D s`1ImS (
a51

3

A3aHa2D ~D`2D0!

d~x!
.

(28)

This equation can be used to determine the unknownD0 . If we
consider an elliptic notch such that

d~x!5Aa22x1
2~d0 /a!, (29)

from Eqs.~28! and ~29!, it follows that the electric displacemen
inside the notch is

D05

ImS (
a51

3

A3aHa1D s`1ImS (
a51

3

A3aHa2D D`

ImS (
a51

3

A3aHa2D 1~d0 /a!/~4e0!

. (30)

It follows from ~21! that the electric displacement intensity fact
at the notch tip is

K IV5

~d0 /a!~4e0!D`2ImS (
a51

3

A3aHa1D s`

ImS (
a51

3

A3aHa2D 1~d0 /a!/~4e0!

Aa. (31)

It is clear that if the notch interior is filled by conductive mediu
such thate0 equals infinity, Eqs.~30! and ~31! reduce to the per-
meable crack solution, Eqs.~25! and ~26!, respectively. On the
other hand, If the permittivity of the notch is ignored such thate0
equals zero, Eqs.~30! and ~31! reduce, respectively, to

D050, and K IV5D`Aa, (32)

which are the impermeable crack solutions.

5 Applications
A PZT-4 piezoelectric ceramic loaded by a remote stresssy

5s` and an electric displacement loadDy5D} is considered as
an example. The properties of PZT-4 piezoelectric ceramic
same as those given in@8#. The dielectric permittivity of the air or
vacuum ise050.0885310210 C/Vm.

As discussed above, the stress intensity factorK I rely the ap-
plied mechanical load only. The notch thickness and the cr
face electrical boundary condition assumption have no effec
K I . The electric intensity factor for an impermeable crack an
permeable crack are

K IV5D`Aa,

and

K IV52.534310210s0Aa,

respectively.
On the other hand, if the flaw is a notch of finite thickne

rather than a slit crack, the electric fieldD0 inside the flaw is
Journal of Applied Mechanics
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D05
20.01108310210s`10.004372D`

0.00437212.825~d0 /a!
.

The electric displacement intensity factor at the notch tip is

K IV5
0.01108310210s`12.825~d0 /a!D`

0.00437212.825~d0 /a!
Aa.

The dependence of the electric displacement intensity factor
the notch thickness to length ratio is plotted in Fig. 2, for
electric displacement load or a mechanical load. The gap widt
known from the numerical computations to have a major influe
on the electric field intensity factors. Therefore, the effect of
finite flaw gap in a realistic structure must be assessed. Since
impossible to make a notch of zero width so that it behaviors a
slit crack, the permeable crack assumption may not be dire
applied to the piezoelectric fracture problems. The idealization
an electrically impermeable boundary is a reasonable one
notch aspect ratios of 0.01 or greater. Some authors studied
issue and reached a similar conclusion,@9,12#.

It is informative to consider some experimental date. Park a
Sun@8# used a 0.46 mm thick diamond wheel to cut a flaw of 11
mm length in a PZT-4 piezoelectric ceramic. The notch thickn
to length ratio in their test is

d0 /a'0.46/~11.5/2!50.08.

The normalized electric displacement intensity factor is

K IV

2.534310210s`Aa
50.0190

for a pure mechanical load, and

K IV

D`Aa
50.981

for a pure electric displacement load. The results are very nea
those obtained from impermeable crack assumption~zero for me-
chanical load, and one for electrical displacement load!. However,
for the permeable crack model, the normalized electric displa
ment intensity is one~for mechanical load! or zero~for electrical
displacement load!. Therefore, the permeable crack assumpt
gives a completely erroneous result.

Fig. 2 Electric displacement intensity factors caused by a uni-
form electric displacement load D` or a uniform mechanical
load s`
JULY 2004, Vol. 71 Õ 577
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6 The Antiplane Crack Problems
If the piezoelectric medium is poled perpendicular tox-y plane,

and subjected to an antiplane shear stresst` and an inplane elec
tric displacementD` , according to the method outlined by Pa
@20#, it can be easily shown that the electric potential on the up
crack surface is

f5
e15t`2c44~D`2D0!

c44e111e15
2

Aa22x2. (33)

If the thickness of the notch is expressed by~29!, then the electric
displacement inside the crack is obtained as

D05
c44D`2e15t`

c441~c44e111e15
2 !~d0 /a!/~2e0!

. (34)

The electric displacement intensity factor is obtained in clo
form:

K IV5FD`2
c44D`2e15t`

c441~c44e111e15
2 !~d0 /a!/~2e0!

GAa. (35)

The interpretations of the results for an antiplane crack prob
are similar to those for an inplane crack problem.

In conclusion, we know that

1. the application of an electric field does not change the st
intensity factors.

2. the ratio of notch thickness to length has no influence on
stress intensity factors.

3. the electric displacement intensity factor depends stron
on the ratio of notch thickness to length.

4. since a flaw in engineering materials is always a notch
finite thickness rather than a slit crack, the electrically i
permeable boundary is a reasonable one for enginee
problems.

5. unless the flaw interior is filled with conductive media, t
permeable crack assumption may not be directly applied
the fracture of piezoelectric materials in engineering ap
cations. Here, a crack is defined as a notch of zero thickn
578 Õ Vol. 71, JULY 2004
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Onset of Degenerate Hopf
Bifurcation of a Vibro-Impact
Oscillator
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An analytical method of the degenerate Hopf bifurcation is p
posed for vibro-impact systems. The phenomenon of the bifu
tion and its complicated dynamics are observed. This type of
furcation originates multi-coexisting solutions dependent of
initial state of the system.@DOI: 10.1115/1.1767163#

A two-degree-of-freedom impact oscillator is shown in Fig.
The massM1 with forced excitation impacts against a rigid wallA
when its displacementX1 reaches to the gapB. The impact causes
the discontinuity of velocity of the impacting mass by grazi
incidence thus inducing a variety of complicated dynamics. T
vibration of the oscillator consists of the nonimpact motions se
rated by impacts. The non-impact motion between two succes
impacts (X1,B) can be expressed by the linear differential Eq
~1a! in a nondimensional form. For the impact motion (X15B),
the relationship between the velocities before and after an im
is described by a coefficient of restitutionR in ~1b!.

F1 0

0 mm
G H ẍ1

ẍ2
J 1F 1 21

21 11mk
G H x1

x2
J 5 H sin~vt1t!

0 J , ~x1,b!

(1a)

ẋ1152Rẋ12 , ~x15b! (1b)

whereẋ11 andẋ12 represent the velocities of massM1 before and
after an impact, respectively, andt is the phase angle. The nond
mensional quantities are defined asmm5M2 /M1 , mk5K2 /K1 ,
v5VAM1 /K1, t5TAK1 /M1, b5BK1 /P1 , xi5XiK1 /P1 , ẋ11

5Ẋ11K1 /P1 , ẋ125Ẋ12K1 /P1 .
The vibro-impact oscillator~1! is a piecewise linear system tha

may exhibit very rich dynamical behaviors. Quasi-periodic m
tions and its torus-doubling bifurcations were observed,@1#. In
strong resonance cases, the system may directly bifurcate
unstable 3-3-periodic impact motions or stable 4-4-periodic
pact motion,@2#, from a Hopf bifurcation. With an additional pro
portional damping of the Rayleigh type, a verity of periodic a
chaotic behaviors was reported,@3#. The grazing bifurcation re-
sulted from the piecewise properties and singularities of the
pact were also investigated,@4#, in a perfectly plastic vibro-impac
case.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July
2002, final revision, January 27, 2004. Associate Editor: A. A. Ferri.
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In this brief note, the dynamical phenomenon of a class
degenerate Hopf bifurcation is reported for the vibro-impact
cillator ~1!. Degenerate Hopf bifurcation may lead to two
coexisting quasi-periodic impact motions, usually observed
continuous or discrete-time systems,@5#. This dynamical behavior
is interesting since it allows changing the system behavior qu
tatively without altering system bifurcation parameters. An an
lytical method is proposed for analyzing the occurrence of
degenerate Hopf bifurcation in vibro-impact systems. To co
with the discontinuity of velocity of impact that gives rise to di
ficulties in solving the dynamics of the differential equations~1!,
we establish a four-dimensional map in a Poincare´ section for the
vibro-impact system. Consequently, the center manifold red
tion, @6#, and the normal form technique,@7,8#, can be employed
to reduce the Poincare´ map into a two-dimensional normal form
Thus, Chenciner’s theory,@5#, of degenerate Hopf bifurcation o
maps inR2 can be applied to theoretically describe the pheno
enon of the degenerate Hopf bifurcation in the vibro-impact s
tem ~1!.

To establish the Poincare´ map of the vibro-impact system~1!,
we first look into the general solution of the piecewise line
system, between two successive impacts, expressed as

xi5(
j 51

2

c i j ~aj cosv j t1bj sinv j t1Aj sin~vt1t!!, (2a)

and

ẋi5(
j 51

2

c i j ~2ajv j sinv j t1bjv j cosv j t1Ajv cos~vt1t!!

~ i 51,2! (2b)

wherec i j are the elements of the canonical modal matrixc of Eq.
~1a!, v j the eigenfrequencies of the system,aj andbj the integra-
tion constants,Aj the amplitude parameters, andt the phase angle
These coefficients can be determined by the modal parameters
the initial conditions: x1(0)5b, x1(2p/v)5b, ẋ11(0)
52Rẋ12(2p/v), x2(0)5x2(2p/v), ẋ2(0)5 ẋ2(2p/v). Ac-
cording to the general solution~2! and its initial conditions, the
existence of periodic impacts must satisfy with the followin
condition;

Ub tant06A~ tan2 t011!d22b2

~ tan2 t011!d
U<1 (3)

where d52(c11A11c12A2). Let si5sin 2pvi /v, ci
5cos 2pvi /v. The initial phase anglet0 satisfies

t05 t̃0 if b50; (4a)

or t05cos21S b tant̃06A~ tan2 t̃011!d22b2

~ tan2 t̃011!d
D if bÞ0.

(4b)

where t̃05tan21((c22c11s1(12c2)v22c12c21s2(12c1)v1)(1
1R)v/ucuv1v2(12c1)(12c2)(12R)). The impact response o
the system~1! can be described as follows. Given the sta
(x1 ,ẋ1 ,x2 ,ẋ2 ,t) of the system at the instant set ast50, the mo-
tion of the system is determined by the general solution~2! of Eq.
~1a! until the next impact. When impact occurs, forx15b, the
velocity of the impacting mass is changed by the impact la
ẋ1152Rẋ12 . After an impact, shift the phaset5vt1t, and
reset the timet50, and renew the initial conditions in Eq.~1!.
With the new initial state, the motion of the system~1! may be
described by the general solution~2! until the next impact. In this
way, the motion of the vibro-impact system can be traced ove
arbitrary number of impacts.

4,
004 by ASME JULY 2004, Vol. 71 Õ 579



e
i

t

a

g

e

fixed

ce

t

le

able
d to
ail-
oin-

pf
Choosing a Poincare´ section, @1#, s,R43S, where s
5$(x1 ,ẋ1 ,x2 ,ẋ2 ,u)PR43S,x15b,ẋ15 ẋ11% andu5vt, we can
establish a four-dimensional Poincare´ map for the impact system
~1!. The map can be expressed in the brief form

X85 f̃ ~v;X! (5)

where the state vectorX5( ẋ11 ,x2 ,ẋ2 ,t)T andv is chosen as the
bifurcation parameter. LetX* denotes a fixed point of Poincar´
map ~5! in the hyperplanes, which corresponds to the 1-1 per
odic impact motion of the system~1!, @1,3#. Supposed that the
degenerate Hopf bifurcation of the system~1! occurs at (X* ,vc),
the disturbed system is given as

DX85 f ~m;DX! (6)

where DX is a disturbed vector at fixed pointX* and m5vc
2v. The Jacobian matrixDf DX(0;0) of map ~6! satisfies the
following conditions for a Hopf bifurcation,@1#:

~C1! f (m;0)50 for all m;
~C2! Df DX(m;0) has a pair complex conjugate eigenvalues
l1(m), l̄1(m) satisfyingul1(0)u51, and the other eigenvalue
l3(m), l4(m) satisfyingul3,4(0)u,1;
~C3! l1

m(0)Þ1, m51,2,3,4,5,6,7;
~C4! dul1(m)u/dmum505Rel̃1.0 where l1(m)5l1(0)(1
1ml̃11o(umu)).

The conditions C1, C2, and C4 are the critical conditions for
degenerate Hopf bifurcation and C3 is the nonresonance co
tion. Note that for the transversality condition C4,
dul1(m)u/dmum50,0 by setting m5vc2v, then
dul1(m)u/dmum50.0 by settingm5v2vc .

From C1 and C2, a local center manifold,@1,6#, of map ~6!
exists. The local dynamic behavior of the four-dimensional m
~6!, can be reduced into a two-dimensional map,

F~m,z!5l1~m!z1 (
i 1 j 52

5

gi j ~m!zi z̄j1O~ uzu5!, (7)

where the coefficientsgi j (m) can be expressed by the coefficien
of map~6!, see@1#. With the nonresonance condition C3, throu
a smoothm-dependent change of the coordinate,@7,8#, we can
obtain the following normal form of map~7!,

Pm~m,z!5l1~m!z1c3~m!z2z̄1c5~m!z3z̄21O~ uzu6! (8)

where the exact form of the coefficientsc3(m) andc5(m) in terms
of gi j (m) of map ~7! can be found in@8#.

Let a(m)5Re(c3(m)l̄1(m)), b(m)5Re(c5(m)l̄1(m)) and D̃
5a(m)224mb(m)Rel̃1. The Chenciner’s theory,@5#, of degen-
erate Hopf bifurcations, stated in the following Lemma, can
used to check the existence of the degenerate Hopf bifurcatio
the impact system~1!.

Lemma, @5#. Under the transversality condition C4, a degen
ate Hopf bifurcation of map~6! occurs ifa(m)50 atm50. Four
types of solutions are illustrated in Fig. 2.

Fig. 1 A two-degree-of-freedom impact oscillator
580 Õ Vol. 71, JULY 2004
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~i! In the parameter domainQ where m,0, a(m).0, b(m)
,0 andD̃.0, there exist a fixed pointX* and two Hopf circles.
The unstable circle separates the stable circle from the stable
point.

~ii ! If m,0 and D̃50, as shown in Fig. 2, the coalescen
phenomenon of the stable and unstable circles may occur.

~iii ! If m,0 and D̃,0, see Fig. 2, only a stable fixed poin
exists.

~iv! If m.0, as shown in Fig. 2, the fixed point is unstab
associated with a stable bifurcated Hopf circle.

Note that the proposed method is a general approach applic
to piecewise linear systems. It is possible to extend the metho
nonlinear impact systems if their nonimpact solutions are av
able, because from the solutions we are able to establish a P
carémap ~5! based on which center manifold,@6#, and Chencin-
er’s theory,@5#, can be utilized in the study of degenerate Ho

Fig. 3 Coexisting Hopf circles and a fixed point resulted from
a degenerate Hopf bifurcation at vÄ0.7297 „mË0… and a
Ä0.0313, where the unstable circle separates the stable circle
from the stable fixed point. The symbol ‘ Ã’ denotes the location
of the last iteration of the Poincare ´ map „5…. A view on the pro-
jected section „x 2 ,ẋ 2….

Fig. 2 Degenerate Hopf bifurcation diagram against the pa-
rameters „a, m…
Transactions of the ASME
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bifurcation. However, for most of nonlinear systems, analyti
solutions do not exist. Thus analytical approach to such system
infeasible.

We now study the dynamical phenomena induced by the de
erate Hopf bifurcation with the aid of the analytical method p
posed. Setmm53.644, mk57.167787,b52.037673,R50.5365
for the system~1!. The critical bifurcation parameter isvc

50.72871 in the system~1!. A fixed point of map~5! is X*
5(20.661343,0.536408,0.0458349,1.449541)T that is a period
1-1 impact motion of the system~1!. The eigenvalues of the Jaco
bian matrix of map ~6! are l1,250.573776 i0.81901, l3,45
20.417436 i0.33629, respectively, where ul1,2u51 and
dul1(m)u/dmum5050.22475. With the center manifold,@6#, and
normal form reduction,@8#, we find thata(m)50 at m50. Thus
the degenerate Hopf bifurcation occurs.

The complicated dynamics resulted from the degenerate H
bifurcation is summarized below.~i! Given m520.001 ~i.e., v
50.7297) such thata(m)50.03125,b(m)520.50869 andD̃
.0, Fig. 3 shows the co-existence of three solutions of map~5!.
The unstable Hopf circle~inner circle! separates the stable fixe
point ~center point! form the stable Hopf circle~outer circle!. Any
initial state point starting from the regime outside the stable cir
or the regime between the two circles will converge to the sta
Hopf circle which corresponding to the stable quasi-periodic
pact motion of the system~1!. When an initial state point start
from the regime surrounded by the inner circle, the iteration of
Poincare´ map eventually converges to the fixed pointX* , a 1-1
periodic impact motion.~ii ! The coalescence phenomenon of t
stable and unstable circles occurs atv50.73086 (m,0 and D̃
50). ~iii ! Taking v50.7318 (m,0 and D̃,0), all the circles
Journal of Applied Mechanics
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vanish with the emergence of a single stable fixed pointX* . ~iv!
Givenv50.7262 (m.0), the bifurcated Hopf circle of the Poin
carémap is attracting.

In summary, an analytical method for analyzing degener
Hopf bifurcation is introduced to piecewise linear systems. T
method could be extended to nonlinear impact systems if its n
impact solution is available. The phenomenon of multi-coexist
motions is observed from the degenerate Hopf bifurcation i
specific piecewise linear system, the vibro-impact system~1!. Dif-
ferent motions take place dependent on the initial state of
system. This characteristic allows one to alter the system dyn
ics qualitatively without varying a system parameter.
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A Long Crack Penetrating a
Transforming Inhomogeneity

Yuping Wang and Roberto Ballarini
Department of Civil Engineering, Case Western Reserv
University, Cleveland, OH 44106-7201

This note presents the stress intensity factors of a long crack
etrating a circular transforming inhomogeneity. Using the Gree
functions of dislocations interacting with a circular inhomogen
ity experiencing an isotropic (free expansion) eigenstrain,
elasticity solution is reduced to a system of singular integ
equations representing the traction boundary condition along
crack surfaces. The normalized stress intensity factor, obtai
through a numerical solution of the integral equations, has
strong dependence on the elastic mismatch, and can be e
negative or positive depending on the crack-tip location. The
mulation and results generalize a previously publish
transformation-toughening model that assigns equal ela
moduli to the inhomogeneity and the surrounding medium.
@DOI: 10.1115/1.1767166#

Analysis
Consider the plane elastostatics problem shown in Fig. 1~a!. A

circular inhomogeneity with radiusa Poisson’s ration2 , and shear
modulusm2 , is embedded in an infinite plate with Poisson’s ra
n1 and shear modulusm1 . A semi-infinite crack penetrates th
inhomogeneity, which is experiencing an isotropic~free expan-
sion! eigenstrain,« i j* 5d i j e* , where the« i j are the components o
the strain tensor andd i j is the Kronecker delta. The bonding be
tween the inhomogeneity and the surrounding matrix is perf
As shown in Fig. 1~a!, the origin of the coordinate system
located at the center of the inhomogeneity, and the crack ti
located at point (w,0). The stress intensity factor produced by t
eigenstrain within the inhomogeneity is defined asKl

loc .
The solution is formulated as the superposition of two pro

lems, as shown schematically in Figs. 1~b! and 1~c!. The first
involves the stresses produced along the crack line in an
cracked plate containing the expanding inhomogeneity~Fig. 1~b!!,
and the second the stresses produced along the crack line
continuous distribution of dislocations~Fig. 1~c!!. The stresses
produced by the eigenstrain are

syy
1e5

4~11h!m1m2e*

m1~k221!12m2
H a2

x2J x<a (1a)
582 Õ Vol. 71, JULY 2004 Copyright © 20
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syy
2e5

4~11h!m1m2e*

m1~k221!12m2
x>a (1b)

while those resulting from the distribution of dislocations are re
resented as

syy
1d5E

0

` 2b1~ t !

12x
dt1E

a

`

K11~x,t !b1~ t !dt

1E
w

a

K12~x,t !b2~ t !dt x<a (2a)

syy
2d5E

w

a 2b2~ t !

t2x
dt1E

w

a

K21~x,t !b2~ t !dt

1E
a

`

K22~x,t !b1~ t !dt w<x<a. (2b)

In Eq. ~2!, bi(t)5m i /p(k i11)]@ny#/]t is defined as the disloca
tion density in regioni, @ny# is the crack-opening displacemen
k5324n and h5n for plane strain,k5(32n)/(11n) and h
50 for plane stress, and theKi j are combinations of regular an
generalized Cauchy kernels that can be recovered from Ref.@1#.
The zero-traction condition along the crack line is enforced
summing to zero the stress contributions from Eq.~1! and ~2!.

The asymptotic behavior ofbi(t) was studied in detail in Ref.
@1#, where the loading was associated with a far-field stress c
sistent with a nominal stress intensity factor, rather than with
expanding inhomogeneity. Note that if one is interested in cal
lating the stress intensity factor produced by a far-field load
interacting with the eigenstrain within the inhomogeneity, then
appropriate superposition procedure must be performed. The
location densitiesbi(t) can be expressed as follows:

b1~ t !5
g1~ t !

~ t2w!0.52m~ t2a!m (3a)

b2~ t !5
g2~ t !

~ t2w!0.5~a2t !m (3b)

where the dominant singularity at the interface,m, and the un-
known regular functionsgi(t) satisfy

~12b2!~11cos2 mp!12@2ab212~2ab2b2!cosmp#

14m~22m!@~a2b!2~12m!22ab1b~a2b!cosmp#

50 (4a)

g1~ t !50 at t5` (4b)
g2~a!/g1~a!5
~11a!b1~a2b!~12b!~2114m22m2!2~12b2!cos~mp!

~11a!~2112b22bm!
3

m2~k111!

m1~k211!
3~a2w!m. (4c)

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept. 25, 2002; final revision, Feb. 6, 2004. Associate Editor: K. Ravi-Chandar.
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Fig. 1 „a… A semi-infinite crack penetrating a circular inhomo-
geneity which is experiencing an isotropic eigenstrain; „b… an
uncracked infinite plane containing a transforming circular in-
homogeneity; „c… an infinite plane containing a continuous dis-
tribution of edge dislocations
Journal of Applied Mechanics
Using the numerical approach developed by Erdogan et al.@2#,
which relies on the properties of Jocobi polynomials, the value
gi(t) are calculated at discrete points and the stress intensity
tor is recovered asKl

loc52pA2p/(a2w)mg2(w). It should be
noted that because the integral equations are not homogeneou
stabilization procedure is required to calculate a unique solut

Fig. 2 Plane strain nondimensional stress intensity factor as
functions of shear modulus ratio, m2 Õm1 , for several combina-
tions of Poisson’s ratios n1 ,n2
JULY 2004, Vol. 71 Õ 583
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However, if the loading is associated with a far-field stress int
sity factor rather than an eigenstrain within the inhomogene
@1#, then the integral equations become homogeneous, and a
bilization procedure is required for a unique solution,@3#.

Fig. 3 Plane stress nondimensional stress intensity factor as
functions of shear modulus ratio, m2 Õm1 , for several combina-
tions of Poisson’s ratios n1 ,n2
584 Õ Vol. 71, JULY 2004
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Results
The nondimensional stress intensity factor is defined as

Kl
loc

m1e* Aa
5

2pA2pg2~w!

~a2w!mm1e* Aa
5hS m2

m1
,n1 ,n2 ,

a2w

a D . (5)

For the crack tip at the center of the inhomogeneity (w50),
h(m2 /m1) for various Poisson’s ratios is presented in Figs. 2~a–c!
for plane strain and Figs. 3~a–c! for plane stress. For relatively
small levels of material mismatch, the number of integrati

Fig. 4 Variation of the plane strain nondimensional stress in-
tensity factor with crack-tip position, for several combinations
of elastic mismatch
Transactions of the ASME
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points required to achieve converged stress intensity factor
approximately 20. However, large levels require a significan
higher number of integration points; the converged results p
sented in this note were obtained using 300 points. For pos
e* , the stress intensity factor is always negative, indicating cra
tip shielding, and shows a very strong dependence on elastic
match, the dependence being greater for plane strain than
plane stress. As expected,Kl

loc approaches zero as the inhomog
neity becomes much more compliant than the matrix, and
proaches a constant value indicated by dashed lines as the
mogeneity becomes rigid.

An interesting result of this analysis is that the crack tip is n
always shielded. As shown in Fig. 4~a–c!, a positive stress inten
sity factor, indicating amplification, results for crack tips that ha
entered but have not reached the center of the inhomogeneit

The results presented above generalize those calculated in
@4#, where a transformation toughening model is developed fo
elastically homogeneous plate. For this case, the plane-strain
malized stress intensity factor reduces to
Journal of Applied Mechanics
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Kl
loc

m1e* Aa
52

16

3A8p
S 11n

12n D . (6)

The results presented in Fig. 2 corresponding to uniform ela
moduli match Eq.~6! to within three significant figures.
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Upper and Lower Bounds for Incipient
Failure in a Body Under
Gravitational Loading

J. A. Chamberlain, D. J. Horrobin,
K. A. Landman, and J. E. Sader1

Department of Mathematics and Statistics, University o
Melbourne, Victoria 3010, Australia
e-mail: jsader@unimelb.edu.au

Recent numerical work has investigated incipient failure of yi
stress materials under gravitational loading, for both the recta
gular block and cylinder geometries [Chamberlain et al.; 200
Int. J. Mech. Sci. 43(3):793-815, 2002, Int. J. Mech. S
44(8):1779-1800]. While the rectangular block solution is exa
the cylinder solutions give lower bounds on the height of incipi
failure. Consequently, we construct upper bound solutions for
height of incipient failure of a cylinder under gravitational load
ing. This closes the cylinder problem and quantifies the accur
of the Haar-Karman hypothesis used in slip-line analysis. F
completeness, we also give a simple lower bound solution for
cylinder, as well as upper and lower bound solutions for the tw
dimensional rectangular block. These results have the advan
of being analytical, in contrast to the previous purely numeric
results. @DOI: 10.1115/1.1767164#

1 Introduction
Flow of a cylinder of yield stress material under gravity to

lower height can be used to determine its yield stress; the rele
experimental technique is commonly termed the ‘‘slump te
~Murata @1#, Christensen@2#, and Pashias et al.@3#!. While this
flow phenomenon has been studied extensively, the closely re
problem of incipient failure, where the body is on the verge o
flowing, has received limited attention in the literature, with t
only work to date being the slip-line analyses of Chamberl
et al. @4,5#. While an exact solution was given for the case o
rectangular block~Chamberlain et al.@5#!, only a lower bound
solution was derived for the complementary case of a cylin
~Chamberlain et al.@4#! with the Haar-Karman hypothesis bein
invoked. The principal aim of this article is therefore to close t
cylinder problem by using limit analysis to construct an upp
bound on the height of incipient failure. For completeness,
also present upper and lower bound analyses for the rectan
block. The analytical formulas obtained using upper and low
bound analyses are of practical value due to their simplicity.

The geometry and coordinate systems used are shown in F
Final results are scaled by the length 2ty /(rg), wherety is the
shear yield stress,r is the density andg is the acceleration due to
gravity, giving the scaled radius or half-widthr 0 and the scaled
height of incipient failureh. In the analyses we use both Tres
and von Mises yield conditions~Desai and Siriwardane@6#!.

2 Lower Bound Analyses
To construct a lower bound solution, we specify a statica

admissible stress field.

1To whom correspondence should be addressed. E-mail: jsader@unimelb.e
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 2
2003; final revision, January 27, 2004. Associate Editor: Z. Suo.
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Plane Strain Rectangular Block. An appropriate statically
admissible stress field for the rectangular block is

S52rgF S 2ty

rg
2X2D X̂2X̂21S ty

rgD X̂3X̂3G , (1)

where the height of the block is

Hb5
2ty

rg
. (2)

Using the lower bound theorem of limit analysis~Chakrabarty@7#!
it then follows that the height of incipient failure is greater than
equal toHb , i.e., in scaled terms

h>1. (3)

Axisymmetric Cylinder. The statically admissible stres
field for the cylinder case is chosen as

S52rgS sy

rg
2ZD ẐẐ, (4)

with the height of the body,Hb , equal tosy /(rg), wheresy is
the uniaxial yield stress. In scaled terms, the lower bound res
are

h>1 ~Tresca! and h>
)

2
~von Mises!. (5)

3 Upper Bound Analyses
To use the upper bound theorem of limit analysis we requir

kinematically admissible velocity field~Chakrabarty @7#!. We

u.au

3,Fig. 1 Geometry and coordinate systems „a… plane-strain rect-
angular block „b… axisymmetric cylinder
04 by ASME Transactions of the ASME
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consider two extremes of base friction:~i! perfect slip and~ii ! a
perfectly rough base.

Plane-Strain Rectangular Block

Perfect Slip Base. The flow field is approximated by rigid
regions separated by velocity discontinuities, as illustrated in
2~a!. The kinematically admissible velocity field is

v* 5H 2X̂2 above AB,

cotzX̂1 below AB,
(6)

from which we obtain~Chakrabarty@7#! the upper bound

h<A11r 0. (7)

Perfectly Rough Base.To satisfy the perfectly rough condi
tion on the base, we require two discontinuities, see Fig. 2~b!. The
kinematically admissible velocity field is given by

v* 5H 2X̂2 above AB,

u1X̂11u2X̂2 betweenAB and AC,

0 below AC,

(8)

where

u15
1

tanz1tang
, u25

2tang

tanz1tang
. (9)

The upper bound result is then

h<A112r 0. (10)

Axisymmetric Cylinder. For the axisymmetric geometry, w
use configurations of velocity discontinuities identical to tho

Fig. 2 Diagram of the upper bound solutions for „a… perfect
slip on the base „single velocity discontinuity … and „b… perfectly
rough base „double velocity discontinuity …
Journal of Applied Mechanics
ig.

se

used in the plane strain solutions~see Fig. 2!. In addition, we
specify that the radial velocity is constant~Kudo @8#!.

Perfect Slip Base. Referring to Fig. 2~a!, the velocity field is
specified as

v* 5H 2Ẑ above AB,

1

2b
S R̂2

ZẐ

R
D below AB,

(11)

whereb5tanz, andAB is a velocity discontinuity.

Tresca Yield Condition. Applying the upper bound inequality
and minimizing with respect tob, we obtain

4h<
1

b
1b12r 0b111

1

2
A11b21

1

2b
ln~A11b21b!.

(12)

whereb satisfies

2b2~112r 0!1bA11b2521 ln~b1A11b2!. (13)

von Mises Yield Condition.Applying the upper bound in-
equality and minimizing with respect tob, we obtain

4h<
1

b
1b12r 0b1A11

b2

4
1

2

b
lnSA11

b2

4
1

b

2D , (14)

where

b2~112r 0!1bA11
b2

4
5112 lnSA11

b2

4
1

b

2D . (15)

Fig. 3 Height of incipient failure for the plane strain rectangu-
lar block: „a… perfect slip upper bound „UB… from Eq. „7…, exact
slip-line „EXACT… see Ref. †5‡, lower bound „LB … from Eq. „3…;
„b… perfectly rough base upper bound „UB… from Eq. „10…, exact
slip-line „EXACT… see Ref. †5‡, lower bound „LB … from Eq. „3…
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Perfectly Rough Base.Referring to Fig. 2~b!, the velocity
field v* is given by

v* 55
2Ẑ above AB,

1

2t H R̂1Ẑ
1

R
@at~R022R!2Z#J betweenAB and AC,

0 below AC,
(16)

wherea and t are defined byat5tang and (12a)t5tanz.

Tresca Yield Condition. Applying the upper bound inequality
minimizing with respect toa and t, gives the required result

4h<
2

t
1

t

2
12r 0t111

1

2
A11

t2

4
1

1

2t
lnS A41t21t

A41t22t
D ,

(17)

where

41 lnS A41t21t

A41t22t
D 5~114r 0!t21

t

2
A41t2. (18)

von Mises Yield Condition.Applying the upper bound in-
equality and minimizing with respect toa and t gives

4h<
2

t
1

t

2
12r 0t1A11

t2

16
1

2

t
lnS A161t21t

A161t22t
D , (19)

with t given by

Fig. 4 Height of incipient failure for the cylinder with perfect
slip on the base: „a… Tresca yield condition upper bound „UB…

from Eqs. „12…–„13…, slip-line lower bound „SLB … see Ref. †4‡,
lower bound „LB … from Eq. „5…; „b… von Mises yield condition
upper bound „UB… from Eqs. „14…–„15…, slip-line lower bound
„SLB … see Ref. †4‡, lower bound „LB … from Eq. „5…
588 Õ Vol. 71, JULY 2004
414 lnS A161t21t

A161t22t
D 5~114r 0!t21

t

2
A161t2. (20)

4 Results and Discussion
The above results are illustrated in Figs. 3, 4, and 5. For

rectangular block we find that the upper bound solutions give
excellent approximation to the exact slip-line results, whereas
lower bound solutions are comparatively poor.

For the cylinder case, the actual solution must lie between
slip-line lower bound and the appropriate upper bound soluti
possibly touching one of these curves~see Figs. 4 and 5!. Conse-
quently, the error in the height of incipient failure introduced
using the Haar-Karman hypothesis is bounded by the differe
between the slip-line lower bound solution and the upper bo
solution. This difference depends on the yield condition, b
boundary condition, and radius, and is quantified in Figs. 3 an
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Buckling of a Rotating Rod Under
Axial Force

C. Y. Wang
Professor, Mem. ASME, Departments of Mathematics a
Mechanical Engineering, Michigan State University,
East Lansing, MI 48824

The difference equations governing the rotation of a segme
rod under axial force is formulated. The stability boundaries a
found to be highly dependent on the number of links, the rota
rate and the compressive force. For a large number of links,
result approaches to that of the continuous elastic rod throu
some fractional power. The analysis is applicable to segmen
drill shafts.
@DOI: 10.1115/1.1767165#

Introduction
The prediction of buckling or whirling of an axially rotating ro

is important to the design of shafts and rotating machinery. T
linearized stability of elastic rotating rods leads to a fourth-deg
eigenvalue problem~see, for example,@1,2#!. Bobisud and Chris-
tenson@3# considered the case where an axial force is applied
rod whose one end is clamped and rotated and the other
hinged. The problem is important in the stability of drill bits.

Rotating shafts are sometimes too long to be made or tr
ported in one piece. For example, drill shafts in mining or w
drilling are composed of several segments connected toge
Marine and truck engine shafts may also be jointed. Previ
literature in this area includes the work by Wang@4# who studied
a segmented rod rotated at one end while the other end is
However that source cannot be applied to the drill shaft sinc
does not admit an axial force. The present paper studies the
bility of an idealized segmented drill shaft which is composed
joined rigid links. The results are compared with those of
continuous elastic rod.

Formulation
Consider a rod withN segments joined together. The joints a

strengthened by rotational springs to maintain the structu
straightness. The rod is then rotated at one end with angular
locity V and compressed axially by the forceF8. Figure 1~a!
shows the buckled rod under a Cartesian system rotated abou
x8 axis. Figure 1~b! shows the force balance on thenth link.
Notice that the resultant centrifugal forceCn8 does not act on the
mid point of the link, but at a distancesn8 form the left end at
(xn218 ,yn218 ). Simple integration along the link shows

Cn85mV2~yn218 1yn8!/2 (1)

sn85
l ~yn218 12yn8!

3~yn218 1yn8!
. (2)

Herem is the mass of the link andl is its length. The two ends ar
related by

xn85xn218 1 l cosun , (3)

yn85yn218 1 l sinun (4)

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Octob
16, 2003; final revision, January 15, 2004. Associate Editor: S. Mukherjee.
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whereun is the angle of inclination. A vertical force balance give

Gn81Cn85Gn218 . (5)

A moment balance about the left end gives

Gn8l cosun1Cn8sn8 cosun1F8l sinun1Mn85Mn218 . (6)

The end momentMn8 is in general a function of the angle dif
ference of two adjacent links. For small deformations the mom
is proportional to the angle difference

Mn85l~un112un!. (7)

where l is the linear rotational spring constant. Normalize
lengths by the total lengthL5Nl and all forces byl/ l and drop
primes. Eqs.~1!–~6! become

Cnv2~yn211yn!/2, (8)

sn5
~yn2112yn!

3N~yn211yn!
(9)

xn5xn211cosun /N, (10)

yn5yn211sinun /N (11)

Gn5Gn212Cn (12)

~Gn1Cnsn!cosun1F sinun1un1122un1un2150. (13)

Here

v[VLA m

lN
(14)

is a normalized rotation rate. The boundary conditions are that
rod is ‘‘clamped’’ at one end and ‘‘hinged’’ at the other end. Th
is equivalent to extending with fictitious linksu0 anduN11 such
that

u050, (15)

uN5uN11 . (16)

The other boundary conditions are

x050, (17)

y050, (18)

yN50. (19)

For incipient buckling, the angles of inclination are sma
Equations~11!–~13! linearize to

Gn1Fun1
v2

6N
~yn2112yn!1un1122un1un21

50, n51 to N (20)

yn5yn211
1

N
un n51 to N (21)

Gn5Gn212
v2

2
~yn211yn! n51 to N. (22)

Together with Eqs.~15!, ~16!, ~18!, and ~19! there are 3N14
equations for the 3N14 unknowns u0¯uN11 , y0¯yN ,
G0¯GN . For nontrivial solutions the determinant of coefficien
is set to zero, giving a characteristic equation for the parameteF
andv.

Stability
The rod cannot buckle with one link. IfN52, the characteristic

equation gives the stability boundary
er
04 by ASME Transactions of the ASME



Fig. 1 „a… The rotating segmented rod. „b… Force balance on the n th link, Cn8 is the centrifugal force. „c… A segment of the
continuous rod.

Fig. 2 Stability boundaries for the primary mode
o

e

t
uite

and
e

F1
7

48
v22

5

2
50. (23)

The rod is stable if the left-hand side of Eq.~23! is less than zero.
For N53, after some work, we find the two solutions

F1
1

3 S 4

9
v2276A 11

108
v41

5

3
v217D 50 (24)

corresponding to the two modes of buckling. The determinan
solved numerically forN>4. Figure 2 shows the stability bound
aries for the primary mode. The rod is unstable if rotation a
axial force indicate a state above each curve. Of special inte
are the buckling loads when rotation is absent (v50). Table 1
shows the buckling loads of all the modes forN<6.

The higher modes occur when the lateral displacement of
rod is restricted, for example a rod in a confining tube. The f
modes forN55 are shown in Fig. 3 for the same initial angle. O
the other hand, if the rod is subjected to rotation only (F50) the
critical rotation speeds forN<6 are given in Table 2.

The mode shapes forN55 is shown in Fig. 4. In general, th
rod would bend to one side for the first mode, and there aren-1
Journal of Applied Mechanics
t is
-
nd
rest

the
ur
n

interior zeroes for thenth mode. It is clear from Figs. 3 and 4 tha
the mode shapes due to axial force or centrifugal force are q
different.

Comparison With the Continuous Elastic Rod
The continuous elastic rod was considered by Bobisud

Christenson@3#. An alternative derivation is as follows. Figur
1~c! shows an elemental segment of the rod. Lets8 be the arc
length from the origin andu be the local angle of inclination. A
vertical force balance yields

Table 1 Buckling loads when rotation is absent

N52 3 4 5 6

F52.5 1.4514 0.924 0.634 0.461
3.2153 2.306 1.677 1.258

3.520 2.811 2.220
3.677 3.126

3.768
JULY 2004, Vol. 71 Õ 591
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Fig. 3 The buckling modes for NÄ5 when rotation is absent.
From top, first to fourth modes, respectively.

Table 2 Critical speeds when axial force is absent

N52 3 4 5 6

v54.1403 2.3918 1.6123 1.1845 0.9192
8.7596 5.6715 4.0520 3.0932

12.802 9.1374 6.8402
16.117 12.442

18.872
592 Õ Vol. 71, JULY 2004
dG81rds8V2y850 (25)

wherer is the mass per length. Moment balance about the left
gives

dM81F8ds8 sinu1G8ds8 cosu50. (26)

The Euler-Bernoulli elastic law states that the local momen
proportional to the local curvature

M 85EI
du

ds8
(27)

whereEI is the flexural rigidity. The kinematic relation is

Fig. 4 The buckling modes for NÄ5 when axial force is ab-
sent. From top, first to fourth modes, respectively.
Fig. 5 Stability boundaries for the continuous rod, first four modes
Transactions of the ASME
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Fig. 6 Comparisons of the stability boundaries of the segmented rod „solid lines …

to that of the continuous rod „dashed lines …, first mode only
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dy8

ds8
5sinu. (28)

Normalize all lengths by the rod lengthL and drop primes. The
forces are normalized byEI/L2 and indicated by hats. Eqs.~25!–
~28! yield the linearized equations

d2u

ds2 1F̂u1Ĝ50, (29)

dĜ

ds
1J4y50, (30)

dy

ds
5u (31)

whereJ4[rV2L4/EI is the rotation parameter. Equations~29!–
~31! is simplified to

d4u

ds4 1F̂
d2u

ds2 2J4u50. (32)

The solution of Eq.~32! is a linear combination of cosh(as),
sinh(as), cos(bs), sin(bs) where

a5A~AF̂214J42F̂ !/2, (33)

b5A~AF̂214J41F̂ !/2. (34)

The fixed-hinged boundary conditions are

u~0!50,
du

ds
~1!50. (35)

From Eqs.~29!, ~30!, the requirement of zero displacements
the ends gives

d3u

ds3 ~0!1F̂
du

ds
~0!50, (36)

d3u

ds3 ~1!1F̂
du

ds
~1!50. (37)

For nontrivial solutions ofu, the resulting characteristic equa
tion from Eqs.~36!, ~37! is simplified to
echanics
at

-

b cosb sinha2a cosha sinb50 (38)

which is the same equation obtained in Ref.@3#. Figure 5 shows
the stability boundaries for the first four modes (AF is plotted to
compress the figure!.

The connection between a segmented rod and a continuous
was delineated by Wang@4#. For largeN the joint spring constant
l of the segmented rod is asymptotically related to the flexu
rigidity EI of the continuous rod by

EI'lL/N. (39)

Using Eq.~39!, the normalized forces and rotation rates for lar
N are related by

F̂'FN2, J'v1/2N3/4. (40)

Figure 6 shows the stability boundaries for the first mode,
plotted in terms of the combinations given in Eq.~40!. We see that
the N550 curve is already fairly close to the continuous ca
Thus the results of the continuous case can be used~within 2%
error! if the number of links of the segmented rod is more than

Discussions
The nonlinear difference equation governing the rotation o

segmented rod under axial force can also be used for large d
mations, given the constitutive relation of the rotational sprin
We find that the centrifugal force and axial force have differe
effects on the buckling mode, while both decreases stability.
creasing the number of linksN decreases stability, and increas
the number of eigenmodes. AsN becomes large, the results for th
continuous elastic rod is recovered, but only with the proper fr
tional transformation given in Eq.~40!. Our Figs. 2 and 6 should
be useful in the design of segmented drill shafts.
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It is the contention of the authors that the ‘‘zeroth-order’’ she
deformation theory presented by Ray@1# is mathematically
equivalent to Reddy’s third order theory@2#. The notation of Ref.
@1# is used herein. Ray’s approximations for the in-plane displa
ments

u5u02zw,x1S 3z

2h
2

2z3

h3 D Qx

lx
, v5v02zw,y1S 3z

2h
2

2z3

h3 D Qy

ly

(1)

are identical to those of the Reddy’s theory,@2#, with

cx1w,x5
3Qx

2hlx
, cy1w,y5

3Qy

2hly
. (2)

Hence the equations of motion and boundary conditions of R
theory are mathematically equivalent to those of the dynamic
sion of Reddy’s theory. This is established explicitly by comp
ing the governing equations of the two theories.

For Reddy’s theory, the equations of motion are

Nx,x1Nxy,y5I 0ü02I 1ẅ,x1
2h

3
I 8~ c̈x1ẅ,x! (3)

Nxy,x1Ny,y5I 0v̈02I 1ẅ,y1
2h

3
I 8~ c̈y1ẅ,y! (4)

Qx,x2
4

h2 Rx,x1Qy,y2
4

h2 Ry,y1
4

3h2 ~Px,xx12Pxy,xy1Py,yy!1p

5I 0ẅ1
4

3h2 I 3~ ü0,x1 v̈0,y!1
4

3h2 S I 42
4I 6

3h2D ~ c̈x,x1ẅ,xx

1c̈y,y1ẅ,yy!2
4I 4

3h2 ~ẅ,xx1ẅ,yy! (5)
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,

ar

ce-

y’s
er-
r-

S Mx2
4

3h2 PxD
,x

1S Mxy2
4

3h2 PxyD
,y

2S Qx2
4

h2 RxD
5

2h

3 F I 8ü02I 9ẅ,x1
2h

3
I 7~ c̈x1ẅ,x!G . (6)

S M y2
4

3h2 PyD
,y

1S Mxy2
4

3h2 PxyD
,x

2S Qy2
4

h2 RyD
5

2h

3 F I 8ü02I 9ẅ,y1
2h

3
I 7~ c̈y1ẅ,y!G . (7)

For Ray’s theory, the equations of motion are

Nx,x1Nxy,y5I 0ü02I 1ẅ,x1I 8

Q̈x

lx
(8)

Nxy,x1Ny,y5I 0v̈02I 1ẅ,y1I 8

Q̈y

ly
(9)

Mx,xx12Mxy,xy1M y,yy1p

5I 0ẅ1I 1~ ü0,x1 v̈0,y!2I 2~ẅ,xx1ẅ,yy!1I 9S Q̈x,x

lx
1

Q̈y,y

ly
D

(10)

S Mx2
4

3h2 PxD
,x

1S Mxy2
4

3h2 PxyD
,y

2S Qx2
4

h2 RxD
5

2h

3 F I 7

lx
Q̈x1I 8ü02I 9ẅ,xG (11)

S M y2
4

3h2 PyD
,y

1S Mxy2
4

3h2 PxyD
,x

2S Qy2
4

h2 RyD
5

2h

3 F I 7

ly
Q̈y1I 8v̈02I 9ẅ,yG (12)

with I 759I 2/4h226I 4 /h414I 6 /h6. Using Eq.~2!, it is observed
that Eqs.~8!, ~9!, ~11!, ~12! are identical to Eqs.~3!, ~4!, ~6!, ~7!.
Forming the combination Eq.~10!–Eq. (11),x– Eq. (12),y yields
Eq. ~5!.

For Reddy’s theory, the boundary conditions are obtained fr
the following boundary integral formed after using Green’s the
rem in Hamilton’s principle
04 by ASME Transactions of the ASME
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E FNndun1Nnsdus1M̂ndcn1M̂nsdcs2
4

3h2 Pndw,n

1F Q̂xnx1Q̂yny1
4

3h2 $~Px,x1Pxy,y!nx1~Py,y1Pxy,x!ny

1Pns,s%2
4I 3

3h2 H ü01S I 42
4I 6

3h2D ~ c̈x1ẅ,x!2I 4ẅ,xJ nx

2
4I 3

3h2 H v̈01S I 42
4I 6

3h2D ~ c̈y1ẅ,y!2I 4ẅ,yJ nyGdwGds

2(
i

4

3h2 DPns~si !dw~si ! (13)

wheresi are locations of plate corners and

un5u0nx1v0ny , us5u0sx1v0sy

Nn5Nxnx
21Nyny

212Nxynxny ,

Nns5Nxnxsy1Nynysy1Nxy~nxsy1nysx!

Q̂a5Qa2
4

h2 Ra ~a5x,y!, M̂b5Mb2
4

3h2 Pb ~b5x,y,xy!

(14)

with sx52ny ,sy5nx . The expressions ofM̂n ,M̂ns ;Mn ,Mns ;
Pn ,Pns are similar to those ofNn , Nns , and ofcn ,cs ; w,n ,w,s
are similar to those ofun ,us . For Ray’s theory the correspondin
boundary integral is

E FNndun1Nns1dus1
3dQx

2hlx
H S Mx2

4

3h2 PxDnx

1S Mxy2
4

3h2 PxyDnyJ 1
3dQy

2hly
H S M y2

4

3h2 PyDny

1S Mxy2
4

3h2 PxyDnxJ 2Mndw,n2Mnsdw,s

1H ~Mx,x1Mxy,y!nx1~Mxy,x1M y,y!ny

1S 2I 1ü01I 2ẅ,x2
Q̈x

lx
I 9D nx
Journal of Applied Mechanics
1S2I1v̈01I2ẅ,y2
Q̈y

ly
I9DnyJdwGds. (15)

Substituting

3

2hlx
dQx5dcx1dw,x5~dcn1dw,n!nx1~dcs1dw,s!sx

3

2hly
dQy5dcy1dw,y5~dcn1dw,n!ny1~dcs1dw,s!sy

(16)

in Eq. ~15! reduces it to

E FNndun1Nnsdus1M̂ndcn1M̂nsdcs

2
4

3h2 ~Pndw,n1Pn,sdw,s!1H ~Mx,x1Mxy,x!nx

1~Mxy,y1M y,y!ny1S 2I 1ü01I 2ẅ,x2
Q̈x

lx
I 9D nx

1S 2I 1v̈01I 2ẅ,y2
Q̈y

ly
I 9D nyJ dwGds. (17)

Substituting the expressions ofMx,x1Mxy,y and M y,y1Mxy,x
from equations of motion~11! and ~12! into Eq. ~17! and using
Eq. ~2!, reduces it to exactly the same expression as in Eq.~13!.
Hence Ray’s theory is not a new theory since its equations
motion and boundary conditions are mathematically equivalen
those of Reddy’s theory. The results of this theory for any bou
ary conditions will be identical to those of Reddy’s theory. T
statics results of Ray’s theory in Table 1 agree with Reddy’s
sults,@2#. The difference in Table 6 from Reddy’s results is due
neglect of some inertia terms by Ray while obtaining Navie
solution. Ray’s theory is not a zeroth-order theory but Redd
third order theory in disguise. Moreover, the displacement
proximation of Ray’s theory is valid only for the case of cross-p
and antisymmetric angle-ply laminates since for the general
up, the given expressions oflx , ly would not be valid.

References
@1# Ray, M. C., 2003, ‘‘Zeroth-Order Shear Deformation Theory for Laminat

Composite Plates,’’ ASME J. Appl. Mech.,70, pp. 374–380.
@2# Reddy, J. N., 1997,Mechanics of Laminated Composite Plates Theory a

Analysis, CRC Press, Boca Raton, FL.
JULY 2004, Vol. 71 Õ 595


	TECHNICAL PAPERS
	BRIEF NOTES
	DISCUSSION
	ANNOUNCEMENTS AND SPECIAL NOTICES
	Binder10.pdf
	AMJ000441.pdf
	AMJ000450.pdf
	AMJ000459.pdf
	AMJ000465.pdf
	AMJ000470.pdf
	AMJ000476.pdf
	AMJ000486.pdf
	AMJ000493.pdf
	AMJ000502.pdf
	AMJ000508.pdf
	AMJ000516.pdf
	AMJ000521.pdf
	AMJ000532.pdf
	AMJ000541.pdf
	AMJ000546.pdf
	AMJ000551.pdf
	AMJ000560.pdf
	AMJ000567.pdf
	AMJ000572.pdf
	AMJ000575.pdf
	AMJ000579.pdf
	AMJ000582.pdf
	AMJ000586.pdf
	AMJ000590.pdf
	AMJ000594.pdf


